Properties

Label 961.2.g.o.448.1
Level $961$
Weight $2$
Character 961.448
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-2,-4,-8,-24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.26873856000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 8x^{10} - 16x^{8} + 32x^{6} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 448.1
Root \(-0.147826 + 1.40647i\) of defining polynomial
Character \(\chi\) \(=\) 961.448
Dual form 961.2.g.o.547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.746033 + 2.29605i) q^{2} +(-1.61542 + 1.79411i) q^{3} +(-3.09726 - 2.25029i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-2.91421 - 5.04757i) q^{6} +(-0.252354 + 2.40099i) q^{7} +(3.57117 - 2.59461i) q^{8} +(-0.295651 - 2.81293i) q^{9} +(-1.61542 - 1.79411i) q^{10} +(-4.78939 + 2.13237i) q^{11} +(9.04067 - 1.92165i) q^{12} +(-1.78847 - 0.380151i) q^{13} +(-5.32453 - 2.37063i) q^{14} +(-0.746033 - 2.29605i) q^{15} +(0.927051 + 2.85317i) q^{16} +(-0.156740 - 0.0697850i) q^{17} +(6.67921 + 1.41971i) q^{18} +(-1.55113 + 0.329704i) q^{19} +(3.49744 - 1.55716i) q^{20} +(-3.89998 - 4.33137i) q^{21} +(-1.32300 - 12.5875i) q^{22} +(3.23607 - 2.35114i) q^{23} +(-1.11394 + 10.5985i) q^{24} +(2.00000 + 3.46410i) q^{25} +(2.20711 - 3.82282i) q^{26} +(-0.335106 - 0.243469i) q^{27} +(6.18453 - 6.86862i) q^{28} +(-0.362036 + 1.11423i) q^{29} +5.82843 q^{30} +1.58579 q^{32} +(3.91118 - 12.0374i) q^{33} +(0.277163 - 0.307821i) q^{34} +(-1.95314 - 1.41904i) q^{35} +(-5.41421 + 9.37769i) q^{36} +(-0.500000 - 0.866025i) q^{37} +(0.400180 - 3.80745i) q^{38} +(3.57117 - 2.59461i) q^{39} +(0.461411 + 4.39003i) q^{40} +(6.34689 + 7.04894i) q^{41} +(12.8546 - 5.72322i) q^{42} +(-8.70502 + 1.85031i) q^{43} +(19.6325 + 4.17301i) q^{44} +(2.58390 + 1.15042i) q^{45} +(2.98413 + 9.18421i) q^{46} +(-0.511996 - 1.57576i) q^{47} +(-6.61648 - 2.94585i) q^{48} +(1.14597 + 0.243584i) q^{49} +(-9.44583 + 2.00777i) q^{50} +(0.378403 - 0.168476i) q^{51} +(4.68391 + 5.20201i) q^{52} +(-0.0179342 - 0.170633i) q^{53} +(0.809017 - 0.587785i) q^{54} +(0.548005 - 5.21392i) q^{55} +(5.32843 + 9.22911i) q^{56} +(1.91421 - 3.31552i) q^{57} +(-2.28825 - 1.66251i) q^{58} +(-6.73886 + 7.48426i) q^{59} +(-2.85613 + 8.79027i) q^{60} +2.82843 q^{61} +6.82843 q^{63} +(-3.03715 + 9.34739i) q^{64} +(1.22346 - 1.35879i) q^{65} +(24.7206 + 17.9606i) q^{66} +(2.62132 - 4.54026i) q^{67} +(0.328427 + 0.568852i) q^{68} +(-1.00942 + 9.60395i) q^{69} +(4.71530 - 3.42586i) q^{70} +(1.47083 + 13.9940i) q^{71} +(-8.35428 - 9.27837i) q^{72} +(3.49744 - 1.55716i) q^{73} +(2.36146 - 0.501943i) q^{74} +(-9.44583 - 2.00777i) q^{75} +(5.54620 + 2.46933i) q^{76} +(-3.91118 - 12.0374i) q^{77} +(3.29315 + 10.1353i) q^{78} +(-13.9248 - 6.19974i) q^{79} +(-2.93444 - 0.623735i) q^{80} +(9.27801 - 1.97210i) q^{81} +(-20.9197 + 9.31406i) q^{82} +(2.72408 + 3.02539i) q^{83} +(2.33242 + 22.1915i) q^{84} +(0.138805 - 0.100848i) q^{85} +(2.24582 - 21.3676i) q^{86} +(-1.41421 - 2.44949i) q^{87} +(-11.5711 + 20.0417i) q^{88} +(10.1008 + 7.33866i) q^{89} +(-4.56911 + 5.07451i) q^{90} +(1.36407 - 4.19817i) q^{91} -15.3137 q^{92} +4.00000 q^{94} +(0.490035 - 1.50817i) q^{95} +(-2.56172 + 2.84508i) q^{96} +(-8.76038 - 6.36479i) q^{97} +(-1.41421 + 2.44949i) q^{98} +(7.41421 + 12.8418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 2 q^{3} - 4 q^{4} - 8 q^{5} - 24 q^{6} + 2 q^{7} + 12 q^{8} - 2 q^{10} - 2 q^{11} - 10 q^{12} - 2 q^{13} - 6 q^{14} + 4 q^{15} - 12 q^{16} - 6 q^{17} - 8 q^{18} + 6 q^{19} + 2 q^{20} - 6 q^{21}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.746033 + 2.29605i −0.527525 + 1.62356i 0.231743 + 0.972777i \(0.425557\pi\)
−0.759268 + 0.650778i \(0.774443\pi\)
\(3\) −1.61542 + 1.79411i −0.932666 + 1.03583i 0.0666102 + 0.997779i \(0.478782\pi\)
−0.999276 + 0.0380510i \(0.987885\pi\)
\(4\) −3.09726 2.25029i −1.54863 1.12515i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) −2.91421 5.04757i −1.18972 2.06066i
\(7\) −0.252354 + 2.40099i −0.0953809 + 0.907488i 0.837290 + 0.546759i \(0.184139\pi\)
−0.932671 + 0.360729i \(0.882528\pi\)
\(8\) 3.57117 2.59461i 1.26260 0.917333i
\(9\) −0.295651 2.81293i −0.0985504 0.937644i
\(10\) −1.61542 1.79411i −0.510842 0.567347i
\(11\) −4.78939 + 2.13237i −1.44406 + 0.642935i −0.971213 0.238212i \(-0.923439\pi\)
−0.472842 + 0.881147i \(0.656772\pi\)
\(12\) 9.04067 1.92165i 2.60982 0.554733i
\(13\) −1.78847 0.380151i −0.496033 0.105435i −0.0468992 0.998900i \(-0.514934\pi\)
−0.449134 + 0.893465i \(0.648267\pi\)
\(14\) −5.32453 2.37063i −1.42304 0.633579i
\(15\) −0.746033 2.29605i −0.192625 0.592838i
\(16\) 0.927051 + 2.85317i 0.231763 + 0.713292i
\(17\) −0.156740 0.0697850i −0.0380149 0.0169253i 0.387641 0.921810i \(-0.373290\pi\)
−0.425656 + 0.904885i \(0.639957\pi\)
\(18\) 6.67921 + 1.41971i 1.57430 + 0.334629i
\(19\) −1.55113 + 0.329704i −0.355854 + 0.0756392i −0.382370 0.924009i \(-0.624892\pi\)
0.0265158 + 0.999648i \(0.491559\pi\)
\(20\) 3.49744 1.55716i 0.782052 0.348192i
\(21\) −3.89998 4.33137i −0.851045 0.945181i
\(22\) −1.32300 12.5875i −0.282065 2.68367i
\(23\) 3.23607 2.35114i 0.674767 0.490247i −0.196851 0.980433i \(-0.563071\pi\)
0.871617 + 0.490187i \(0.163071\pi\)
\(24\) −1.11394 + 10.5985i −0.227383 + 2.16340i
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 2.20711 3.82282i 0.432849 0.749717i
\(27\) −0.335106 0.243469i −0.0644911 0.0468556i
\(28\) 6.18453 6.86862i 1.16877 1.29805i
\(29\) −0.362036 + 1.11423i −0.0672284 + 0.206908i −0.979027 0.203729i \(-0.934694\pi\)
0.911799 + 0.410637i \(0.134694\pi\)
\(30\) 5.82843 1.06412
\(31\) 0 0
\(32\) 1.58579 0.280330
\(33\) 3.91118 12.0374i 0.680850 2.09544i
\(34\) 0.277163 0.307821i 0.0475331 0.0527908i
\(35\) −1.95314 1.41904i −0.330141 0.239861i
\(36\) −5.41421 + 9.37769i −0.902369 + 1.56295i
\(37\) −0.500000 0.866025i −0.0821995 0.142374i 0.821995 0.569495i \(-0.192861\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0.400180 3.80745i 0.0649177 0.617651i
\(39\) 3.57117 2.59461i 0.571845 0.415470i
\(40\) 0.461411 + 4.39003i 0.0729555 + 0.694125i
\(41\) 6.34689 + 7.04894i 0.991218 + 1.10086i 0.994900 + 0.100866i \(0.0321613\pi\)
−0.00368202 + 0.999993i \(0.501172\pi\)
\(42\) 12.8546 5.72322i 1.98350 0.883112i
\(43\) −8.70502 + 1.85031i −1.32750 + 0.282169i −0.816468 0.577390i \(-0.804071\pi\)
−0.511035 + 0.859560i \(0.670738\pi\)
\(44\) 19.6325 + 4.17301i 2.95971 + 0.629105i
\(45\) 2.58390 + 1.15042i 0.385185 + 0.171495i
\(46\) 2.98413 + 9.18421i 0.439986 + 1.35414i
\(47\) −0.511996 1.57576i −0.0746823 0.229849i 0.906746 0.421677i \(-0.138558\pi\)
−0.981428 + 0.191828i \(0.938558\pi\)
\(48\) −6.61648 2.94585i −0.955007 0.425196i
\(49\) 1.14597 + 0.243584i 0.163710 + 0.0347977i
