Properties

Label 496.2.i.h.129.1
Level $496$
Weight $2$
Character 496.129
Analytic conductor $3.961$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [496,2,Mod(129,496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(496, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("496.129"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 496 = 2^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 496.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.96057994026\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 129.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 496.129
Dual form 496.2.i.h.273.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20711 + 2.09077i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(1.20711 - 2.09077i) q^{7} +(-1.41421 - 2.44949i) q^{9} +(-2.62132 - 4.54026i) q^{11} +(-0.914214 - 1.58346i) q^{13} +2.41421 q^{15} +(0.0857864 - 0.148586i) q^{17} +(0.792893 - 1.37333i) q^{19} +(2.91421 + 5.04757i) q^{21} +4.00000 q^{23} +(2.00000 - 3.46410i) q^{25} -0.414214 q^{27} -1.17157 q^{29} +(5.00000 + 2.44949i) q^{31} +12.6569 q^{33} -2.41421 q^{35} +(-0.500000 + 0.866025i) q^{37} +4.41421 q^{39} +(-4.74264 - 8.21449i) q^{41} +(4.44975 - 7.70719i) q^{43} +(-1.41421 + 2.44949i) q^{45} +1.65685 q^{47} +(0.585786 + 1.01461i) q^{49} +(0.207107 + 0.358719i) q^{51} +(-0.0857864 - 0.148586i) q^{53} +(-2.62132 + 4.54026i) q^{55} +(1.91421 + 3.31552i) q^{57} +(-5.03553 + 8.72180i) q^{59} +2.82843 q^{61} -6.82843 q^{63} +(-0.914214 + 1.58346i) q^{65} +(-2.62132 - 4.54026i) q^{67} +(-4.82843 + 8.36308i) q^{69} +(-7.03553 - 12.1859i) q^{71} +(-1.91421 - 3.31552i) q^{73} +(4.82843 + 8.36308i) q^{75} -12.6569 q^{77} +(-7.62132 + 13.2005i) q^{79} +(4.74264 - 8.21449i) q^{81} +(2.03553 + 3.52565i) q^{83} -0.171573 q^{85} +(1.41421 - 2.44949i) q^{87} -12.4853 q^{89} -4.41421 q^{91} +(-11.1569 + 7.49706i) q^{93} -1.58579 q^{95} +10.8284 q^{97} +(-7.41421 + 12.8418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{5} + 2 q^{7} - 2 q^{11} + 2 q^{13} + 4 q^{15} + 6 q^{17} + 6 q^{19} + 6 q^{21} + 16 q^{23} + 8 q^{25} + 4 q^{27} - 16 q^{29} + 20 q^{31} + 28 q^{33} - 4 q^{35} - 2 q^{37} + 12 q^{39}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/496\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\) \(373\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.20711 + 2.09077i −0.696923 + 1.20711i 0.272605 + 0.962126i \(0.412115\pi\)
−0.969528 + 0.244981i \(0.921218\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) 1.20711 2.09077i 0.456243 0.790237i −0.542515 0.840046i \(-0.682528\pi\)
0.998759 + 0.0498090i \(0.0158613\pi\)
\(8\) 0 0
\(9\) −1.41421 2.44949i −0.471405 0.816497i
\(10\) 0 0
\(11\) −2.62132 4.54026i −0.790358 1.36894i −0.925745 0.378147i \(-0.876561\pi\)
0.135388 0.990793i \(-0.456772\pi\)
\(12\) 0 0
\(13\) −0.914214 1.58346i −0.253557 0.439174i 0.710945 0.703247i \(-0.248267\pi\)
−0.964503 + 0.264073i \(0.914934\pi\)
\(14\) 0 0
\(15\) 2.41421 0.623347
\(16\) 0 0
\(17\) 0.0857864 0.148586i 0.0208063 0.0360375i −0.855435 0.517911i \(-0.826710\pi\)
0.876241 + 0.481873i \(0.160043\pi\)
\(18\) 0 0
\(19\) 0.792893 1.37333i 0.181902 0.315064i −0.760626 0.649190i \(-0.775108\pi\)
0.942528 + 0.334126i \(0.108441\pi\)
\(20\) 0 0
\(21\) 2.91421 + 5.04757i 0.635934 + 1.10147i
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) −0.414214 −0.0797154
\(28\) 0 0
\(29\) −1.17157 −0.217556 −0.108778 0.994066i \(-0.534694\pi\)
−0.108778 + 0.994066i \(0.534694\pi\)
\(30\) 0 0
\(31\) 5.00000 + 2.44949i 0.898027 + 0.439941i
\(32\) 0 0
\(33\) 12.6569 2.20328
\(34\) 0 0
\(35\) −2.41421 −0.408077
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 4.41421 0.706840
\(40\) 0 0
\(41\) −4.74264 8.21449i −0.740676 1.28289i −0.952188 0.305513i \(-0.901172\pi\)
0.211512 0.977375i \(-0.432161\pi\)
\(42\) 0 0
\(43\) 4.44975 7.70719i 0.678580 1.17534i −0.296828 0.954931i \(-0.595929\pi\)
0.975409 0.220404i \(-0.0707377\pi\)
\(44\) 0 0
\(45\) −1.41421 + 2.44949i −0.210819 + 0.365148i
\(46\) 0 0
\(47\) 1.65685 0.241677 0.120839 0.992672i \(-0.461442\pi\)
0.120839 + 0.992672i \(0.461442\pi\)
\(48\) 0 0
\(49\) 0.585786 + 1.01461i 0.0836838 + 0.144945i
\(50\) 0 0
\(51\) 0.207107 + 0.358719i 0.0290008 + 0.0502308i
\(52\) 0 0
\(53\) −0.0857864 0.148586i −0.0117837 0.0204099i 0.860073 0.510170i \(-0.170418\pi\)
−0.871857 + 0.489760i \(0.837084\pi\)
\(54\) 0 0
\(55\) −2.62132 + 4.54026i −0.353459 + 0.612209i
\(56\) 0 0
\(57\) 1.91421 + 3.31552i 0.253544 + 0.439151i
\(58\) 0 0
\(59\) −5.03553 + 8.72180i −0.655571 + 1.13548i 0.326180 + 0.945308i \(0.394239\pi\)
−0.981750 + 0.190174i \(0.939095\pi\)
\(60\) 0 0
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) 0 0
\(63\) −6.82843 −0.860301
\(64\) 0 0
\(65\) −0.914214 + 1.58346i −0.113394 + 0.196405i
\(66\) 0 0
\(67\) −2.62132 4.54026i −0.320245 0.554681i 0.660293 0.751008i \(-0.270432\pi\)
−0.980539 + 0.196327i \(0.937099\pi\)
\(68\) 0 0
\(69\) −4.82843 + 8.36308i −0.581274 + 1.00680i
\(70\) 0 0
\(71\) −7.03553 12.1859i −0.834964 1.44620i −0.894060 0.447948i \(-0.852155\pi\)
0.0590953 0.998252i \(-0.481178\pi\)
\(72\) 0 0
\(73\) −1.91421 3.31552i −0.224042 0.388052i 0.731990 0.681316i \(-0.238592\pi\)
−0.956032 + 0.293264i \(0.905259\pi\)
\(74\) 0 0
\(75\) 4.82843 + 8.36308i 0.557539 + 0.965685i
\(76\) 0 0
\(77\) −12.6569 −1.44238
\(78\) 0 0
\(79\) −7.62132 + 13.2005i −0.857466 + 1.48517i 0.0168732 + 0.999858i \(0.494629\pi\)
−0.874339 + 0.485316i \(0.838704\pi\)
\(80\) 0 0
\(81\) 4.74264 8.21449i 0.526960 0.912722i
\(82\) 0 0
\(83\) 2.03553 + 3.52565i 0.223429 + 0.386990i 0.955847 0.293865i \(-0.0949416\pi\)
−0.732418 + 0.680855i \(0.761608\pi\)
\(84\) 0 0
\(85\) −0.171573 −0.0186097
\(86\) 0 0
\(87\) 1.41421 2.44949i 0.151620 0.262613i
\(88\) 0 0
\(89\) −12.4853 −1.32344 −0.661719 0.749752i \(-0.730173\pi\)
−0.661719 + 0.749752i \(0.730173\pi\)
\(90\) 0 0
\(91\) −4.41421 −0.462735
\(92\) 0 0
\(93\) −11.1569 + 7.49706i −1.15691 + 0.777408i
\(94\) 0 0
\(95\) −1.58579 −0.162698
\(96\) 0 0
\(97\) 10.8284 1.09946 0.549730 0.835342i \(-0.314731\pi\)
0.549730 + 0.835342i \(0.314731\pi\)
\(98\) 0 0
\(99\) −7.41421 + 12.8418i −0.745157 + 1.29065i
\(100\) 0 0
\(101\) 8.48528 0.844317 0.422159 0.906522i \(-0.361273\pi\)
0.422159 + 0.906522i \(0.361273\pi\)
\(102\) 0 0
\(103\) −6.03553 10.4539i −0.594699 1.03005i −0.993589 0.113050i \(-0.963938\pi\)
0.398890 0.916999i \(-0.369395\pi\)
\(104\) 0 0
\(105\) 2.91421 5.04757i 0.284398 0.492592i
\(106\) 0 0
\(107\) 4.79289 8.30153i 0.463346 0.802540i −0.535779 0.844358i \(-0.679982\pi\)
0.999125 + 0.0418188i \(0.0133152\pi\)
\(108\) 0 0
\(109\) −5.17157 −0.495347 −0.247673 0.968844i \(-0.579666\pi\)
−0.247673 + 0.968844i \(0.579666\pi\)
\(110\) 0 0
\(111\) −1.20711 2.09077i −0.114574 0.198447i
\(112\) 0 0
\(113\) −2.67157 4.62730i −0.251320 0.435300i 0.712569 0.701602i \(-0.247531\pi\)
−0.963890 + 0.266302i \(0.914198\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) 0 0
\(117\) −2.58579 + 4.47871i −0.239056 + 0.414057i
\(118\) 0 0
\(119\) −0.207107 0.358719i −0.0189854 0.0328838i
\(120\) 0 0
\(121\) −8.24264 + 14.2767i −0.749331 + 1.29788i
\(122\) 0 0
\(123\) 22.8995 2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −5.44975 + 9.43924i −0.483587 + 0.837597i −0.999822 0.0188496i \(-0.994000\pi\)
0.516235 + 0.856447i \(0.327333\pi\)
\(128\) 0 0
\(129\) 10.7426 + 18.6068i 0.945837 + 1.63824i
\(130\) 0 0
\(131\) −2.37868 + 4.11999i −0.207826 + 0.359966i −0.951030 0.309100i \(-0.899972\pi\)
0.743203 + 0.669066i \(0.233306\pi\)
\(132\) 0 0
\(133\) −1.91421 3.31552i −0.165983 0.287492i
\(134\) 0 0
\(135\) 0.207107 + 0.358719i 0.0178249 + 0.0308737i
\(136\) 0 0
\(137\) 3.74264 + 6.48244i 0.319755 + 0.553833i 0.980437 0.196834i \(-0.0630659\pi\)
−0.660681 + 0.750666i \(0.729733\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −2.00000 + 3.46410i −0.168430 + 0.291730i
\(142\) 0 0
\(143\) −4.79289 + 8.30153i −0.400802 + 0.694209i
\(144\) 0 0
\(145\) 0.585786 + 1.01461i 0.0486469 + 0.0842589i
\(146\) 0 0
\(147\) −2.82843 −0.233285
\(148\) 0 0
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 0 0
\(151\) 17.3137 1.40897 0.704485 0.709719i \(-0.251178\pi\)
0.704485 + 0.709719i \(0.251178\pi\)
\(152\) 0 0
\(153\) −0.485281 −0.0392327
\(154\) 0 0
\(155\) −0.378680 5.55487i −0.0304163 0.446178i
\(156\) 0 0
\(157\) 14.8284 1.18344 0.591719 0.806145i \(-0.298450\pi\)
0.591719 + 0.806145i \(0.298450\pi\)
\(158\) 0 0
\(159\) 0.414214 0.0328493
\(160\) 0 0
\(161\) 4.82843 8.36308i 0.380533 0.659103i
\(162\) 0 0
\(163\) 12.9706 1.01593 0.507966 0.861377i \(-0.330397\pi\)
0.507966 + 0.861377i \(0.330397\pi\)
\(164\) 0 0
\(165\) −6.32843 10.9612i −0.492667 0.853325i
\(166\) 0 0
\(167\) −4.27817 + 7.41002i −0.331055 + 0.573404i −0.982719 0.185104i \(-0.940738\pi\)
0.651664 + 0.758508i \(0.274071\pi\)
\(168\) 0 0
\(169\) 4.82843 8.36308i 0.371417 0.643314i
\(170\) 0 0
\(171\) −4.48528 −0.342998
\(172\) 0 0
\(173\) 7.15685 + 12.3960i 0.544126 + 0.942453i 0.998661 + 0.0517246i \(0.0164718\pi\)
−0.454536 + 0.890728i \(0.650195\pi\)
\(174\) 0 0
\(175\) −4.82843 8.36308i −0.364995 0.632190i
\(176\) 0 0
\(177\) −12.1569 21.0563i −0.913765 1.58269i
\(178\) 0 0
\(179\) −3.37868 + 5.85204i −0.252534 + 0.437402i −0.964223 0.265093i \(-0.914597\pi\)
0.711689 + 0.702495i \(0.247931\pi\)
\(180\) 0 0
\(181\) 5.15685 + 8.93193i 0.383306 + 0.663905i 0.991533 0.129858i \(-0.0414522\pi\)
−0.608227 + 0.793763i \(0.708119\pi\)
\(182\) 0 0
\(183\) −3.41421 + 5.91359i −0.252386 + 0.437145i
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) −0.899495 −0.0657776
\(188\) 0 0
\(189\) −0.500000 + 0.866025i −0.0363696 + 0.0629941i
\(190\) 0 0
\(191\) −0.550253 0.953065i −0.0398149 0.0689614i 0.845431 0.534084i \(-0.179343\pi\)
−0.885246 + 0.465123i \(0.846010\pi\)
\(192\) 0 0
\(193\) 10.5711 18.3096i 0.760922 1.31796i −0.181454 0.983399i \(-0.558080\pi\)
0.942376 0.334556i \(-0.108586\pi\)
\(194\) 0 0
\(195\) −2.20711 3.82282i −0.158054 0.273758i
\(196\) 0 0
\(197\) −1.74264 3.01834i −0.124158 0.215048i 0.797245 0.603655i \(-0.206290\pi\)
−0.921404 + 0.388607i \(0.872956\pi\)
\(198\) 0 0
\(199\) 7.79289 + 13.4977i 0.552424 + 0.956826i 0.998099 + 0.0616310i \(0.0196302\pi\)
−0.445675 + 0.895195i \(0.647036\pi\)
\(200\) 0 0
\(201\) 12.6569 0.892746
\(202\) 0 0
\(203\) −1.41421 + 2.44949i −0.0992583 + 0.171920i
\(204\) 0 0
\(205\) −4.74264 + 8.21449i −0.331240 + 0.573725i
\(206\) 0 0
\(207\) −5.65685 9.79796i −0.393179 0.681005i
\(208\) 0 0
\(209\) −8.31371 −0.575071
\(210\) 0 0
\(211\) 3.79289 6.56948i 0.261114 0.452262i −0.705425 0.708785i \(-0.749244\pi\)
0.966538 + 0.256523i \(0.0825770\pi\)
\(212\) 0 0
\(213\) 33.9706 2.32762