\(50\) −9.44583 + 2.00777i −1.33584 + 0.283942i
\(51\) 0.378403 0.168476i 0.0529870 0.0235913i
\(52\) 4.68391 + 5.20201i 0.649542 + 0.721390i
\(53\) −0.0179342 0.170633i −0.00246346 0.0234382i 0.993221 0.116240i \(-0.0370843\pi\)
−0.995685 + 0.0928021i \(0.970418\pi\)
\(54\) 0.809017 0.587785i 0.110093 0.0799874i
\(55\) 0.548005 5.21392i 0.0738930 0.703045i
\(56\) 5.32843 + 9.22911i 0.712041 + 1.23329i
\(57\) 1.91421 3.31552i 0.253544 0.439151i
\(58\) −2.28825 1.66251i −0.300461 0.218298i
\(59\) −6.73886 + 7.48426i −0.877325 + 0.974368i −0.999836 0.0180992i \(-0.994239\pi\)
0.122511 + 0.992467i \(0.460905\pi\)
\(60\) −2.85613 + 8.79027i −0.368725 + 1.13482i
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) 0 0
\(63\) 6.82843 0.860301
\(64\) −3.03715 + 9.34739i −0.379644 + 1.16842i
\(65\) 1.22346 1.35879i 0.151751 0.168537i
\(66\) 24.7206 + 17.9606i 3.04290 + 2.21079i
\(67\) 2.62132 4.54026i 0.320245 0.554681i −0.660293 0.751008i \(-0.729568\pi\)
0.980539 + 0.196327i \(0.0629013\pi\)
\(68\) 0.328427 + 0.568852i 0.0398276 + 0.0689835i
\(69\) −1.00942 + 9.60395i −0.121519 + 1.15618i
\(70\) 4.71530 3.42586i 0.563586 0.409469i
\(71\) 1.47083 + 13.9940i 0.174555 + 1.66078i 0.634567 + 0.772868i \(0.281178\pi\)
−0.460012 + 0.887913i \(0.652155\pi\)
\(72\) −8.35428 9.27837i −0.984562 1.09347i
\(73\) 3.49744 1.55716i 0.409345 0.182252i −0.191725 0.981449i \(-0.561408\pi\)
0.601070 + 0.799197i \(0.294741\pi\)
\(74\) 2.36146 0.501943i 0.274514 0.0583497i
\(75\) −9.44583 2.00777i −1.09071 0.231838i
\(76\) 5.54620 + 2.46933i 0.636192 + 0.283251i
\(77\) −3.91118 12.0374i −0.445721 1.37179i
\(78\) 3.29315 + 10.1353i 0.372876 + 1.14759i
\(79\) −13.9248 6.19974i −1.56667 0.697525i −0.574051 0.818820i \(-0.694629\pi\)
−0.992617 + 0.121294i \(0.961296\pi\)
\(80\) −2.93444 0.623735i −0.328081 0.0697357i
\(81\) 9.27801 1.97210i 1.03089 0.219122i
\(82\) −20.9197 + 9.31406i −2.31020 + 1.02857i
\(83\) 2.72408 + 3.02539i 0.299006 + 0.332080i 0.873861 0.486175i \(-0.161608\pi\)
−0.574855 + 0.818255i \(0.694942\pi\)
\(84\) 2.33242 + 22.1915i 0.254488 + 2.42129i
\(85\) 0.138805 0.100848i 0.0150556 0.0109385i
\(86\) 2.24582 21.3676i 0.242173 2.30413i
\(87\) −1.41421 2.44949i −0.151620 0.262613i
\(88\) −11.5711 + 20.0417i −1.23348 + 2.13645i
\(89\) 10.1008 + 7.33866i 1.07068 + 0.777897i 0.976035 0.217614i \(-0.0698274\pi\)
0.0946482 + 0.995511i \(0.469827\pi\)
\(90\) −4.56911 + 5.07451i −0.481626 + 0.534900i
\(91\) 1.36407 4.19817i 0.142993 0.440087i
\(92\) −15.3137 −1.59656
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0.490035 1.50817i 0.0502765 0.154735i
\(96\) −2.56172 + 2.84508i −0.261454 + 0.290374i
\(97\) −8.76038 6.36479i −0.889482 0.646246i 0.0462609 0.998929i \(-0.485269\pi\)
−0.935743 + 0.352683i \(0.885269\pi\)
\(98\) −1.41421 + 2.44949i −0.142857 + 0.247436i
\(99\) 7.41421 + 12.8418i 0.745157 + 1.29065i
\(100\) 1.60072 15.2298i 0.160072 1.52298i
\(101\) −6.86474 + 4.98752i −0.683067 + 0.496277i −0.874374 0.485253i \(-0.838727\pi\)
0.191307 + 0.981530i \(0.438727\pi\)
\(102\) 0.104528 + 0.994522i 0.0103499 + 0.0984723i
\(103\) −8.07712 8.97055i −0.795862 0.883895i 0.199519 0.979894i \(-0.436062\pi\)
−0.995381 + 0.0959992i \(0.969395\pi\)
\(104\) −7.37329 + 3.28280i −0.723010 + 0.321905i
\(105\) 5.70106 1.21180i 0.556367 0.118259i
\(106\) 0.405162 + 0.0861198i 0.0393528 + 0.00836470i
\(107\) 8.75705 + 3.89889i 0.846576 + 0.376920i 0.783729 0.621103i \(-0.213315\pi\)
0.0628473 + 0.998023i \(0.479982\pi\)
\(108\) 0.490035 + 1.50817i 0.0471536 + 0.145124i
\(109\) −1.59810 4.91846i −0.153071 0.471103i 0.844890 0.534941i \(-0.179666\pi\)
−0.997960 + 0.0638377i \(0.979666\pi\)
\(110\) 11.5626 + 5.14801i 1.10245 + 0.490843i
\(111\) 2.36146 + 0.501943i 0.224140 + 0.0476423i
\(112\) −7.08437 + 1.50583i −0.669410 + 0.142288i
\(113\) 4.88121 2.17325i 0.459185 0.204442i −0.164089 0.986445i \(-0.552469\pi\)
0.623275 + 0.782003i \(0.285802\pi\)
\(114\) 6.18453 + 6.86862i 0.579235 + 0.643305i
\(115\) 0.418114 + 3.97809i 0.0389893 + 0.370959i
\(116\) 3.62867 2.63638i 0.336913 0.244782i
\(117\) −0.540577 + 5.14324i −0.0499763 + 0.475493i
\(118\) −12.1569 21.0563i −1.11913 1.93839i
\(119\) 0.207107 0.358719i 0.0189854 0.0328838i
\(120\) −8.62158 6.26394i −0.787039 0.571817i
\(121\) 11.0308 12.2510i 1.00280 1.11372i
\(122\) −2.11010 + 6.49422i −0.191039 + 0.587959i
\(123\) −22.8995 −2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −5.09423 + 15.6784i −0.453830 + 1.39675i
\(127\) −7.29319 + 8.09990i −0.647166 + 0.718750i −0.974055 0.226312i \(-0.927333\pi\)
0.326889 + 0.945063i \(0.394000\pi\)
\(128\) −16.6304 12.0827i −1.46994 1.06797i
\(129\) 10.7426 18.6068i 0.945837 1.63824i
\(130\) 2.20711 + 3.82282i 0.193576 + 0.335284i
\(131\) 0.497279 4.73130i 0.0434475 0.413375i −0.951084 0.308934i \(-0.900028\pi\)
0.994531 0.104442i \(-0.0333055\pi\)
\(132\) −39.2016 + 28.4816i −3.41206 + 2.47901i
\(133\) −0.400180 3.80745i −0.0347000 0.330148i
\(134\) 8.46909 + 9.40588i 0.731618 + 0.812544i
\(135\) 0.378403 0.168476i 0.0325677 0.0145001i
\(136\) −0.740809 + 0.157464i −0.0635239 + 0.0135024i
\(137\) 7.32171 + 1.55628i 0.625536 + 0.132962i 0.509764 0.860314i \(-0.329733\pi\)
0.115772 + 0.993276i \(0.463066\pi\)
\(138\) −21.2981 9.48254i −1.81302 0.807207i
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 2.85613 + 8.79027i 0.241387 + 0.742914i
\(141\) 3.65418 + 1.62695i 0.307738 + 0.137014i
\(142\) −33.2282 7.06288i −2.78845 0.592703i
\(143\) 9.37631 1.99300i 0.784087 0.166663i
\(144\) 7.75169 3.45127i 0.645974 0.287606i
\(145\) −0.783935 0.870648i −0.0651023 0.0723034i
\(146\) 0.966119 + 9.19201i 0.0799566 + 0.760736i
\(147\) −2.28825 + 1.66251i −0.188731 + 0.137121i
\(148\) −0.400180 + 3.80745i −0.0328946 + 0.312971i
\(149\) −0.500000 0.866025i −0.0409616 0.0709476i 0.844818 0.535054i \(-0.179709\pi\)
−0.885779 + 0.464107i \(0.846375\pi\)
\(150\) 11.6569 20.1903i 0.951778 1.64853i
\(151\) 14.0071 + 10.1767i 1.13988 + 0.828172i 0.987103 0.160089i \(-0.0511781\pi\)
0.152778 + 0.988261i \(0.451178\pi\)
\(152\) −4.68391 + 5.20201i −0.379916 + 0.421939i
\(153\) −0.149960 + 0.461530i −0.0121236 + 0.0373125i
\(154\) 30.5563 2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 4.58224 14.1027i 0.365702 1.12552i −0.583838 0.811870i \(-0.698450\pi\)
0.949540 0.313646i \(-0.101550\pi\)
\(158\) 24.6233 27.3470i 1.95893 2.17561i
\(159\) 0.335106 + 0.243469i 0.0265756 + 0.0193083i
\(160\) −0.792893 + 1.37333i −0.0626837 + 0.108571i
\(161\) 4.82843 + 8.36308i 0.380533 + 0.659103i
\(162\) −2.39365 + 22.7740i −0.188063 + 1.78930i
\(163\) 10.4934 7.62391i 0.821907 0.597150i −0.0953511 0.995444i \(-0.530397\pi\)
0.917258 + 0.398293i \(0.130397\pi\)