\(214\) 0 0
\(215\) −8.89949 −0.606941
\(216\) 0 0
\(217\) 11.1569 7.49706i 0.757377 0.508933i
\(218\) 0 0
\(219\) 9.24264 0.624560
\(220\) 0 0
\(221\) −0.313708 −0.0211023
\(222\) 0 0
\(223\) 0.863961 1.49642i 0.0578551 0.100208i −0.835647 0.549266i \(-0.814907\pi\)
0.893502 + 0.449059i \(0.148241\pi\)
\(224\) 0 0
\(225\) −11.3137 −0.754247
\(226\) 0 0
\(227\) −7.79289 13.4977i −0.517232 0.895873i −0.999800 0.0200140i \(-0.993629\pi\)
0.482567 0.875859i \(-0.339704\pi\)
\(228\) 0 0
\(229\) −5.74264 + 9.94655i −0.379484 + 0.657286i −0.990987 0.133956i \(-0.957232\pi\)
0.611503 + 0.791242i \(0.290565\pi\)
\(230\) 0 0
\(231\) 15.2782 26.4626i 1.00523 1.74111i
\(232\) 0 0
\(233\) −14.8284 −0.971443 −0.485721 0.874114i \(-0.661443\pi\)
−0.485721 + 0.874114i \(0.661443\pi\)
\(234\) 0 0
\(235\) −0.828427 1.43488i −0.0540406 0.0936011i
\(236\) 0 0
\(237\) −18.3995 31.8689i −1.19518 2.07010i
\(238\) 0 0
\(239\) −6.37868 11.0482i −0.412602 0.714648i 0.582571 0.812780i \(-0.302047\pi\)
−0.995173 + 0.0981314i \(0.968713\pi\)
\(240\) 0 0
\(241\) −12.3284 + 21.3535i −0.794144 + 1.37550i 0.129238 + 0.991614i \(0.458747\pi\)
−0.923381 + 0.383884i \(0.874586\pi\)
\(242\) 0 0
\(243\) 10.8284 + 18.7554i 0.694644 + 1.20316i
\(244\) 0 0
\(245\) 0.585786 1.01461i 0.0374245 0.0648212i
\(246\) 0 0
\(247\) −2.89949 −0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 0 0
\(251\) 1.79289 3.10538i 0.113166 0.196010i −0.803879 0.594793i \(-0.797234\pi\)
0.917045 + 0.398783i \(0.130567\pi\)
\(252\) 0 0
\(253\) −10.4853 18.1610i −0.659204 1.14177i
\(254\) 0 0
\(255\) 0.207107 0.358719i 0.0129695 0.0224639i
\(256\) 0 0
\(257\) 0.156854 + 0.271680i 0.00978430 + 0.0169469i 0.870876 0.491503i \(-0.163552\pi\)
−0.861092 + 0.508450i \(0.830219\pi\)
\(258\) 0 0
\(259\) 1.20711 + 2.09077i 0.0750060 + 0.129914i
\(260\) 0 0
\(261\) 1.65685 + 2.86976i 0.102557 + 0.177633i
\(262\) 0 0
\(263\) 0.686292 0.0423185 0.0211593 0.999776i \(-0.493264\pi\)
0.0211593 + 0.999776i \(0.493264\pi\)
\(264\) 0 0
\(265\) −0.0857864 + 0.148586i −0.00526982 + 0.00912759i
\(266\) 0 0
\(267\) 15.0711 26.1039i 0.922334 1.59753i
\(268\) 0 0
\(269\) 15.9142 + 27.5642i 0.970307 + 1.68062i 0.694626 + 0.719371i \(0.255570\pi\)
0.275681 + 0.961249i \(0.411097\pi\)
\(270\) 0 0
\(271\) 23.3137 1.41621 0.708103 0.706109i \(-0.249551\pi\)
0.708103 + 0.706109i \(0.249551\pi\)
\(272\) 0 0
\(273\) 5.32843 9.22911i 0.322491 0.558571i
\(274\) 0 0
\(275\) −20.9706 −1.26457
\(276\) 0 0
\(277\) −14.1421 −0.849719 −0.424859 0.905259i \(-0.639676\pi\)
−0.424859 + 0.905259i \(0.639676\pi\)
\(278\) 0 0
\(279\) −1.07107 15.7116i −0.0641232 0.940626i
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) 2.34315 0.139286 0.0696428 0.997572i \(-0.477814\pi\)
0.0696428 + 0.997572i \(0.477814\pi\)
\(284\) 0 0
\(285\) 1.91421 3.31552i 0.113388 0.196394i
\(286\) 0 0
\(287\) −22.8995 −1.35171
\(288\) 0 0
\(289\) 8.48528 + 14.6969i 0.499134 + 0.864526i
\(290\) 0 0
\(291\) −13.0711 + 22.6398i −0.766240 + 1.32717i
\(292\) 0 0
\(293\) 12.3995 21.4766i 0.724386 1.25467i −0.234840 0.972034i \(-0.575457\pi\)
0.959226 0.282640i \(-0.0912101\pi\)
\(294\) 0 0
\(295\) 10.0711 0.586360
\(296\) 0 0
\(297\) 1.08579 + 1.88064i 0.0630037 + 0.109126i
\(298\) 0 0
\(299\) −3.65685 6.33386i −0.211481 0.366296i
\(300\) 0 0
\(301\) −10.7426 18.6068i −0.619196 1.07248i
\(302\) 0 0
\(303\) −10.2426 + 17.7408i −0.588424 + 1.01918i
\(304\) 0 0
\(305\) −1.41421 2.44949i −0.0809776 0.140257i
\(306\) 0 0
\(307\) −1.37868 + 2.38794i −0.0786854 + 0.136287i −0.902683 0.430306i \(-0.858406\pi\)
0.823998 + 0.566593i \(0.191739\pi\)
\(308\) 0 0
\(309\) 29.1421 1.65784
\(310\) 0 0
\(311\) 11.3137 0.641542 0.320771 0.947157i \(-0.396058\pi\)
0.320771 + 0.947157i \(0.396058\pi\)
\(312\) 0 0
\(313\) −1.91421 + 3.31552i −0.108198 + 0.187404i −0.915040 0.403363i \(-0.867841\pi\)
0.806842 + 0.590767i \(0.201175\pi\)
\(314\) 0 0
\(315\) 3.41421 + 5.91359i 0.192369 + 0.333193i
\(316\) 0 0
\(317\) 1.08579 1.88064i 0.0609838 0.105627i −0.833922 0.551883i \(-0.813910\pi\)
0.894905 + 0.446256i \(0.147243\pi\)
\(318\) 0 0
\(319\) 3.07107 + 5.31925i 0.171947 + 0.297821i
\(320\) 0 0
\(321\) 11.5711 + 20.0417i 0.645834 + 1.11862i
\(322\) 0 0
\(323\) −0.136039 0.235626i −0.00756941 0.0131106i
\(324\) 0 0
\(325\) −7.31371 −0.405692
\(326\) 0 0
\(327\) 6.24264 10.8126i 0.345219 0.597937i
\(328\) 0 0
\(329\) 2.00000 3.46410i 0.110264 0.190982i
\(330\) 0 0
\(331\) 0.378680 + 0.655892i 0.0208141 + 0.0360511i 0.876245 0.481866i \(-0.160041\pi\)
−0.855431 + 0.517917i \(0.826708\pi\)
\(332\) 0 0
\(333\) 2.82843 0.154997
\(334\) 0 0
\(335\) −2.62132 + 4.54026i −0.143218 + 0.248061i
\(336\) 0 0
\(337\) −13.3137 −0.725244 −0.362622 0.931936i \(-0.618118\pi\)
−0.362622 + 0.931936i \(0.618118\pi\)
\(338\) 0 0
\(339\) 12.8995 0.700604
\(340\) 0 0
\(341\) −1.98528 29.1222i −0.107509 1.57706i
\(342\) 0 0
\(343\) 19.7279 1.06521
\(344\) 0 0
\(345\) 9.65685 0.519908
\(346\) 0 0
\(347\) 11.2782 19.5344i 0.605444 1.04866i −0.386537 0.922274i \(-0.626329\pi\)
0.991981 0.126386i \(-0.0403378\pi\)
\(348\) 0 0
\(349\) 35.1127 1.87954 0.939770 0.341808i \(-0.111039\pi\)
0.939770 + 0.341808i \(0.111039\pi\)
\(350\) 0 0
\(351\) 0.378680 + 0.655892i 0.0202124 + 0.0350089i
\(352\) 0 0
\(353\) −1.50000 + 2.59808i −0.0798369 + 0.138282i −0.903179 0.429263i \(-0.858773\pi\)
0.823343 + 0.567545i \(0.192107\pi\)
\(354\) 0 0
\(355\) −7.03553 + 12.1859i −0.373407 + 0.646761i
\(356\) 0 0
\(357\) 1.00000 0.0529256
\(358\) 0 0
\(359\) 13.4497 + 23.2956i 0.709851 + 1.22950i 0.964912 + 0.262572i \(0.0845709\pi\)
−0.255062 + 0.966925i \(0.582096\pi\)
\(360\) 0 0
\(361\) 8.24264 + 14.2767i 0.433823 + 0.751404i
\(362\) 0 0
\(363\) −19.8995 34.4669i −1.04445 1.80904i
\(364\) 0 0
\(365\) −1.91421 + 3.31552i −0.100195 + 0.173542i
\(366\) 0 0
\(367\) 9.10660 + 15.7731i 0.475361 + 0.823349i 0.999602 0.0282210i \(-0.00898422\pi\)
−0.524241 + 0.851570i \(0.675651\pi\)
\(368\) 0 0
\(369\) −13.4142 + 23.2341i −0.698316 + 1.20952i
\(370\) 0 0
\(371\) −0.414214 −0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 10.8640 18.8169i 0.561013 0.971702i
\(376\) 0 0
\(377\) 1.07107 + 1.85514i 0.0551628 + 0.0955448i
\(378\) 0 0
\(379\) −14.6924 + 25.4480i −0.754697 + 1.30717i 0.190827 + 0.981624i \(0.438883\pi\)
−0.945525 + 0.325550i \(0.894450\pi\)
\(380\) 0 0
\(381\) −13.1569 22.7883i −0.674046 1.16748i
\(382\) 0 0
\(383\) 12.4497 + 21.5636i 0.636152 + 1.10185i 0.986270 + 0.165142i \(0.0528084\pi\)
−0.350117 + 0.936706i \(0.613858\pi\)
\(384\) 0 0
\(385\) 6.32843 + 10.9612i 0.322527 + 0.558632i
\(386\) 0 0
\(387\) −25.1716 −1.27954
\(388\) 0 0
\(389\) −8.57107 + 14.8455i −0.434570 + 0.752698i −0.997260 0.0739699i \(-0.976433\pi\)
0.562690 + 0.826668i \(0.309766\pi\)
\(390\) 0 0
\(391\) 0.343146 0.594346i 0.0173536 0.0300574i
\(392\) 0 0
\(393\) −5.74264 9.94655i −0.289678 0.501737i
\(394\) 0 0
\(395\) 15.2426 0.766940
\(396\) 0 0
\(397\) 8.25736 14.3022i 0.414425 0.717805i −0.580943 0.813944i \(-0.697316\pi\)
0.995368 + 0.0961392i \(0.0306494\pi\)
\(398\) 0 0
\(399\) 9.24264 0.462711
\(400\) 0 0
\(401\) −21.1716 −1.05726 −0.528629 0.848853i \(-0.677294\pi\)
−0.528629 + 0.848853i \(0.677294\pi\)
\(402\) 0 0
\(403\) −0.692388 10.1567i −0.0344903 0.505940i
\(404\) 0 0
\(405\) −9.48528 −0.471327
\(406\) 0 0
\(407\) 5.24264 0.259868
\(408\) 0 0
\(409\) −4.67157 + 8.09140i −0.230994 + 0.400094i −0.958101 0.286431i \(-0.907531\pi\)
0.727107 + 0.686525i \(0.240865\pi\)
\(410\) 0 0
\(411\) −18.0711 −0.891380
\(412\) 0 0
\(413\) 12.1569 + 21.0563i 0.598200 + 1.03611i
\(414\) 0 0
\(415\) 2.03553 3.52565i 0.0999204 0.173067i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 1.42893 + 2.47498i 0.0696419 + 0.120623i 0.898744 0.438474i \(-0.144481\pi\)
−0.829102 + 0.559098i \(0.811148\pi\)
\(422\) 0 0
\(423\) −2.34315 4.05845i −0.113928 0.197328i
\(424\) 0 0
\(425\) −0.343146 0.594346i −0.0166450 0.0288300i
\(426\) 0 0
\(427\) 3.41421 5.91359i 0.165225 0.286179i
\(428\) 0 0
\(429\) −11.5711 20.0417i −0.558656 0.967621i
\(430\) 0 0
\(431\) −12.6213 + 21.8608i −0.607948 + 1.05300i 0.383631 + 0.923487i \(0.374674\pi\)
−0.991578 + 0.129510i \(0.958660\pi\)
\(432\) 0 0
\(433\) −35.1127 −1.68741 −0.843704 0.536808i \(-0.819630\pi\)
−0.843704 + 0.536808i \(0.819630\pi\)
\(434\) 0 0
\(435\) −2.82843 −0.135613
\(436\) 0 0
\(437\) 3.17157 5.49333i 0.151717 0.262781i
\(438\) 0 0
\(439\) −6.03553 10.4539i −0.288060 0.498935i 0.685286 0.728274i \(-0.259677\pi\)
−0.973347 + 0.229339i \(0.926344\pi\)
\(440\) 0 0
\(441\) 1.65685 2.86976i 0.0788978 0.136655i
\(442\) 0 0
\(443\) −6.62132 11.4685i −0.314588 0.544883i 0.664761 0.747056i \(-0.268533\pi\)
−0.979350 + 0.202173i \(0.935200\pi\)
\(444\) 0 0
\(445\) 6.24264 + 10.8126i 0.295930 + 0.512565i
\(446\) 0 0
\(447\) −1.20711 2.09077i −0.0570942 0.0988900i
\(448\) 0 0
\(449\) 4.62742 0.218381 0.109191 0.994021i \(-0.465174\pi\)
0.109191 + 0.994021i \(0.465174\pi\)
\(450\) 0 0
\(451\) −24.8640 + 43.0656i −1.17080 + 2.02788i
\(452\) 0 0
\(453\) −20.8995 + 36.1990i −0.981944 + 1.70078i
\(454\) 0 0
\(455\) 2.20711 + 3.82282i 0.103471 + 0.179217i
\(456\) 0 0
\(457\) 31.1127 1.45539 0.727695 0.685901i \(-0.240591\pi\)
0.727695 + 0.685901i \(0.240591\pi\)
\(458\) 0 0
\(459\) −0.0355339 + 0.0615465i −0.00165858 + 0.00287275i
\(460\) 0 0
\(461\) 26.1421 1.21756 0.608780 0.793339i \(-0.291659\pi\)
0.608780 + 0.793339i \(0.291659\pi\)
\(462\) 0 0
\(463\) −24.9706 −1.16048 −0.580240 0.814445i \(-0.697041\pi\)
−0.580240 + 0.814445i \(0.697041\pi\)
\(464\) 0 0
\(465\) 12.0711 + 5.91359i 0.559782 + 0.274236i
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −12.6569 −0.584439
\(470\) 0 0
\(471\) −17.8995 + 31.0028i −0.824765 + 1.42854i
\(472\) 0 0
\(473\) −46.6569 −2.14528
\(474\) 0 0
\(475\) −3.17157 5.49333i −0.145522 0.252051i
\(476\) 0 0
\(477\) −0.242641 + 0.420266i −0.0111098 + 0.0192427i
\(478\) 0 0
\(479\) 4.86396 8.42463i 0.222240 0.384931i −0.733248 0.679962i \(-0.761996\pi\)
0.955488 + 0.295030i \(0.0953298\pi\)
\(480\) 0 0
\(481\) 1.82843 0.0833691
\(482\) 0 0
\(483\) 11.6569 + 20.1903i 0.530405 + 0.918689i
\(484\) 0 0
\(485\) −5.41421 9.37769i −0.245847 0.425819i
\(486\) 0 0
\(487\) −8.69239 15.0557i −0.393890 0.682237i 0.599069 0.800697i \(-0.295537\pi\)
−0.992959 + 0.118460i \(0.962204\pi\)
\(488\) 0 0
\(489\) −15.6569 + 27.1185i −0.708027 + 1.22634i
\(490\) 0 0
\(491\) 2.20711 + 3.82282i 0.0996053 + 0.172522i 0.911521 0.411253i \(-0.134909\pi\)
−0.811916 + 0.583774i \(0.801575\pi\)
\(492\) 0 0
\(493\) −0.100505 + 0.174080i −0.00452652 + 0.00784016i
\(494\) 0 0
\(495\) 14.8284 0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 0 0