\(164\) −3.79582 36.1148i −0.296403 2.82009i
\(165\) 8.46909 + 9.40588i 0.659318 + 0.732246i
\(166\) −8.97871 + 3.99758i −0.696883 + 0.310272i
\(167\) 8.36937 1.77897i 0.647641 0.137660i 0.127633 0.991821i \(-0.459262\pi\)
0.520009 + 0.854161i \(0.325929\pi\)
\(168\) −25.1657 5.34914i −1.94158 0.412695i
\(169\) −8.82198 3.92780i −0.678613 0.302138i
\(170\) 0.127999 + 0.393941i 0.00981708 + 0.0302139i
\(171\) 1.38603 + 4.26576i 0.105992 + 0.326211i
\(172\) 31.1255 + 13.8580i 2.37329 + 1.05666i
\(173\) 14.0009 + 2.97599i 1.06447 + 0.226260i 0.706674 0.707539i \(-0.250195\pi\)
0.357796 + 0.933800i \(0.383528\pi\)
\(174\) 6.67921 1.41971i 0.506350 0.107628i
\(175\) −8.82198 + 3.92780i −0.666879 + 0.296914i
\(176\) −10.5240 11.6881i −0.793279 0.881025i
\(177\) −2.54147 24.1805i −0.191029 1.81752i
\(178\) −24.3855 + 17.7171i −1.82777 + 1.32795i
\(179\) 0.706336 6.72034i 0.0527941 0.502302i −0.935890 0.352291i \(-0.885403\pi\)
0.988684 0.150010i \(-0.0479307\pi\)
\(180\) −5.41421 9.37769i −0.403552 0.698972i
\(181\) 5.15685 8.93193i 0.383306 0.663905i −0.608227 0.793763i \(-0.708119\pi\)
0.991533 + 0.129858i \(0.0414522\pi\)
\(182\) 8.62158 + 6.26394i 0.639074 + 0.464314i
\(183\) −4.56911 + 5.07451i −0.337758 + 0.375119i
\(184\) 5.45627 16.7927i 0.402241 1.23797i
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) −1.96014 + 6.03269i −0.142958 + 0.439979i
\(189\) 0.669131 0.743145i 0.0486721 0.0540558i
\(190\) 3.09726 + 2.25029i 0.224699 + 0.163253i
\(191\) 0.550253 0.953065i 0.0398149 0.0689614i −0.845431 0.534084i \(-0.820657\pi\)
0.885246 + 0.465123i \(0.153990\pi\)
\(192\) −11.8640 20.5490i −0.856208 1.48300i
\(193\) 2.20995 21.0263i 0.159076 1.51351i −0.565751 0.824576i \(-0.691414\pi\)
0.724827 0.688931i \(-0.241920\pi\)
\(194\) 21.1494 15.3660i 1.51844 1.10321i
\(195\) 0.461411 + 4.39003i 0.0330423 + 0.314377i
\(196\) −3.00124 3.33321i −0.214374 0.238087i
\(197\) 3.18396 1.41759i 0.226848 0.100999i −0.290166 0.956976i \(-0.593710\pi\)
0.517013 + 0.855977i \(0.327044\pi\)
\(198\) −35.0167 + 7.44303i −2.48853 + 0.528953i
\(199\) −15.2452 3.24047i −1.08070 0.229711i −0.367044 0.930204i \(-0.619630\pi\)
−0.713659 + 0.700493i \(0.752964\pi\)
\(200\) 16.1303 + 7.18169i 1.14059 + 0.507822i
\(201\) 3.91118 + 12.0374i 0.275874 + 0.849052i
\(202\) −6.33030 19.4827i −0.445398 1.37080i
\(203\) −2.58390 1.15042i −0.181354 0.0807440i
\(204\) −1.55113 0.329704i −0.108601 0.0230839i
\(205\) −9.27801 + 1.97210i −0.648004 + 0.137738i
\(206\) 26.6227 11.8532i 1.85489 0.825850i
\(207\) −7.57035 8.40772i −0.526176 0.584377i
\(208\) −0.573368 5.45523i −0.0397559 0.378252i
\(209\) 6.72593 4.88668i 0.465242 0.338018i
\(210\) −1.47083 + 13.9940i −0.101497 + 0.965677i
\(211\) −3.79289 6.56948i −0.261114 0.452262i 0.705425 0.708785i \(-0.250756\pi\)
−0.966538 + 0.256523i \(0.917423\pi\)
\(212\) −0.328427 + 0.568852i −0.0225565 + 0.0390689i
\(213\) −27.4828 19.9674i −1.88309 1.36814i
\(214\) −15.4851 + 17.1980i −1.05854 + 1.17563i
\(215\) 2.75010 8.46392i 0.187555 0.577235i
\(216\) −1.82843 −0.124409
\(217\) 0 0
\(218\) 12.4853 0.845610
\(219\) −2.85613 + 8.79027i −0.193000 + 0.593992i
\(220\) −13.4302 + 14.9157i −0.905462 + 1.00562i
\(221\) 0.253796 + 0.184393i 0.0170721 + 0.0124036i
\(222\) −2.91421 + 5.04757i −0.195589 + 0.338770i
\(223\) −0.863961 1.49642i −0.0578551 0.100208i 0.835647 0.549266i \(-0.185093\pi\)
−0.893502 + 0.449059i \(0.851759\pi\)
\(224\) −0.400180 + 3.80745i −0.0267381 + 0.254396i
\(225\) 9.15298 6.65003i 0.610199 0.443335i
\(226\) 1.34836 + 12.8288i 0.0896919 + 0.853361i
\(227\) −10.4289 11.5825i −0.692192 0.768757i 0.289921 0.957051i \(-0.406371\pi\)
−0.982113 + 0.188293i \(0.939704\pi\)
\(228\) −13.3897 + 5.96148i −0.886755 + 0.394809i
\(229\) −11.2343 + 2.38792i −0.742383 + 0.157798i −0.563551 0.826081i \(-0.690565\pi\)
−0.178832 + 0.983880i \(0.557232\pi\)
\(230\) −9.44583 2.00777i −0.622840 0.132389i
\(231\) 27.9146 + 12.4284i 1.83665 + 0.817728i
\(232\) 1.59810 + 4.91846i 0.104921 + 0.322913i
\(233\) −4.58224 14.1027i −0.300192 0.923897i −0.981428 0.191832i \(-0.938557\pi\)
0.681235 0.732064i \(-0.261443\pi\)
\(234\) −11.4059 5.07822i −0.745625 0.331974i
\(235\) 1.62065 + 0.344479i 0.105719 + 0.0224714i
\(236\) 37.7138 8.01632i 2.45496 0.521818i
\(237\) 33.6176 14.9675i 2.18369 0.972243i
\(238\) 0.669131 + 0.743145i 0.0433733 + 0.0481709i
\(239\) 1.33351 + 12.6875i 0.0862574 + 0.820684i 0.949050 + 0.315126i \(0.102047\pi\)
−0.862792 + 0.505558i \(0.831287\pi\)
\(240\) 5.85942 4.25712i 0.378224 0.274796i
\(241\) −2.57734 + 24.5218i −0.166021 + 1.57959i 0.521390 + 0.853318i \(0.325414\pi\)
−0.687411 + 0.726268i \(0.741253\pi\)
\(242\) 19.8995 + 34.4669i 1.27919 + 2.21562i
\(243\) −10.8284 + 18.7554i −0.694644 + 1.20316i
\(244\) −8.76038 6.36479i −0.560826 0.407464i
\(245\) −0.783935 + 0.870648i −0.0500838 + 0.0556237i
\(246\) 17.0838 52.5785i 1.08922 3.35228i
\(247\) 2.89949 0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 6.71430 20.6645i 0.424649 1.30694i
\(251\) 2.39936 2.66476i 0.151446 0.168198i −0.662648 0.748931i \(-0.730567\pi\)
0.814094 + 0.580733i \(0.197234\pi\)
\(252\) −21.1494 15.3660i −1.33229 0.967965i
\(253\) −10.4853 + 18.1610i −0.659204 + 1.14177i
\(254\) −13.1569 22.7883i −0.825534 1.42987i
\(255\) −0.0432971 + 0.411944i −0.00271137 + 0.0257970i
\(256\) 24.2467 17.6163i 1.51542 1.10102i
\(257\) 0.0327915 + 0.311990i 0.00204548 + 0.0194614i 0.995497 0.0947928i \(-0.0302188\pi\)
−0.993452 + 0.114254i \(0.963552\pi\)
\(258\) 34.7078 + 38.5470i 2.16082 + 2.39983i
\(259\) 2.20549 0.981949i 0.137043 0.0610153i
\(260\) −6.84703 + 1.45538i −0.424635 + 0.0902589i
\(261\) 3.24130 + 0.688959i 0.200631 + 0.0426455i
\(262\) 10.4923 + 4.67148i 0.648218 + 0.288605i
\(263\) −0.212076 0.652702i −0.0130772 0.0402473i 0.944305 0.329071i \(-0.106736\pi\)
−0.957382 + 0.288824i \(0.906736\pi\)
\(264\) −17.2648 53.1356i −1.06257 3.27027i
\(265\) 0.156740 + 0.0697850i 0.00962844 + 0.00428686i
\(266\) 9.04067 + 1.92165i 0.554319 + 0.117824i
\(267\) −29.4835 + 6.26690i −1.80436 + 0.383528i
\(268\) −18.3358 + 8.16364i −1.12004 + 0.498674i
\(269\) −21.2974 23.6531i −1.29852 1.44216i −0.829012 0.559231i \(-0.811097\pi\)
−0.469512 0.882926i \(-0.655570\pi\)
\(270\) 0.104528 + 0.994522i 0.00636140 + 0.0605247i
\(271\) 18.8612 13.7035i 1.14574 0.832426i 0.157827 0.987467i \(-0.449551\pi\)
0.987908 + 0.155041i \(0.0495510\pi\)
\(272\) 0.0538027 0.511899i 0.00326227 0.0310384i
\(273\) 5.32843 + 9.22911i 0.322491 + 0.558571i
\(274\) −9.03553 + 15.6500i −0.545857 + 0.945451i
\(275\) −16.9655 12.3262i −1.02306 0.743297i
\(276\) 24.7381 27.4745i 1.48906 1.65377i
\(277\) −4.37016 + 13.4500i −0.262577 + 0.808130i 0.729664 + 0.683806i \(0.239676\pi\)