\(499\) 20.1066 34.8257i 0.900095 1.55901i 0.0727259 0.997352i \(-0.476830\pi\)
0.827369 0.561659i \(-0.189837\pi\)
\(500\) 0 0
\(501\) −10.3284 17.8894i −0.461440 0.799238i
\(502\) 0 0
\(503\) 11.6924 20.2518i 0.521338 0.902984i −0.478354 0.878167i \(-0.658766\pi\)
0.999692 0.0248166i \(-0.00790018\pi\)
\(504\) 0 0
\(505\) −4.24264 7.34847i −0.188795 0.327003i
\(506\) 0 0
\(507\) 11.6569 + 20.1903i 0.517699 + 0.896681i
\(508\) 0 0
\(509\) −3.39949 5.88810i −0.150680 0.260985i 0.780798 0.624784i \(-0.214813\pi\)
−0.931478 + 0.363799i \(0.881480\pi\)
\(510\) 0 0
\(511\) −9.24264 −0.408870
\(512\) 0 0
\(513\) −0.328427 + 0.568852i −0.0145004 + 0.0251154i
\(514\) 0 0
\(515\) −6.03553 + 10.4539i −0.265957 + 0.460652i
\(516\) 0 0
\(517\) −4.34315 7.52255i −0.191011 0.330841i
\(518\) 0 0
\(519\) −34.5563 −1.51686
\(520\) 0 0
\(521\) −15.2279 + 26.3755i −0.667147 + 1.15553i 0.311551 + 0.950229i \(0.399152\pi\)
−0.978698 + 0.205304i \(0.934182\pi\)
\(522\) 0 0
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 0 0
\(525\) 23.3137 1.01749
\(526\) 0 0
\(527\) 0.792893 0.532799i 0.0345390 0.0232091i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 28.4853 1.23616
\(532\) 0 0
\(533\) −8.67157 + 15.0196i −0.375608 + 0.650571i
\(534\) 0 0
\(535\) −9.58579 −0.414430
\(536\) 0 0
\(537\) −8.15685 14.1281i −0.351994 0.609672i
\(538\) 0 0
\(539\) 3.07107 5.31925i 0.132280 0.229116i
\(540\) 0 0
\(541\) −12.6421 + 21.8968i −0.543528 + 0.941418i 0.455170 + 0.890405i \(0.349578\pi\)
−0.998698 + 0.0510134i \(0.983755\pi\)
\(542\) 0 0
\(543\) −24.8995 −1.06854
\(544\) 0 0
\(545\) 2.58579 + 4.47871i 0.110763 + 0.191847i
\(546\) 0 0
\(547\) 2.86396 + 4.96053i 0.122454 + 0.212097i 0.920735 0.390189i \(-0.127590\pi\)
−0.798281 + 0.602285i \(0.794257\pi\)
\(548\) 0 0
\(549\) −4.00000 6.92820i −0.170716 0.295689i
\(550\) 0 0
\(551\) −0.928932 + 1.60896i −0.0395738 + 0.0685439i
\(552\) 0 0
\(553\) 18.3995 + 31.8689i 0.782426 + 1.35520i
\(554\) 0 0
\(555\) −1.20711 + 2.09077i −0.0512388 + 0.0887483i
\(556\) 0 0
\(557\) 44.4853 1.88490 0.942451 0.334344i \(-0.108515\pi\)
0.942451 + 0.334344i \(0.108515\pi\)
\(558\) 0 0
\(559\) −16.2721 −0.688236
\(560\) 0 0
\(561\) 1.08579 1.88064i 0.0458419 0.0794006i
\(562\) 0 0
\(563\) 2.37868 + 4.11999i 0.100249 + 0.173637i 0.911787 0.410663i \(-0.134703\pi\)
−0.811538 + 0.584300i \(0.801369\pi\)
\(564\) 0 0
\(565\) −2.67157 + 4.62730i −0.112394 + 0.194672i
\(566\) 0 0
\(567\) −11.4497 19.8315i −0.480844 0.832847i
\(568\) 0 0
\(569\) −7.57107 13.1135i −0.317396 0.549745i 0.662548 0.749019i \(-0.269475\pi\)
−0.979944 + 0.199274i \(0.936142\pi\)
\(570\) 0 0
\(571\) −20.4497 35.4200i −0.855795 1.48228i −0.875905 0.482483i \(-0.839735\pi\)
0.0201099 0.999798i \(-0.493598\pi\)
\(572\) 0 0
\(573\) 2.65685 0.110992
\(574\) 0 0
\(575\) 8.00000 13.8564i 0.333623 0.577852i
\(576\) 0 0
\(577\) 16.9853 29.4194i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833332\pi\)
\(578\) 0 0
\(579\) 25.5208 + 44.2033i 1.06061 + 1.83703i
\(580\) 0 0
\(581\) 9.82843 0.407752
\(582\) 0 0
\(583\) −0.449747 + 0.778985i −0.0186266 + 0.0322623i
\(584\) 0 0
\(585\) 5.17157 0.213818
\(586\) 0 0
\(587\) 20.3431 0.839651 0.419826 0.907605i \(-0.362091\pi\)
0.419826 + 0.907605i \(0.362091\pi\)
\(588\) 0 0
\(589\) 7.32843 4.92447i 0.301963 0.202909i
\(590\) 0 0
\(591\) 8.41421 0.346114
\(592\) 0 0
\(593\) 21.3137 0.875249 0.437625 0.899158i \(-0.355820\pi\)
0.437625 + 0.899158i \(0.355820\pi\)
\(594\) 0 0
\(595\) −0.207107 + 0.358719i −0.00849055 + 0.0147061i
\(596\) 0 0
\(597\) −37.6274 −1.53999
\(598\) 0 0
\(599\) 17.4497 + 30.2238i 0.712977 + 1.23491i 0.963734 + 0.266863i \(0.0859871\pi\)
−0.250757 + 0.968050i \(0.580680\pi\)
\(600\) 0 0
\(601\) 11.7426 20.3389i 0.478992 0.829639i −0.520717 0.853729i \(-0.674336\pi\)
0.999710 + 0.0240900i \(0.00766884\pi\)
\(602\) 0 0
\(603\) −7.41421 + 12.8418i −0.301930 + 0.522958i
\(604\) 0 0
\(605\) 16.4853 0.670222
\(606\) 0 0
\(607\) −2.20711 3.82282i −0.0895837 0.155164i 0.817752 0.575571i \(-0.195220\pi\)
−0.907335 + 0.420408i \(0.861887\pi\)
\(608\) 0 0
\(609\) −3.41421 5.91359i −0.138351 0.239631i
\(610\) 0 0
\(611\) −1.51472 2.62357i −0.0612790 0.106138i
\(612\) 0 0
\(613\) 5.15685 8.93193i 0.208283 0.360757i −0.742890 0.669413i \(-0.766546\pi\)
0.951174 + 0.308656i \(0.0998790\pi\)
\(614\) 0 0
\(615\) −11.4497 19.8315i −0.461698 0.799685i
\(616\) 0 0
\(617\) −11.6421 + 20.1648i −0.468695 + 0.811803i −0.999360 0.0357786i \(-0.988609\pi\)
0.530665 + 0.847582i \(0.321942\pi\)
\(618\) 0 0
\(619\) 31.6569 1.27240 0.636198 0.771526i \(-0.280506\pi\)
0.636198 + 0.771526i \(0.280506\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 0 0
\(623\) −15.0711 + 26.1039i −0.603810 + 1.04583i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) 10.0355 17.3821i 0.400781 0.694172i
\(628\) 0 0
\(629\) 0.0857864 + 0.148586i 0.00342053 + 0.00592453i
\(630\) 0 0
\(631\) −16.0061 27.7234i −0.637193 1.10365i −0.986046 0.166473i \(-0.946762\pi\)
0.348853 0.937177i \(-0.386571\pi\)
\(632\) 0 0
\(633\) 9.15685 + 15.8601i 0.363952 + 0.630384i
\(634\) 0 0
\(635\) 10.8995 0.432533
\(636\) 0 0
\(637\) 1.07107 1.85514i 0.0424373 0.0735035i
\(638\) 0 0
\(639\) −19.8995 + 34.4669i −0.787212 + 1.36349i
\(640\) 0 0
\(641\) −9.98528 17.2950i −0.394395 0.683112i 0.598629 0.801027i \(-0.295712\pi\)
−0.993024 + 0.117915i \(0.962379\pi\)
\(642\) 0 0