−0.992242 + 0.124325i \(0.960324\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.6569 −0.636869
\(281\) 0.618034 1.90211i 0.0368688 0.113471i −0.930928 0.365202i \(-0.881000\pi\)
0.967797 + 0.251731i \(0.0809999\pi\)
\(282\) −6.46170 + 7.17644i −0.384788 + 0.427351i
\(283\) 1.89564 + 1.37727i 0.112684 + 0.0818700i 0.642700 0.766118i \(-0.277814\pi\)
−0.530016 + 0.847988i \(0.677814\pi\)
\(284\) 26.9350 46.6528i 1.59830 2.76834i
\(285\) 1.91421 + 3.31552i 0.113388 + 0.196394i
\(286\) −2.41901 + 23.0154i −0.143039 + 1.36093i
\(287\) −18.5261 + 13.4600i −1.09356 + 0.794518i
\(288\) −0.468840 4.46071i −0.0276266 0.262850i
\(289\) −11.3555 12.6116i −0.667972 0.741858i
\(290\) 2.58390 1.15042i 0.151732 0.0675553i
\(291\) 25.5709 5.43526i 1.49899 0.318620i
\(292\) −14.3366 3.04733i −0.838984 0.178332i
\(293\) −22.6550 10.0867i −1.32352 0.589269i −0.381358 0.924428i \(-0.624543\pi\)
−0.942162 + 0.335159i \(0.891210\pi\)
\(294\) −2.11010 6.49422i −0.123064 0.378751i
\(295\) −3.11213 9.57815i −0.181195 0.557662i
\(296\) −4.03258 1.79542i −0.234389 0.104357i
\(297\) 2.12412 + 0.451495i 0.123254 + 0.0261984i
\(298\) 2.36146 0.501943i 0.136796 0.0290768i
\(299\) −6.68141 + 2.97475i −0.386396 + 0.172034i
\(300\) 24.7381 + 27.4745i 1.42826 + 1.58624i
\(301\) −2.24582 21.3676i −0.129447 1.23161i
\(302\) −33.8161 + 24.5688i −1.94590 + 1.41378i
\(303\) 2.14129 20.3731i 0.123014 1.17040i
\(304\) −2.37868 4.11999i −0.136427 0.236298i
\(305\) −1.41421 + 2.44949i −0.0809776 + 0.140257i
\(306\) −0.947822 0.688633i −0.0541834 0.0393665i
\(307\) −1.84503 + 2.04912i −0.105302 + 0.116949i −0.793492 0.608581i \(-0.791739\pi\)
0.688190 + 0.725531i \(0.258406\pi\)
\(308\) −14.9737 + 46.0842i −0.853205 + 2.62589i
\(309\) 29.1421 1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 6.02128 18.5316i 0.340888 1.04915i
\(313\) 2.56172 2.84508i 0.144797 0.160813i −0.666384 0.745609i \(-0.732159\pi\)
0.811181 + 0.584796i \(0.198825\pi\)
\(314\) 28.9620 + 21.0421i 1.63442 + 1.18748i
\(315\) −3.41421 + 5.91359i −0.192369 + 0.333193i
\(316\) 29.1777 + 50.5372i 1.64137 + 2.84294i
\(317\) 0.226991 2.15968i 0.0127491 0.121300i −0.986296 0.164984i \(-0.947243\pi\)
0.999045 + 0.0436841i \(0.0139095\pi\)
\(318\) −0.809017 + 0.587785i −0.0453674 + 0.0329614i
\(319\) −0.642028 6.10849i −0.0359467 0.342010i
\(320\) −6.57650 7.30394i −0.367638 0.408303i
\(321\) −21.1414 + 9.41275i −1.18000 + 0.525369i
\(322\) −22.8042 + 4.84719i −1.27083 + 0.270123i
\(323\) 0.266132 + 0.0565682i 0.0148080 + 0.00314754i
\(324\) −33.1742 14.7701i −1.84301 0.820562i
\(325\) −2.26006 6.95575i −0.125366 0.385836i
\(326\) 9.67647 + 29.7811i 0.535930 + 1.64942i
\(327\) 11.4059 + 5.07822i 0.630746 + 0.280826i
\(328\) 40.9551 + 8.70527i 2.26137 + 0.480668i
\(329\) 3.91259 0.831647i 0.215708 0.0458502i
\(330\) −27.9146 + 12.4284i −1.53665 + 0.684160i
\(331\) 0.506772 + 0.562828i 0.0278547 + 0.0309358i 0.756911 0.653518i \(-0.226708\pi\)
−0.729056 + 0.684454i \(0.760041\pi\)
\(332\) −1.62916 15.5004i −0.0894117 0.850695i
\(333\) −2.28825 + 1.66251i −0.125395 + 0.0911049i
\(334\) −2.15923 + 20.5437i −0.118148 + 1.12410i
\(335\) 2.62132 + 4.54026i 0.143218 + 0.248061i
\(336\) 8.74264 15.1427i 0.476950 0.826102i
\(337\) 10.7710 + 7.82560i 0.586735 + 0.426288i 0.841146 0.540808i \(-0.181882\pi\)
−0.254411 + 0.967096i \(0.581882\pi\)
\(338\) 15.5999 17.3255i 0.848524 0.942381i
\(339\) −3.98616 + 12.2681i −0.216499 + 0.666314i
\(340\) −0.656854 −0.0356229
\(341\) 0 0
\(342\) −10.8284 −0.585534
\(343\) −6.09626 + 18.7624i −0.329167 + 1.01307i
\(344\) −26.2863 + 29.1939i −1.41726 + 1.57403i
\(345\) −7.81256 5.67616i −0.420614 0.305594i
\(346\) −17.2782 + 29.9267i −0.928880 + 1.60887i
\(347\) −11.2782 19.5344i −0.605444 1.04866i −0.991981 0.126386i \(-0.959662\pi\)
0.386537 0.922274i \(-0.373671\pi\)
\(348\) −1.13188 + 10.7691i −0.0606751 + 0.577285i
\(349\) −28.4068 + 20.6387i −1.52058 + 1.10477i −0.559380 + 0.828911i \(0.688961\pi\)
−0.961199 + 0.275854i \(0.911039\pi\)
\(350\) −2.43695 23.1860i −0.130260 1.23934i
\(351\) 0.506772 + 0.562828i 0.0270495 + 0.0300415i
\(352\) −7.59495 + 3.38149i −0.404812 + 0.180234i
\(353\) −2.93444 + 0.623735i −0.156185 + 0.0331981i −0.285340 0.958426i \(-0.592107\pi\)
0.129156 + 0.991624i \(0.458773\pi\)
\(354\) 57.4158 + 12.2041i 3.05161 + 0.648641i
\(355\) −12.8546 5.72322i −0.682249 0.303757i
\(356\) −14.7707 45.4595i −0.782846 2.40935i
\(357\) 0.309017 + 0.951057i 0.0163549 + 0.0503352i
\(358\) 14.9033 + 6.63538i 0.787665 + 0.350691i
\(359\) −26.3117 5.59272i −1.38868 0.295172i −0.547895 0.836547i \(-0.684571\pi\)
−0.840782 + 0.541374i \(0.817904\pi\)
\(360\) 12.2124 2.59584i 0.643653 0.136813i
\(361\) −15.0601 + 6.70517i −0.792634 + 0.352904i
\(362\) 16.6610 + 18.5039i 0.875683 + 0.972545i
\(363\) 4.16013 + 39.5810i 0.218350 + 2.07746i
\(364\) −13.6720 + 9.93327i −0.716606 + 0.520645i
\(365\) −0.400180 + 3.80745i −0.0209464 + 0.199291i
\(366\) −8.24264 14.2767i −0.430850 0.746254i
\(367\) −9.10660 + 15.7731i −0.475361 + 0.823349i −0.999602 0.0282210i \(-0.991016\pi\)
0.524241 + 0.851570i \(0.324349\pi\)
\(368\) 9.70820 + 7.05342i 0.506075 + 0.367685i
\(369\) 17.9517 19.9374i 0.934529 1.03790i
\(370\) −0.746033 + 2.29605i −0.0387844 + 0.119366i
\(371\) 0.414214 0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −0.671053 + 2.06529i −0.0346993 + 0.106794i
\(375\) 14.5388 16.1470i 0.750781 0.833827i
\(376\) −5.91691 4.29889i −0.305142 0.221698i
\(377\) 1.07107 1.85514i 0.0551628 0.0955448i
\(378\) 1.20711 + 2.09077i 0.0620869 + 0.107538i
\(379\) 3.07155 29.2238i 0.157775 1.50113i −0.573592 0.819141i \(-0.694450\pi\)
0.731366 0.681985i \(-0.238883\pi\)
\(380\) −4.91160 + 3.56848i −0.251960 + 0.183059i
\(381\) −2.75053 26.1696i −0.140914 1.34071i
\(382\) 1.77778 + 1.97443i 0.0909593 + 0.101020i
\(383\) 22.7468 10.1275i 1.16231 0.517493i 0.267331 0.963605i \(-0.413858\pi\)
0.894977 + 0.446112i \(0.147192\pi\)
\(384\) 48.5429 10.3181i 2.47720 0.526544i
\(385\) 12.3803 + 2.63151i 0.630957 + 0.134114i
\(386\) 46.6288 + 20.7605i 2.37335 + 1.05668i
\(387\) 7.77844 + 23.9396i 0.395401 + 1.21692i
\(388\) 12.8106 + 39.4269i 0.650358 + 2.00160i
\(389\) 15.6601 + 6.97233i 0.794000 + 0.353511i 0.763322 0.646018i \(-0.223567\pi\)
0.0306774 + 0.999529i \(0.490234\pi\)
\(390\) −10.4240 2.21568i −0.527839 0.112196i
\(391\) −0.671294 + 0.142688i −0.0339488 + 0.00721604i
\(392\) 4.72447 2.10347i 0.238622 0.106241i
\(393\) 7.68515 + 8.53523i 0.387665 + 0.430545i
\(394\) 0.879525 + 8.36812i 0.0443098 + 0.421580i
\(395\) 12.3316 8.95940i 0.620468 0.450796i
\(396\) 5.93403 56.4586i 0.298196 2.83715i
\(397\) 8.25736 + 14.3022i 0.414425 + 0.717805i 0.995368 0.0961392i \(-0.0306494\pi\)