\(643\) −12.6863 −0.500298 −0.250149 0.968207i \(-0.580480\pi\)
−0.250149 + 0.968207i \(0.580480\pi\)
\(644\) 0 0
\(645\) 10.7426 18.6068i 0.422991 0.732642i
\(646\) 0 0
\(647\) 22.6863 0.891890 0.445945 0.895060i \(-0.352868\pi\)
0.445945 + 0.895060i \(0.352868\pi\)
\(648\) 0 0
\(649\) 52.7990 2.07254
\(650\) 0 0
\(651\) 2.20711 + 32.3762i 0.0865033 + 1.26892i
\(652\) 0 0
\(653\) 22.1421 0.866489 0.433244 0.901276i \(-0.357369\pi\)
0.433244 + 0.901276i \(0.357369\pi\)
\(654\) 0 0
\(655\) 4.75736 0.185885
\(656\) 0 0
\(657\) −5.41421 + 9.37769i −0.211229 + 0.365859i
\(658\) 0 0
\(659\) −9.65685 −0.376178 −0.188089 0.982152i \(-0.560229\pi\)
−0.188089 + 0.982152i \(0.560229\pi\)
\(660\) 0 0
\(661\) −16.5711 28.7019i −0.644540 1.11638i −0.984408 0.175903i \(-0.943716\pi\)
0.339868 0.940473i \(-0.389618\pi\)
\(662\) 0 0
\(663\) 0.378680 0.655892i 0.0147067 0.0254728i
\(664\) 0 0
\(665\) −1.91421 + 3.31552i −0.0742300 + 0.128570i
\(666\) 0 0
\(667\) −4.68629 −0.181454
\(668\) 0 0
\(669\) 2.08579 + 3.61269i 0.0806412 + 0.139675i
\(670\) 0 0
\(671\) −7.41421 12.8418i −0.286223 0.495752i
\(672\) 0 0
\(673\) −10.3284 17.8894i −0.398132 0.689584i 0.595364 0.803456i \(-0.297008\pi\)
−0.993495 + 0.113872i \(0.963675\pi\)
\(674\) 0 0
\(675\) −0.828427 + 1.43488i −0.0318862 + 0.0552285i
\(676\) 0 0
\(677\) −20.2990 35.1589i −0.780154 1.35127i −0.931852 0.362839i \(-0.881808\pi\)
0.151698 0.988427i \(-0.451526\pi\)
\(678\) 0 0
\(679\) 13.0711 22.6398i 0.501622 0.868834i
\(680\) 0 0
\(681\) 37.6274 1.44189
\(682\) 0 0
\(683\) 46.6274 1.78415 0.892074 0.451889i \(-0.149250\pi\)
0.892074 + 0.451889i \(0.149250\pi\)
\(684\) 0 0
\(685\) 3.74264 6.48244i 0.142999 0.247681i
\(686\) 0 0
\(687\) −13.8640 24.0131i −0.528943 0.916156i
\(688\) 0 0
\(689\) −0.156854 + 0.271680i −0.00597567 + 0.0103502i
\(690\) 0 0
\(691\) 7.03553 + 12.1859i 0.267644 + 0.463574i 0.968253 0.249972i \(-0.0804215\pi\)
−0.700609 + 0.713546i \(0.747088\pi\)
\(692\) 0 0
\(693\) 17.8995 + 31.0028i 0.679946 + 1.17770i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.62742 −0.0616428
\(698\) 0 0
\(699\) 17.8995 31.0028i 0.677021 1.17263i
\(700\) 0 0
\(701\) −1.74264 + 3.01834i −0.0658186 + 0.114001i −0.897057 0.441915i \(-0.854299\pi\)
0.831238 + 0.555916i \(0.187633\pi\)
\(702\) 0 0
\(703\) 0.792893 + 1.37333i 0.0299045 + 0.0517962i
\(704\) 0 0
\(705\) 4.00000 0.150649
\(706\) 0 0
\(707\) 10.2426 17.7408i 0.385214 0.667210i
\(708\) 0 0
\(709\) −5.31371 −0.199561 −0.0997803 0.995009i \(-0.531814\pi\)
−0.0997803 + 0.995009i \(0.531814\pi\)
\(710\) 0 0
\(711\) 43.1127 1.61685
\(712\) 0 0
\(713\) 20.0000 + 9.79796i 0.749006 + 0.366936i
\(714\) 0 0
\(715\) 9.58579 0.358488
\(716\) 0 0
\(717\) 30.7990 1.15021
\(718\) 0 0
\(719\) 3.03553 5.25770i 0.113206 0.196079i −0.803855 0.594825i \(-0.797221\pi\)
0.917061 + 0.398746i \(0.130555\pi\)
\(720\) 0 0
\(721\) −29.1421 −1.08531
\(722\) 0 0
\(723\) −29.7635 51.5518i −1.10691 1.91723i
\(724\) 0 0
\(725\) −2.34315 + 4.05845i −0.0870222 + 0.150727i
\(726\) 0 0
\(727\) −23.4203 + 40.5652i −0.868611 + 1.50448i −0.00519502 + 0.999987i \(0.501654\pi\)
−0.863416 + 0.504492i \(0.831680\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) −0.763456 1.32234i −0.0282374 0.0489087i
\(732\) 0 0
\(733\) 14.8137 + 25.6581i 0.547157 + 0.947703i 0.998468 + 0.0553366i \(0.0176232\pi\)
−0.451311 + 0.892367i \(0.649043\pi\)
\(734\) 0 0
\(735\) 1.41421 + 2.44949i 0.0521641 + 0.0903508i
\(736\) 0 0
\(737\) −13.7426 + 23.8030i −0.506217 + 0.876793i
\(738\) 0 0
\(739\) −3.93503 6.81567i −0.144752 0.250718i 0.784528 0.620093i \(-0.212905\pi\)
−0.929281 + 0.369375i \(0.879572\pi\)
\(740\) 0 0
\(741\) 3.50000 6.06218i 0.128576 0.222700i
\(742\) 0 0
\(743\) 5.65685 0.207530 0.103765 0.994602i \(-0.466911\pi\)
0.103765 + 0.994602i \(0.466911\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) 0 0
\(747\) 5.75736 9.97204i 0.210651 0.364858i
\(748\) 0 0
\(749\) −11.5711 20.0417i −0.422798 0.732307i
\(750\) 0 0
\(751\) −0.621320 + 1.07616i −0.0226723 + 0.0392696i −0.877139 0.480237i \(-0.840551\pi\)
0.854467 + 0.519506i \(0.173884\pi\)
\(752\) 0 0
\(753\) 4.32843 + 7.49706i 0.157737 + 0.273208i
\(754\) 0 0
\(755\) −8.65685 14.9941i −0.315055 0.545692i
\(756\) 0 0
\(757\) −17.3284 30.0137i −0.629812 1.09087i −0.987589 0.157060i \(-0.949798\pi\)
0.357777 0.933807i \(-0.383535\pi\)
\(758\) 0 0
\(759\) 50.6274 1.83766
\(760\) 0 0
\(761\) 10.2279 17.7153i 0.370762 0.642178i −0.618921 0.785453i \(-0.712430\pi\)
0.989683 + 0.143275i \(0.0457633\pi\)
\(762\) 0 0
\(763\) −6.24264 + 10.8126i −0.225999 + 0.391441i
\(764\) 0 0
\(765\) 0.242641 + 0.420266i 0.00877269 + 0.0151947i
\(766\) 0 0
\(767\) 18.4142 0.664899
\(768\) 0 0
\(769\) 13.0563 22.6143i 0.470824 0.815491i −0.528619 0.848859i \(-0.677290\pi\)
0.999443 + 0.0333680i \(0.0106233\pi\)
\(770\) 0 0
\(771\) −0.757359 −0.0272756
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) 18.4853 12.4215i 0.664011 0.446194i
\(776\) 0 0
\(777\) −5.82843 −0.209094
\(778\) 0 0
\(779\) −15.0416 −0.538922
\(780\) 0 0
\(781\) −36.8848 + 63.8863i −1.31984 + 2.28603i
\(782\) 0 0
\(783\) 0.485281 0.0173425
\(784\) 0 0
\(785\) −7.41421 12.8418i −0.264625 0.458343i
\(786\) 0 0
\(787\) 19.7929 34.2823i 0.705540 1.22203i −0.260956 0.965351i \(-0.584038\pi\)
0.966496 0.256681i \(-0.0826290\pi\)
\(788\) 0 0