−0.580943 + 0.813944i \(0.697316\pi\)
\(398\) 18.8137 32.5863i 0.943046 1.63340i
\(399\) 7.47745 + 5.43269i 0.374341 + 0.271975i
\(400\) −8.02957 + 8.91774i −0.401478 + 0.445887i
\(401\) −6.54238 + 20.1354i −0.326711 + 1.00551i 0.643952 + 0.765066i \(0.277294\pi\)
−0.970663 + 0.240446i \(0.922706\pi\)
\(402\) −30.5563 −1.52401
\(403\) 0 0
\(404\) 32.4853 1.61620
\(405\) −2.93111 + 9.02104i −0.145648 + 0.448259i
\(406\) 4.56911 5.07451i 0.226761 0.251844i
\(407\) 4.24139 + 3.08155i 0.210238 + 0.152747i
\(408\) 0.914214 1.58346i 0.0452603 0.0783932i
\(409\) −4.67157 8.09140i −0.230994 0.400094i 0.727107 0.686525i \(-0.240865\pi\)
−0.958101 + 0.286431i \(0.907531\pi\)
\(410\) 2.39365 22.7740i 0.118214 1.12473i
\(411\) −14.6198 + 10.6219i −0.721142 + 0.523940i
\(412\) 4.83060 + 45.9600i 0.237986 + 2.26429i
\(413\) −16.2690 18.0686i −0.800547 0.889098i
\(414\) 24.9523 11.1095i 1.22634 0.546001i
\(415\) −3.98211 + 0.846423i −0.195474 + 0.0415493i
\(416\) −2.83613 0.602839i −0.139053 0.0295566i
\(417\) 0 0
\(418\) 6.20230 + 19.0887i 0.303364 + 0.933660i
\(419\) 8.65248 + 26.6296i 0.422701 + 1.30094i 0.905178 + 0.425032i \(0.139737\pi\)
−0.482477 + 0.875908i \(0.660263\pi\)
\(420\) −20.3846 9.07580i −0.994666 0.442854i
\(421\) 2.79541 + 0.594183i 0.136240 + 0.0289587i 0.275527 0.961293i \(-0.411148\pi\)
−0.139287 + 0.990252i \(0.544481\pi\)
\(422\) 17.9135 3.80763i 0.872016 0.185353i
\(423\) −4.28114 + 1.90609i −0.208156 + 0.0926771i
\(424\) −0.506772 0.562828i −0.0246110 0.0273333i
\(425\) −0.0717370 0.682532i −0.00347976 0.0331077i
\(426\) 66.3493 48.2056i 3.21463 2.33557i
\(427\) −0.713765 + 6.79102i −0.0345415 + 0.328641i
\(428\) −18.3492 31.7818i −0.886944 1.53623i
\(429\) −11.5711 + 20.0417i −0.558656 + 0.967621i
\(430\) 17.3820 + 12.6287i 0.838232 + 0.609012i
\(431\) −16.8906 + 18.7589i −0.813593 + 0.903586i −0.996836 0.0794813i \(-0.974674\pi\)
0.183244 + 0.983068i \(0.441340\pi\)
\(432\) 0.383997 1.18182i 0.0184751 0.0568604i
\(433\) −35.1127 −1.68741 −0.843704 0.536808i \(-0.819630\pi\)
−0.843704 + 0.536808i \(0.819630\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) −6.11822 + 18.8300i −0.293010 + 0.901791i
\(437\) −4.24439 + 4.71388i −0.203037 + 0.225495i
\(438\) −18.0522 13.1157i −0.862566 0.626691i
\(439\) 6.03553 10.4539i 0.288060 0.498935i −0.685286 0.728274i \(-0.740323\pi\)
0.973347 + 0.229339i \(0.0736563\pi\)
\(440\) −11.5711 20.0417i −0.551629 0.955449i
\(441\) 0.346377 3.29556i 0.0164941 0.156931i
\(442\) −0.612717 + 0.445165i −0.0291440 + 0.0211743i
\(443\) 1.38423 + 13.1701i 0.0657669 + 0.625730i 0.976912 + 0.213644i \(0.0685332\pi\)
−0.911145 + 0.412086i \(0.864800\pi\)
\(444\) −6.18453 6.86862i −0.293505 0.325970i
\(445\) −11.4059 + 5.07822i −0.540690 + 0.240731i
\(446\) 4.08041 0.867319i 0.193213 0.0410687i
\(447\) 2.36146 + 0.501943i 0.111693 + 0.0237411i
\(448\) −21.6765 9.65102i −1.02412 0.455968i
\(449\) 1.42995 + 4.40094i 0.0674835 + 0.207693i 0.979112 0.203323i \(-0.0651741\pi\)
−0.911628 + 0.411016i \(0.865174\pi\)
\(450\) 8.44040 + 25.9769i 0.397884 + 1.22456i
\(451\) −45.4287 20.2262i −2.13915 0.952413i
\(452\) −20.0088 4.25301i −0.941136 0.200045i
\(453\) −40.8856 + 8.69050i −1.92097 + 0.408315i
\(454\) 34.3744 15.3044i 1.61327 0.718273i
\(455\) 2.95369 + 3.28040i 0.138471 + 0.153788i
\(456\) −1.76648 16.8069i −0.0827229 0.787056i
\(457\) −25.1707 + 18.2876i −1.17744 + 0.855457i −0.991880 0.127177i \(-0.959409\pi\)
−0.185556 + 0.982634i \(0.559409\pi\)
\(458\) 2.89836 27.5760i 0.135431 1.28854i
\(459\) 0.0355339 + 0.0615465i 0.00165858 + 0.00287275i
\(460\) 7.65685 13.2621i 0.357003 0.618347i
\(461\) −21.1494 15.3660i −0.985027 0.715664i −0.0262008 0.999657i \(-0.508341\pi\)
−0.958826 + 0.283993i \(0.908341\pi\)
\(462\) −49.3615 + 54.8215i −2.29650 + 2.55053i
\(463\) 7.71633 23.7484i 0.358608 1.10368i −0.595279 0.803519i \(-0.702959\pi\)
0.953888 0.300164i \(-0.0970413\pi\)
\(464\) −3.51472 −0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) −2.47214 + 7.60845i −0.114397 + 0.352077i −0.991821 0.127639i \(-0.959260\pi\)
0.877424 + 0.479716i \(0.159260\pi\)
\(468\) 13.2481 14.7135i 0.612394 0.680133i
\(469\) 10.2396 + 7.43951i 0.472821 + 0.343525i
\(470\) −2.00000 + 3.46410i −0.0922531 + 0.159787i
\(471\) 17.8995 + 31.0028i 0.824765 + 1.42854i
\(472\) −4.64690 + 44.2123i −0.213891 + 2.03504i
\(473\) 37.7462 27.4242i 1.73557 1.26097i
\(474\) 9.28637 + 88.3539i 0.426537 + 4.05823i
\(475\) −4.24439 4.71388i −0.194746 0.216287i
\(476\) −1.44869 + 0.644997i −0.0664005 + 0.0295634i
\(477\) −0.474677 + 0.100896i −0.0217340 + 0.00461970i
\(478\) −30.1260 6.40347i −1.37793 0.292888i
\(479\) 8.88690 + 3.95670i 0.406053 + 0.180786i 0.599591 0.800306i \(-0.295330\pi\)
−0.193539 + 0.981093i \(0.561996\pi\)
\(480\) −1.18305 3.64105i −0.0539986 0.166190i
\(481\) 0.565015 + 1.73894i 0.0257625 + 0.0792887i
\(482\) −54.3805 24.2118i −2.47697 1.10282i
\(483\) −22.8042 4.84719i −1.03763 0.220555i
\(484\) −61.7335 + 13.1219i −2.80607 + 0.596449i
\(485\) 9.89226 4.40432i 0.449184 0.199990i
\(486\) −34.9850 38.8548i −1.58695 1.76249i
\(487\) 1.81720 + 17.2895i 0.0823454 + 0.783464i 0.955295 + 0.295654i \(0.0955375\pi\)
−0.872950 + 0.487810i \(0.837796\pi\)
\(488\) 10.1008 7.33866i 0.457242 0.332206i
\(489\) −3.27317 + 31.1422i −0.148018 + 1.40830i
\(490\) −1.41421 2.44949i −0.0638877 0.110657i
\(491\) −2.20711 + 3.82282i −0.0996053 + 0.172522i −0.911521 0.411253i \(-0.865091\pi\)
0.811916 + 0.583774i \(0.198425\pi\)
\(492\) 70.9257 + 51.5306i 3.19758 + 2.32318i
\(493\) 0.134502 0.149380i 0.00605767 0.00672772i
\(494\) −2.16312 + 6.65740i −0.0973233 + 0.299530i
\(495\) −14.8284 −0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 7.33233 22.5666i 0.328570 1.01123i
\(499\) 26.9079 29.8842i 1.20456 1.33780i 0.278498 0.960437i \(-0.410163\pi\)
0.926065 0.377365i \(-0.123170\pi\)
\(500\) 27.8754 + 20.2526i 1.24662 + 0.905725i
\(501\) −10.3284 + 17.8894i −0.461440 + 0.799238i
\(502\) 4.32843 + 7.49706i 0.193187 + 0.334610i
\(503\) −2.44437 + 23.2567i −0.108989 + 1.03696i 0.794181 + 0.607681i \(0.207900\pi\)
−0.903170 + 0.429282i \(0.858766\pi\)
\(504\) 24.3855 17.7171i 1.08622 0.789182i
\(505\) −0.886953 8.43880i −0.0394689 0.375522i
\(506\) −33.8764 37.6235i −1.50599 1.67257i
\(507\) 21.2981 9.48254i 0.945883 0.421134i
\(508\) 40.8161 8.67572i 1.81092 0.384923i
\(509\) −6.65042 1.41359i −0.294774 0.0626563i 0.0581506 0.998308i \(-0.481480\pi\)
−0.352925 + 0.935652i \(0.614813\pi\)
\(510\) −0.913545 0.406737i −0.0404525 0.0180106i
\(511\) 2.85613 + 8.79027i 0.126348 + 0.388859i
\(512\) 9.65451 + 29.7135i 0.426673 + 1.31316i
\(513\) 0.600066 + 0.267167i 0.0264936 + 0.0117957i
\(514\) −0.740809 0.157464i −0.0326757 0.00694543i
\(515\) 11.8073 2.50972i 0.520291 0.110591i
\(516\) −75.1435 + 33.4561i −3.30801 + 1.47282i
\(517\) 5.81226 + 6.45517i 0.255623 + 0.283898i
\(518\) 0.609237 + 5.79650i 0.0267683 + 0.254684i
\(519\) −27.9567 + 20.3117i −1.22716 + 0.891585i
\(520\) 0.843656 8.02685i 0.0369968 0.352001i
\(521\) −15.2279 26.3755i −0.667147 1.15553i −0.978698 0.205304i \(-0.934182\pi\)
0.311551 0.950229i \(-0.399152\pi\)
\(522\) −4.00000 + 6.92820i −0.175075 + 0.303239i
\(523\) 6.47214 + 4.70228i 0.283007 + 0.205616i 0.720228 0.693738i \(-0.244037\pi\)
−0.437221 + 0.899354i \(0.644037\pi\)
\(524\) −12.1870 + 13.5350i −0.532392 + 0.591281i
\(525\) 7.20433 22.1727i 0.314423 0.967694i
\(526\) 1.65685 0.0722423
\(527\) 0 0
\(528\) 37.9706 1.65246
\(529\) −2.16312 + 6.65740i −0.0940487 + 0.289452i
\(530\) −0.277163 + 0.307821i −0.0120392 + 0.0133709i
\(531\) 23.0451 + 16.7432i 1.00007 + 0.726594i
\(532\) −7.32843 + 12.6932i −0.317728 + 0.550320i
\(533\) −8.67157 15.0196i −0.375608 0.650571i
\(534\) 7.60649 72.3709i 0.329165 3.13180i
\(535\) −7.75506 + 5.63438i −0.335281 + 0.243596i
\(536\) −2.41901 23.0154i −0.104485 0.994112i
\(537\) 10.9160 + 12.1234i 0.471060 + 0.523165i
\(538\) 70.1974 31.2539i 3.02642 1.34745i
\(539\) −6.00792 + 1.27702i −0.258779 + 0.0550052i
\(540\) −1.55113 0.329704i −0.0667501 0.0141882i
\(541\) 23.0983 + 10.2840i 0.993075 + 0.442145i 0.837949 0.545749i \(-0.183755\pi\)
0.155126 + 0.987895i \(0.450422\pi\)
\(542\) 17.3928 + 53.5295i 0.747085 + 2.29929i
\(543\) 7.69437 + 23.6808i 0.330197 + 1.01624i
\(544\) −0.248556 0.110664i −0.0106567 0.00474468i
\(545\) 5.05856 + 1.07523i 0.216685 + 0.0460578i
\(546\) −25.1657 + 5.34914i −1.07699 + 0.228922i
\(547\) 5.23272 2.32976i 0.223735 0.0996132i −0.291808 0.956477i \(-0.594257\pi\)
0.515543 + 0.856864i \(0.327590\pi\)
\(548\) −19.1752 21.2962i −0.819123 0.909728i
\(549\) −0.836228 7.95618i −0.0356893 0.339561i
\(550\) 40.9584 29.7580i 1.74647 1.26889i
\(551\) 0.194200 1.84769i 0.00827319 0.0787141i
\(552\) 21.3137 + 36.9164i 0.907172 + 1.57127i
\(553\) 18.3995 31.8689i 0.782426 1.35520i
\(554\) −27.6216 20.0682i −1.17353 0.852618i
\(555\) −1.61542 + 1.79411i −0.0685709 + 0.0761557i
\(556\) 0 0
\(557\) 44.4853 1.88490 0.942451 0.334344i \(-0.108515\pi\)
0.942451 + 0.334344i \(0.108515\pi\)
\(558\) 0 0
\(559\) 16.2721 0.688236
\(560\) 2.23810 6.88816i 0.0945769 0.291078i
\(561\) −1.45307 + 1.61379i −0.0613485 + 0.0681344i
\(562\) 3.90628 + 2.83808i 0.164776 + 0.119717i
\(563\) −2.37868 + 4.11999i −0.100249 + 0.173637i −0.911787 0.410663i \(-0.865297\pi\)
0.811538 + 0.584300i \(0.198631\pi\)
\(564\) −7.65685 13.2621i −0.322412 0.558433i
\(565\) −0.558511 + 5.31388i −0.0234967 + 0.223556i
\(566\) −4.57649 + 3.32502i −0.192364 + 0.139761i
\(567\) 2.39365 + 22.7740i 0.100524 + 0.956420i
\(568\) 41.5615 + 46.1587i 1.74388 + 1.93678i
\(569\) 13.8330 6.15886i 0.579911 0.258193i −0.0957502 0.995405i \(-0.530525\pi\)
0.675661 + 0.737212i \(0.263858\pi\)
\(570\) −9.04067 + 1.92165i −0.378672 + 0.0804892i
\(571\) 40.0057 + 8.50348i 1.67419 + 0.355860i 0.944650 0.328080i \(-0.106402\pi\)
0.729538 + 0.683940i \(0.239735\pi\)
\(572\) −33.5257 14.9266i −1.40178 0.624113i
\(573\) 0.821013 + 2.52682i 0.0342983 + 0.105559i
\(574\) −17.0838 52.5785i −0.713063 2.19458i
\(575\) 14.6167 + 6.50779i 0.609560 + 0.271393i
\(576\) 27.1915 + 5.77973i 1.13298 + 0.240822i
\(577\) 33.2282 7.06288i 1.38331 0.294031i 0.544639 0.838671i \(-0.316667\pi\)
0.838670 + 0.544639i \(0.183333\pi\)
\(578\) 37.4285 16.6642i 1.55682 0.693141i
\(579\) 34.1535 + 37.9313i 1.41937 + 1.57637i
\(580\) 0.468840 + 4.46071i 0.0194675 + 0.185221i
\(581\) −7.95136 + 5.77700i −0.329878 + 0.239671i
\(582\) −6.59707 + 62.7670i −0.273457 + 2.60177i
\(583\) 0.449747 + 0.778985i 0.0186266 + 0.0322623i
\(584\) 8.44975 14.6354i 0.349653 0.605617i
\(585\) −4.18389 3.03977i −0.172983 0.125679i
\(586\) 40.0609 44.4921i 1.65490 1.83795i
\(587\) −6.28638 + 19.3475i −0.259467 + 0.798556i 0.733450 + 0.679743i \(0.237909\pi\)
−0.992917 + 0.118813i \(0.962091\pi\)
\(588\) 10.8284 0.446557
\(589\) 0 0
\(590\) 24.3137 1.00098
\(591\) −2.60013 + 8.00239i −0.106955 + 0.329174i
\(592\) 2.00739 2.22943i 0.0825033 0.0916292i
\(593\) −17.2432 12.5279i −0.708091 0.514459i 0.174466 0.984663i \(-0.444180\pi\)
−0.882557 + 0.470205i \(0.844180\pi\)
\(594\) −2.62132 + 4.54026i −0.107554 + 0.186289i
\(595\) 0.207107 + 0.358719i 0.00849055 + 0.0147061i
\(596\) −0.400180 + 3.80745i −0.0163920 + 0.155959i
\(597\) 30.4412 22.1168i 1.24588 0.905182i
\(598\) −1.84564 17.5601i −0.0754740 0.718087i
\(599\) 23.3523 + 25.9354i 0.954150 + 1.05969i 0.998159 + 0.0606597i \(0.0193204\pi\)
−0.0440086 + 0.999031i \(0.514013\pi\)
\(600\) −38.9421 + 17.3381i −1.58980 + 0.707826i
\(601\) 22.9721 4.88286i 0.937050 0.199176i 0.286016 0.958225i \(-0.407669\pi\)
0.651034 + 0.759049i \(0.274336\pi\)
\(602\) 50.7366 + 10.7844i 2.06787 + 0.439539i
\(603\) −13.5464 6.03126i −0.551654 0.245612i
\(604\) −20.4830 63.0401i −0.833440 2.56506i
\(605\) 5.09423 + 15.6784i 0.207110 + 0.637419i
\(606\) 45.1802 + 20.1155i 1.83532 + 0.817136i
\(607\) 4.31775 + 0.917767i 0.175252 + 0.0372510i 0.294702 0.955589i \(-0.404780\pi\)
−0.119450 + 0.992840i \(0.538113\pi\)
\(608\) −2.45977 + 0.522839i −0.0997567 + 0.0212039i
\(609\) 6.23808 2.77737i 0.252780 0.112545i
\(610\) −4.56911 5.07451i −0.184998 0.205461i
\(611\) 0.316662 + 3.01284i 0.0128108 + 0.121887i
\(612\) 1.50304 1.09203i 0.0607569 0.0441425i
\(613\) 1.07808 10.2572i 0.0435431 0.414285i −0.950939 0.309378i \(-0.899879\pi\)
0.994482 0.104906i \(-0.0334543\pi\)
\(614\) −3.32843 5.76500i −0.134324 0.232657i
\(615\) 11.4497 19.8315i 0.461698 0.799685i
\(616\) −45.1998 32.8396i −1.82115 1.32315i
\(617\) 15.5802 17.3036i 0.627236 0.696616i −0.342847 0.939391i \(-0.611391\pi\)
0.970083 + 0.242775i \(0.0780578\pi\)
\(618\) −21.7410 + 66.9119i −0.874551 + 2.69159i
\(619\) −31.6569 −1.27240 −0.636198 0.771526i \(-0.719494\pi\)
−0.636198 + 0.771526i \(0.719494\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 8.44040 25.9769i 0.338429 1.04158i
\(623\) −20.1690 + 22.4000i −0.808055 + 0.897436i
\(624\) 10.7135 + 7.78383i 0.428884 + 0.311603i
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 4.62132 + 8.00436i 0.184705 + 0.319919i
\(627\) −2.09800 + 19.9611i −0.0837860 + 0.797170i
\(628\) −45.9275 + 33.3683i −1.83271 + 1.33154i
\(629\) 0.0179342 + 0.170633i 0.000715085 + 0.00680358i
\(630\) −11.0308 12.2510i −0.439478 0.488090i
\(631\) −29.2446 + 13.0205i −1.16421 + 0.518339i −0.895578 0.444904i \(-0.853238\pi\)
−0.268631 + 0.963243i \(0.586571\pi\)
\(632\) −65.8139 + 13.9892i −2.61794 + 0.556460i