\(789\) −0.828427 + 1.43488i −0.0294928 + 0.0510830i
\(790\) 0 0
\(791\) −12.8995 −0.458653
\(792\) 0 0
\(793\) −2.58579 4.47871i −0.0918240 0.159044i
\(794\) 0 0
\(795\) −0.207107 0.358719i −0.00734532 0.0127225i
\(796\) 0 0
\(797\) 11.2279 + 19.4473i 0.397713 + 0.688860i 0.993443 0.114325i \(-0.0364705\pi\)
−0.595730 + 0.803185i \(0.703137\pi\)
\(798\) 0 0
\(799\) 0.142136 0.246186i 0.00502840 0.00870944i
\(800\) 0 0
\(801\) 17.6569 + 30.5826i 0.623874 + 1.08058i
\(802\) 0 0
\(803\) −10.0355 + 17.3821i −0.354146 + 0.613399i
\(804\) 0 0
\(805\) −9.65685 −0.340359
\(806\) 0 0
\(807\) −76.8406 −2.70492
\(808\) 0 0
\(809\) 22.9853 39.8117i 0.808119 1.39970i −0.106045 0.994361i \(-0.533819\pi\)
0.914165 0.405343i \(-0.132848\pi\)
\(810\) 0 0
\(811\) 5.86396 + 10.1567i 0.205912 + 0.356649i 0.950423 0.310961i \(-0.100651\pi\)
−0.744511 + 0.667610i \(0.767317\pi\)
\(812\) 0 0
\(813\) −28.1421 + 48.7436i −0.986988 + 1.70951i
\(814\) 0 0
\(815\) −6.48528 11.2328i −0.227169 0.393469i
\(816\) 0 0
\(817\) −7.05635 12.2220i −0.246870 0.427592i
\(818\) 0 0
\(819\) 6.24264 + 10.8126i 0.218136 + 0.377822i
\(820\) 0 0
\(821\) −8.48528 −0.296138 −0.148069 0.988977i \(-0.547306\pi\)
−0.148069 + 0.988977i \(0.547306\pi\)
\(822\) 0 0
\(823\) −3.10660 + 5.38079i −0.108289 + 0.187563i −0.915077 0.403278i \(-0.867871\pi\)
0.806788 + 0.590841i \(0.201204\pi\)
\(824\) 0 0
\(825\) 25.3137 43.8446i 0.881310 1.52647i
\(826\) 0 0
\(827\) 8.55025 + 14.8095i 0.297321 + 0.514976i 0.975522 0.219901i \(-0.0705734\pi\)
−0.678201 + 0.734877i \(0.737240\pi\)
\(828\) 0 0
\(829\) −46.4264 −1.61246 −0.806228 0.591605i \(-0.798494\pi\)
−0.806228 + 0.591605i \(0.798494\pi\)
\(830\) 0 0
\(831\) 17.0711 29.5680i 0.592189 1.02570i
\(832\) 0 0
\(833\) 0.201010 0.00696459
\(834\) 0 0
\(835\) 8.55635 0.296105
\(836\) 0 0
\(837\) −2.07107 1.01461i −0.0715866 0.0350701i
\(838\) 0 0
\(839\) −30.6274 −1.05738 −0.528688 0.848816i \(-0.677316\pi\)
−0.528688 + 0.848816i \(0.677316\pi\)
\(840\) 0 0
\(841\) −27.6274 −0.952670
\(842\) 0 0
\(843\) −2.41421 + 4.18154i −0.0831499 + 0.144020i
\(844\) 0 0
\(845\) −9.65685 −0.332206
\(846\) 0 0
\(847\) 19.8995 + 34.4669i 0.683755 + 1.18430i
\(848\) 0 0
\(849\) −2.82843 + 4.89898i −0.0970714 + 0.168133i
\(850\) 0 0
\(851\) −2.00000 + 3.46410i −0.0685591 + 0.118748i
\(852\) 0 0
\(853\) −32.4853 −1.11227 −0.556137 0.831090i \(-0.687717\pi\)
−0.556137 + 0.831090i \(0.687717\pi\)
\(854\) 0 0
\(855\) 2.24264 + 3.88437i 0.0766967 + 0.132843i
\(856\) 0 0
\(857\) 1.25736 + 2.17781i 0.0429506 + 0.0743926i 0.886702 0.462342i \(-0.152991\pi\)
−0.843751 + 0.536735i \(0.819658\pi\)
\(858\) 0 0
\(859\) −6.30761 10.9251i −0.215213 0.372760i 0.738125 0.674663i \(-0.235711\pi\)
−0.953338 + 0.301904i \(0.902378\pi\)
\(860\) 0 0
\(861\) 27.6421 47.8776i 0.942041 1.63166i
\(862\) 0 0
\(863\) −19.6924 34.1082i −0.670337 1.16106i −0.977809 0.209500i \(-0.932816\pi\)
0.307472 0.951557i \(-0.400517\pi\)
\(864\) 0 0
\(865\) 7.15685 12.3960i 0.243340 0.421478i
\(866\) 0 0
\(867\) −40.9706 −1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) 0 0
\(871\) −4.79289 + 8.30153i −0.162401 + 0.281287i
\(872\) 0 0
\(873\) −15.3137 26.5241i −0.518291 0.897705i
\(874\) 0 0
\(875\) −10.8640 + 18.8169i −0.367269 + 0.636128i
\(876\) 0 0
\(877\) −24.0858 41.7178i −0.813319 1.40871i −0.910529 0.413446i \(-0.864325\pi\)
0.0972093 0.995264i \(-0.469008\pi\)
\(878\) 0 0
\(879\) 29.9350 + 51.8490i 1.00968 + 1.74882i
\(880\) 0 0
\(881\) −17.1569 29.7165i −0.578029 1.00118i −0.995705 0.0925798i \(-0.970489\pi\)
0.417676 0.908596i \(-0.362845\pi\)
\(882\) 0 0
\(883\) −26.2843 −0.884536 −0.442268 0.896883i \(-0.645826\pi\)
−0.442268 + 0.896883i \(0.645826\pi\)
\(884\) 0 0
\(885\) −12.1569 + 21.0563i −0.408648 + 0.707799i
\(886\) 0 0
\(887\) 26.6630 46.1816i 0.895254 1.55063i 0.0617647 0.998091i \(-0.480327\pi\)
0.833490 0.552535i \(-0.186339\pi\)
\(888\) 0 0
\(889\) 13.1569 + 22.7883i 0.441267 + 0.764296i
\(890\) 0 0
\(891\) −49.7279 −1.66595
\(892\) 0 0
\(893\) 1.31371 2.27541i 0.0439616 0.0761437i
\(894\) 0 0
\(895\) 6.75736 0.225874
\(896\) 0 0
\(897\) 17.6569 0.589545
\(898\) 0 0
\(899\) −5.85786 2.86976i −0.195371 0.0957117i
\(900\) 0 0
\(901\) −0.0294373 −0.000980697
\(902\) 0 0
\(903\) 51.8701 1.72613
\(904\) 0 0
\(905\) 5.15685 8.93193i 0.171420 0.296908i
\(906\) 0 0
\(907\) −55.3137 −1.83666 −0.918331 0.395814i \(-0.870463\pi\)
−0.918331 + 0.395814i \(0.870463\pi\)
\(908\) 0 0
\(909\) −12.0000 20.7846i −0.398015 0.689382i
\(910\) 0 0
\(911\) 24.5208 42.4713i 0.812411 1.40714i −0.0987614 0.995111i \(-0.531488\pi\)
0.911172 0.412026i \(-0.135179\pi\)
\(912\) 0 0
\(913\) 10.6716 18.4837i 0.353178 0.611721i
\(914\) 0 0
\(915\) 6.82843 0.225741
\(916\) 0 0
\(917\) 5.74264 + 9.94655i 0.189639 + 0.328464i
\(918\) 0 0
\(919\) −7.55025 13.0774i −0.249060 0.431384i 0.714205 0.699936i \(-0.246788\pi\)
−0.963265 + 0.268552i \(0.913455\pi\)
\(920\) 0 0
\(921\) −3.32843 5.76500i −0.109675 0.189963i
\(922\) 0 0
\(923\) −12.8640 + 22.2810i −0.423422 + 0.733389i
\(924\) 0 0
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) 0 0
\(927\) −17.0711 + 29.5680i −0.560687 + 0.971139i
\(928\) 0 0
\(929\) 24.4853 0.803336 0.401668 0.915785i \(-0.368431\pi\)
0.401668 + 0.915785i \(0.368431\pi\)
\(930\) 0 0
\(931\) 1.85786 0.0608890
\(932\) 0 0
\(933\) −13.6569 + 23.6544i −0.447105 + 0.774409i