\(633\) 17.9135 + 3.80763i 0.711998 + 0.151340i
\(634\) 4.78939 + 2.13237i 0.190211 + 0.0846874i
\(635\) −3.36813 10.3660i −0.133660 0.411364i
\(636\) −0.490035 1.50817i −0.0194312 0.0598029i
\(637\) −1.95694 0.871285i −0.0775367 0.0345216i
\(638\) 14.5044 + 3.08300i 0.574234 + 0.122057i
\(639\) 38.9293 8.27468i 1.54002 0.327341i
\(640\) 18.7792 8.36102i 0.742311 0.330498i
\(641\) 13.3629 + 14.8410i 0.527803 + 0.586185i 0.946808 0.321799i \(-0.104288\pi\)
−0.419005 + 0.907984i \(0.637621\pi\)
\(642\) −5.84001 55.5640i −0.230487 2.19294i
\(643\) −10.2634 + 7.45682i −0.404750 + 0.294068i −0.771473 0.636262i \(-0.780480\pi\)
0.366723 + 0.930330i \(0.380480\pi\)
\(644\) 3.86448 36.7680i 0.152282 1.44886i
\(645\) 10.7426 + 18.6068i 0.422991 + 0.732642i
\(646\) −0.328427 + 0.568852i −0.0129218 + 0.0223812i
\(647\) 18.3536 + 13.3347i 0.721554 + 0.524240i 0.886880 0.461999i \(-0.152868\pi\)
−0.165326 + 0.986239i \(0.552868\pi\)
\(648\) 28.0165 31.1155i 1.10059 1.22233i
\(649\) 16.3158 50.2148i 0.640451 1.97110i
\(650\) 17.6569 0.692559
\(651\) 0 0
\(652\) −49.6569 −1.94471
\(653\) 6.84230 21.0584i 0.267760 0.824080i −0.723285 0.690550i \(-0.757369\pi\)
0.991045 0.133530i \(-0.0426313\pi\)
\(654\) −20.1690 + 22.4000i −0.788671 + 0.875908i
\(655\) 3.84878 + 2.79631i 0.150384 + 0.109261i
\(656\) −14.2279 + 24.6435i −0.555507 + 0.962166i
\(657\) −5.41421 9.37769i −0.211229 0.365859i
\(658\) −1.00942 + 9.60395i −0.0393511 + 0.374401i
\(659\) −7.81256 + 5.67616i −0.304334 + 0.221112i −0.729462 0.684022i \(-0.760229\pi\)
0.425127 + 0.905134i \(0.360229\pi\)
\(660\) −5.06501 48.1904i −0.197155 1.87581i
\(661\) 22.1764 + 24.6294i 0.862563 + 0.957973i 0.999468 0.0326112i \(-0.0103823\pi\)
−0.136905 + 0.990584i \(0.543716\pi\)
\(662\) −1.67035 + 0.743688i −0.0649200 + 0.0289043i
\(663\) −0.740809 + 0.157464i −0.0287706 + 0.00611539i
\(664\) 17.5779 + 3.73629i 0.682153 + 0.144996i
\(665\) 3.49744 + 1.55716i 0.135625 + 0.0603841i
\(666\) −2.11010 6.49422i −0.0817647 0.251646i
\(667\) 1.44814 + 4.45693i 0.0560723 + 0.172573i
\(668\) −29.9253 13.3236i −1.15785 0.515506i
\(669\) 4.08041 + 0.867319i 0.157758 + 0.0335325i
\(670\) −12.3803 + 2.63151i −0.478292 + 0.101664i
\(671\) −13.5464 + 6.03126i −0.522955 + 0.232834i
\(672\) −6.18453 6.86862i −0.238574 0.264963i
\(673\) −2.15923 20.5437i −0.0832322 0.791901i −0.953919 0.300064i \(-0.902992\pi\)
0.870687 0.491838i \(-0.163675\pi\)
\(674\) −26.0035 + 18.8927i −1.00162 + 0.727719i
\(675\) 0.173188 1.64778i 0.00666603 0.0634230i
\(676\) 18.4853 + 32.0174i 0.710972 + 1.23144i
\(677\) −20.2990 + 35.1589i −0.780154 + 1.35127i 0.151698 + 0.988427i \(0.451526\pi\)
−0.931852 + 0.362839i \(0.881808\pi\)
\(678\) −25.1945 18.3049i −0.967590 0.702995i
\(679\) 17.4925 19.4274i 0.671301 0.745555i
\(680\) 0.234037 0.720292i 0.00897491 0.0276219i
\(681\) 37.6274 1.44189
\(682\) 0 0
\(683\) −46.6274 −1.78415 −0.892074 0.451889i \(-0.850750\pi\)
−0.892074 + 0.451889i \(0.850750\pi\)
\(684\) 5.30631 16.3311i 0.202892 0.624437i
\(685\) −5.00863 + 5.56265i −0.191370 + 0.212538i
\(686\) −38.5314 27.9947i −1.47114 1.06884i
\(687\) 13.8640 24.0131i 0.528943 0.916156i
\(688\) −13.3492 23.1216i −0.508935 0.881501i
\(689\) −0.0327915 + 0.311990i −0.00124926 + 0.0118859i
\(690\) 18.8612 13.7035i 0.718033 0.521682i
\(691\) −1.47083 13.9940i −0.0559529 0.532356i −0.986216 0.165463i \(-0.947088\pi\)
0.930263 0.366893i \(-0.119579\pi\)
\(692\) −36.6677 40.7236i −1.39390 1.54808i
\(693\) −32.7040 + 14.5608i −1.24232 + 0.553118i
\(694\) 53.2659 11.3220i 2.02194 0.429777i
\(695\) 0 0
\(696\) −11.4059 5.07822i −0.432338 0.192489i
\(697\) −0.502900 1.54777i −0.0190487 0.0586258i
\(698\) −26.1952 80.6206i −0.991504 3.05154i
\(699\) 32.7040 + 14.5608i 1.23698 + 0.550739i
\(700\) 36.1627 + 7.68661i 1.36682 + 0.290527i
\(701\) −3.40912 + 0.724631i −0.128761 + 0.0273689i −0.271841 0.962342i \(-0.587633\pi\)
0.143081 + 0.989711i \(0.454299\pi\)
\(702\) −1.67035 + 0.743688i −0.0630433 + 0.0280687i
\(703\) 1.06110 + 1.17847i 0.0400201 + 0.0444468i
\(704\) −5.38603 51.2446i −0.202994 1.93136i
\(705\) −3.23607 + 2.35114i −0.121877 + 0.0885491i
\(706\) 0.757062 7.20296i 0.0284924 0.271087i
\(707\) −10.2426 17.7408i −0.385214 0.667210i
\(708\) −46.5416 + 80.6125i −1.74914 + 3.02960i
\(709\) 4.29888 + 3.12332i 0.161448 + 0.117299i 0.665576 0.746330i \(-0.268186\pi\)
−0.504128 + 0.863629i \(0.668186\pi\)
\(710\) 22.7307 25.2450i 0.853070 0.947430i
\(711\) −13.3226 + 41.0026i −0.499635 + 1.53772i
\(712\) 55.1127 2.06544
\(713\) 0 0
\(714\) −2.41421 −0.0903497
\(715\) −2.96217 + 9.11662i −0.110779 + 0.340942i
\(716\) −17.3104 + 19.2252i −0.646922 + 0.718479i
\(717\) −24.9169 18.1032i −0.930539 0.676076i
\(718\) 32.4706 56.2407i 1.21179 2.09888i
\(719\) −3.03553 5.25770i −0.113206 0.196079i 0.803855 0.594825i \(-0.202779\pi\)
−0.917061 + 0.398746i \(0.869445\pi\)
\(720\) −0.886953 + 8.43880i −0.0330548 + 0.314495i
\(721\) 23.5765 17.1293i 0.878034 0.637929i
\(722\) −4.16013 39.5810i −0.154824 1.47305i
\(723\) −39.8313 44.2371i −1.48134 1.64520i
\(724\) −36.0716 + 16.0601i −1.34059 + 0.596869i
\(725\) −4.58388 + 0.974335i −0.170241 + 0.0361859i
\(726\) −93.9836 19.9768i −3.48806 0.741410i
\(727\) −42.7910 19.0518i −1.58703 0.706592i −0.591980 0.805953i \(-0.701654\pi\)
−0.995052 + 0.0993605i \(0.968320\pi\)
\(728\) −6.02128 18.5316i −0.223164 0.686827i
\(729\) −7.36339 22.6622i −0.272718 0.839340i
\(730\) −8.44357 3.75932i −0.312511 0.139139i
\(731\) 1.49355 + 0.317463i 0.0552408 + 0.0117418i
\(732\) 25.5709 5.43526i 0.945126 0.200893i
\(733\) −27.0660 + 12.0506i −0.999705 + 0.445097i −0.840303 0.542116i \(-0.817623\pi\)
−0.159402 + 0.987214i \(0.550957\pi\)
\(734\) −29.4220 32.6765i −1.08599 1.20611i
\(735\) −0.295651 2.81293i −0.0109053 0.103757i
\(736\) 5.13171 3.72841i 0.189157 0.137431i
\(737\) −2.87299 + 27.3347i −0.105828 + 1.00689i
\(738\) 32.3848 + 56.0921i 1.19210 + 2.06478i
\(739\) 3.93503 6.81567i 0.144752 0.250718i −0.784528 0.620093i \(-0.787095\pi\)
0.929281 + 0.369375i \(0.120428\pi\)
\(740\) −3.09726 2.25029i −0.113858 0.0827224i
\(741\) −4.68391 + 5.20201i −0.172068 + 0.191101i
\(742\) −0.309017 + 0.951057i −0.0113444 + 0.0349144i
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) −7.46033 + 22.9605i −0.273142 + 0.840645i
\(747\) 7.70485 8.55710i 0.281906 0.313088i
\(748\) −2.78597 2.02413i −0.101865 0.0740094i
\(749\) −11.5711 + 20.0417i −0.422798 + 0.732307i
\(750\) 26.2279 + 45.4281i 0.957708 + 1.65880i
\(751\) 0.129891 1.23583i 0.00473980 0.0450962i −0.991896 0.127050i \(-0.959449\pi\)
0.996636 + 0.0819535i \(0.0261159\pi\)
\(752\) 4.02127 2.92162i 0.146641 0.106541i
\(753\) 0.904888 + 8.60943i 0.0329759 + 0.313745i