\(934\) 0 0
\(935\) 0.449747 + 0.778985i 0.0147083 + 0.0254755i
\(936\) 0 0
\(937\) −19.1569 + 33.1806i −0.625827 + 1.08396i 0.362553 + 0.931963i \(0.381905\pi\)
−0.988380 + 0.152001i \(0.951428\pi\)
\(938\) 0 0
\(939\) −4.62132 8.00436i −0.150811 0.261212i
\(940\) 0 0
\(941\) 17.5000 + 30.3109i 0.570484 + 0.988107i 0.996516 + 0.0833989i \(0.0265776\pi\)
−0.426033 + 0.904708i \(0.640089\pi\)
\(942\) 0 0
\(943\) −18.9706 32.8580i −0.617767 1.07000i
\(944\) 0 0
\(945\) 1.00000 0.0325300
\(946\) 0 0
\(947\) 19.4497 33.6880i 0.632032 1.09471i −0.355104 0.934827i \(-0.615555\pi\)
0.987136 0.159884i \(-0.0511122\pi\)
\(948\) 0 0
\(949\) −3.50000 + 6.06218i −0.113615 + 0.196787i
\(950\) 0 0
\(951\) 2.62132 + 4.54026i 0.0850021 + 0.147228i
\(952\) 0 0
\(953\) 20.4853 0.663583 0.331792 0.943353i \(-0.392347\pi\)
0.331792 + 0.943353i \(0.392347\pi\)
\(954\) 0 0
\(955\) −0.550253 + 0.953065i −0.0178058 + 0.0308405i
\(956\) 0 0
\(957\) −14.8284 −0.479335
\(958\) 0 0
\(959\) 18.0711 0.583545
\(960\) 0 0
\(961\) 19.0000 + 24.4949i 0.612903 + 0.790158i
\(962\) 0 0
\(963\) −27.1127 −0.873694
\(964\) 0 0
\(965\) −21.1421 −0.680589
\(966\) 0 0
\(967\) −23.2782 + 40.3190i −0.748576 + 1.29657i 0.199930 + 0.979810i \(0.435929\pi\)
−0.948505 + 0.316761i \(0.897405\pi\)
\(968\) 0 0
\(969\) 0.656854 0.0211012
\(970\) 0 0
\(971\) 29.3492 + 50.8344i 0.941862 + 1.63135i 0.761915 + 0.647676i \(0.224259\pi\)
0.179947 + 0.983676i \(0.442408\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.82843 15.2913i 0.282736 0.489713i
\(976\) 0 0
\(977\) 16.4853 0.527411 0.263705 0.964603i \(-0.415055\pi\)
0.263705 + 0.964603i \(0.415055\pi\)
\(978\) 0 0
\(979\) 32.7279 + 56.6864i 1.04599 + 1.81171i
\(980\) 0 0
\(981\) 7.31371 + 12.6677i 0.233509 + 0.404449i
\(982\) 0 0
\(983\) 24.4203 + 42.2972i 0.778887 + 1.34907i 0.932584 + 0.360954i \(0.117549\pi\)
−0.153697 + 0.988118i \(0.549118\pi\)
\(984\) 0 0
\(985\) −1.74264 + 3.01834i −0.0555251 + 0.0961724i
\(986\) 0 0
\(987\) 4.82843 + 8.36308i 0.153691 + 0.266200i
\(988\) 0 0
\(989\) 17.7990 30.8288i 0.565975 0.980297i
\(990\) 0 0
\(991\) 19.9411 0.633451 0.316725 0.948517i \(-0.397417\pi\)
0.316725 + 0.948517i \(0.397417\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 0 0
\(995\) 7.79289 13.4977i 0.247051 0.427905i
\(996\) 0 0
\(997\) 23.2990 + 40.3550i 0.737886 + 1.27806i 0.953445 + 0.301566i \(0.0975093\pi\)
−0.215559 + 0.976491i \(0.569157\pi\)
\(998\) 0 0
\(999\) 0.207107 0.358719i 0.00655257 0.0113494i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 496.2.i.h.129.1 4
4.3 odd 2 31.2.c.a.5.1 4
12.11 even 2 279.2.h.c.253.2 4
20.3 even 4 775.2.o.d.749.4 8
20.7 even 4 775.2.o.d.749.1 8
20.19 odd 2 775.2.e.e.501.2 4
31.25 even 3 inner 496.2.i.h.273.1 4
124.3 even 30 961.2.g.r.448.1 16
124.7 odd 30 961.2.g.o.338.2 16
124.11 even 30 961.2.d.i.388.2 8
124.15 even 10 961.2.g.r.846.1 16
124.19 odd 30 961.2.g.o.844.1 16
124.23 even 10 961.2.g.r.816.2 16
124.27 even 10 961.2.g.r.235.2 16
124.35 odd 10 961.2.g.o.235.2 16
124.39 odd 10 961.2.g.o.816.2 16
124.43 even 30 961.2.g.r.844.1 16
124.47 odd 10 961.2.g.o.846.1 16
124.51 odd 30 961.2.d.l.388.2 8
124.55 even 30 961.2.g.r.338.2 16
124.59 odd 30 961.2.g.o.448.1 16
124.67 odd 6 961.2.a.a.1.1 2
124.71 odd 30 961.2.d.l.374.2 8
124.75 even 30 961.2.d.i.628.1 8
124.79 even 30 961.2.g.r.732.2 16
124.83 even 30 961.2.d.i.531.1 8
124.87 odd 6 31.2.c.a.25.1 yes 4
124.91 even 10 961.2.g.r.547.1 16
124.95 odd 10 961.2.g.o.547.1 16
124.99 even 6 961.2.c.a.521.1 4
124.103 odd 30 961.2.d.l.531.1 8
124.107 odd 30 961.2.g.o.732.2 16
124.111 odd 30 961.2.d.l.628.1 8
124.115 even 30 961.2.d.i.374.2 8
124.119 even 6 961.2.a.c.1.1 2
124.123 even 2 961.2.c.a.439.1 4
372.119 odd 6 8649.2.a.k.1.2 2
372.191 even 6 8649.2.a.l.1.2 2
372.335 even 6 279.2.h.c.118.2 4
620.87 even 12 775.2.o.d.149.1 8
620.459 odd 6 775.2.e.e.676.2 4
620.583 even 12 775.2.o.d.149.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 4.3 odd 2
31.2.c.a.25.1 yes 4 124.87 odd 6
279.2.h.c.118.2 4 372.335 even 6
279.2.h.c.253.2 4 12.11 even 2
496.2.i.h.129.1 4 1.1 even 1 trivial
496.2.i.h.273.1 4 31.25 even 3 inner
775.2.e.e.501.2 4 20.19 odd 2
775.2.e.e.676.2 4 620.459 odd 6
775.2.o.d.149.1 8 620.87 even 12
775.2.o.d.149.4 8 620.583 even 12
775.2.o.d.749.1 8 20.7 even 4
775.2.o.d.749.4 8 20.3 even 4
961.2.a.a.1.1 2 124.67 odd 6
961.2.a.c.1.1 2 124.119 even 6
961.2.c.a.439.1 4 124.123 even 2
961.2.c.a.521.1 4 124.99 even 6
961.2.d.i.374.2 8 124.115 even 30
961.2.d.i.388.2 8 124.11 even 30
961.2.d.i.531.1 8 124.83 even 30
961.2.d.i.628.1 8 124.75 even 30
961.2.d.l.374.2 8 124.71 odd 30
961.2.d.l.388.2 8 124.51 odd 30
961.2.d.l.531.1 8 124.103 odd 30
961.2.d.l.628.1 8 124.111 odd 30
961.2.g.o.235.2 16 124.35 odd 10
961.2.g.o.338.2 16 124.7 odd 30
961.2.g.o.448.1 16 124.59 odd 30
961.2.g.o.547.1 16 124.95 odd 10
961.2.g.o.732.2 16 124.107 odd 30
961.2.g.o.816.2 16 124.39 odd 10
961.2.g.o.844.1 16 124.19 odd 30
961.2.g.o.846.1 16 124.47 odd 10
961.2.g.r.235.2 16 124.27 even 10
961.2.g.r.338.2 16 124.55 even 30
961.2.g.r.448.1 16 124.3 even 30
961.2.g.r.547.1 16 124.91 even 10
961.2.g.r.732.2 16 124.79 even 30
961.2.g.r.816.2 16 124.23 even 10
961.2.g.r.844.1 16 124.43 even 30
961.2.g.r.846.1 16 124.15 even 10
8649.2.a.k.1.2 2 372.119 odd 6
8649.2.a.l.1.2 2 372.191 even 6