\(754\) 3.46046 + 3.84323i 0.126022 + 0.139962i
\(755\) −15.8169 + 7.04212i −0.575634 + 0.256289i
\(756\) −3.74477 + 0.795975i −0.136196 + 0.0289493i
\(757\) −33.8995 7.20557i −1.23210 0.261891i −0.454555 0.890719i \(-0.650202\pi\)
−0.777544 + 0.628828i \(0.783535\pi\)
\(758\) 64.8079 + 28.8544i 2.35393 + 1.04804i
\(759\) −15.6447 48.1495i −0.567868 1.74772i
\(760\) −2.16312 6.65740i −0.0784646 0.241489i
\(761\) −18.6873 8.32014i −0.677416 0.301605i 0.0390399 0.999238i \(-0.487570\pi\)
−0.716456 + 0.697633i \(0.754237\pi\)
\(762\) 62.1387 + 13.2080i 2.25105 + 0.478475i
\(763\) 12.2124 2.59584i 0.442120 0.0939756i
\(764\) −3.84895 + 1.71366i −0.139250 + 0.0619982i
\(765\) −0.324717 0.360634i −0.0117402 0.0130388i
\(766\) 6.28349 + 59.7834i 0.227032 + 2.16006i
\(767\) 14.8974 10.8236i 0.537914 0.390818i
\(768\) −7.56319 + 71.9590i −0.272913 + 2.59660i
\(769\) 13.0563 + 22.6143i 0.470824 + 0.815491i 0.999443 0.0333680i \(-0.0106233\pi\)
−0.528619 + 0.848859i \(0.677290\pi\)
\(770\) −15.2782 + 26.4626i −0.550587 + 0.953645i
\(771\) −0.612717 0.445165i −0.0220664 0.0160322i
\(772\) −54.1602 + 60.1510i −1.94927 + 2.16488i
\(773\) 5.56231 17.1190i 0.200062 0.615728i −0.799818 0.600243i \(-0.795071\pi\)
0.999880 0.0154855i \(-0.00492938\pi\)
\(774\) −60.7696 −2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) −1.80108 + 5.54316i −0.0646135 + 0.198860i
\(778\) −27.6918 + 30.7549i −0.992800 + 1.10262i
\(779\) −12.1689 8.84125i −0.435997 0.316771i
\(780\) 8.44975 14.6354i 0.302549 0.524031i
\(781\) −36.8848 63.8863i −1.31984 2.28603i
\(782\) 0.173188 1.64778i 0.00619321 0.0589244i
\(783\) 0.392601 0.285241i 0.0140304 0.0101937i
\(784\) 0.367388 + 3.49546i 0.0131210 + 0.124838i
\(785\) 9.92215 + 11.0197i 0.354137 + 0.393309i
\(786\) −25.3307 + 11.2780i −0.903517 + 0.402272i
\(787\) −38.7207 + 8.23035i −1.38025 + 0.293380i −0.837463 0.546493i \(-0.815962\pi\)
−0.542782 + 0.839874i \(0.682629\pi\)
\(788\) −13.0516 2.77420i −0.464943 0.0988266i
\(789\) 1.51361 + 0.673903i 0.0538860 + 0.0239916i
\(790\) 11.3715 + 34.9979i 0.404580 + 1.24517i
\(791\) 3.98616 + 12.2681i 0.141732 + 0.436205i
\(792\) 59.7969 + 26.6233i 2.12479 + 0.946017i
\(793\) −5.05856 1.07523i −0.179635 0.0381826i
\(794\) −38.9988 + 8.28945i −1.38402 + 0.294182i
\(795\) −0.378403 + 0.168476i −0.0134206 + 0.00597522i
\(796\) 39.9264 + 44.3427i 1.41515 + 1.57169i
\(797\) 2.34727 + 22.3328i 0.0831447 + 0.791069i 0.954056 + 0.299629i \(0.0968628\pi\)
−0.870911 + 0.491441i \(0.836471\pi\)
\(798\) −18.0522 + 13.1157i −0.639040 + 0.464290i
\(799\) −0.0297144 + 0.282714i −0.00105122 + 0.0100017i
\(800\) 3.17157 + 5.49333i 0.112132 + 0.194218i
\(801\) 17.6569 30.5826i 0.623874 1.08058i
\(802\) −41.3510 30.0433i −1.46016 1.06087i
\(803\) −13.4302 + 14.9157i −0.473940 + 0.526364i
\(804\) 14.9737 46.0842i 0.528081 1.62527i
\(805\) −9.65685 −0.340359
\(806\) 0 0
\(807\) 76.8406 2.70492
\(808\) −11.5745 + 35.6226i −0.407189 + 1.25320i
\(809\) −30.7603 + 34.1628i −1.08147 + 1.20110i −0.103011 + 0.994680i \(0.532848\pi\)
−0.978464 + 0.206419i \(0.933819\pi\)
\(810\) −18.5261 13.4600i −0.650940 0.472936i
\(811\) −5.86396 + 10.1567i −0.205912 + 0.356649i −0.950423 0.310961i \(-0.899349\pi\)
0.744511 + 0.667610i \(0.232683\pi\)
\(812\) 5.41421 + 9.37769i 0.190002 + 0.329093i
\(813\) −5.88331 + 55.9759i −0.206337 + 1.96316i
\(814\) −10.2396 + 7.43951i −0.358898 + 0.260755i
\(815\) 1.35579 + 12.8995i 0.0474914 + 0.451850i
\(816\) 0.831489 + 0.923462i 0.0291079 + 0.0323276i
\(817\) 12.8926 5.74015i 0.451055 0.200822i
\(818\) 22.0634 4.68973i 0.771430 0.163973i
\(819\) −12.2124 2.59584i −0.426737 0.0907058i
\(820\) 33.1742 + 14.7701i 1.15849 + 0.515795i
\(821\) −2.62210 8.06998i −0.0915118 0.281644i 0.894817 0.446433i \(-0.147306\pi\)
−0.986329 + 0.164789i \(0.947306\pi\)
\(822\) −13.4816 41.4921i −0.470225 1.44720i
\(823\) −5.67604 2.52714i −0.197854 0.0880905i 0.305418 0.952219i \(-0.401204\pi\)
−0.503272 + 0.864128i \(0.667871\pi\)
\(824\) −52.1199 11.0784i −1.81568 0.385935i
\(825\) 49.5211 10.5260i 1.72410 0.366469i
\(826\) 53.6237 23.8748i 1.86581 0.830711i
\(827\) 11.4425 + 12.7082i 0.397894 + 0.441906i 0.908485 0.417918i \(-0.137240\pi\)
−0.510591 + 0.859824i \(0.670573\pi\)
\(828\) 4.52752 + 43.0764i 0.157342 + 1.49701i
\(829\) 37.5598 27.2888i 1.30450 0.947778i 0.304515 0.952507i \(-0.401506\pi\)
0.999989 + 0.00472973i \(0.00150553\pi\)
\(830\) 1.02735 9.77459i 0.0356599 0.339281i
\(831\) −17.0711 29.5680i −0.592189 1.02570i
\(832\) 8.98528 15.5630i 0.311509 0.539549i
\(833\) −0.162621 0.118151i −0.00563447 0.00409368i
\(834\) 0 0
\(835\) −2.64406 + 8.13757i −0.0915014 + 0.281612i
\(836\) −31.8284 −1.10081
\(837\) 0 0
\(838\) −67.5980 −2.33513
\(839\) 9.46439 29.1284i 0.326747 1.00562i −0.643899 0.765111i \(-0.722684\pi\)
0.970646 0.240513i \(-0.0773158\pi\)
\(840\) 17.2153 19.1196i 0.593986 0.659688i
\(841\) 22.3510 + 16.2390i 0.770726 + 0.559965i
\(842\) −3.44975 + 5.97514i −0.118886 + 0.205917i
\(843\) 2.41421 + 4.18154i 0.0831499 + 0.144020i
\(844\) −3.03568 + 28.8825i −0.104492 + 0.994178i
\(845\) 7.81256 5.67616i 0.268760 0.195266i
\(846\) −1.18260 11.2517i −0.0406588 0.386842i
\(847\) 26.6307 + 29.5764i 0.915042 + 1.01626i
\(848\) 0.470219 0.209355i 0.0161474 0.00718928i
\(849\) −5.53324 + 1.17613i −0.189900 + 0.0403645i
\(850\) 1.62065 + 0.344479i 0.0555878 + 0.0118155i
\(851\) −3.65418 1.62695i −0.125264 0.0557710i
\(852\) 40.1888 + 123.689i 1.37685 + 4.23750i
\(853\) −10.0385 30.8953i −0.343712 1.05784i −0.962270 0.272097i \(-0.912283\pi\)
0.618558 0.785739i \(-0.287717\pi\)
\(854\) −15.0601 6.70517i −0.515344 0.229446i
\(855\) −4.38727 0.932542i −0.150041 0.0318923i
\(856\) 41.3891 8.79751i 1.41465 0.300693i
\(857\) −2.29731 + 1.02283i −0.0784746 + 0.0349391i −0.445599 0.895233i \(-0.647009\pi\)
0.367124 + 0.930172i \(0.380342\pi\)
\(858\) −37.3844 41.5195i −1.27628 1.41745i
\(859\) 1.31865 + 12.5461i 0.0449918 + 0.428068i 0.993713 + 0.111955i \(0.0357112\pi\)
−0.948722 + 0.316113i \(0.897622\pi\)
\(860\) −27.5641 + 20.0265i −0.939927 + 0.682897i
\(861\) 5.77878 54.9814i 0.196940 1.87376i
\(862\) −30.4706 52.7766i −1.03783 1.79758i
\(863\) 19.6924 34.1082i 0.670337 1.16106i −0.307472 0.951557i \(-0.599483\pi\)
0.977809 0.209500i \(-0.0671836\pi\)
\(864\) −0.531406 0.386089i −0.0180788 0.0131350i
\(865\) −9.57774 + 10.6372i −0.325653 + 0.361674i
\(866\) 26.1952 80.6206i 0.890150 2.73960i
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) −2.11010 + 6.49422i −0.0715391 + 0.220175i
\(871\) −6.41414 + 7.12363i −0.217335 + 0.241375i
\(872\) −18.4686 13.4182i −0.625425 0.454398i
\(873\) −15.3137 + 26.5241i −0.518291 + 0.897705i
\(874\) −7.65685 13.2621i −0.258997 0.448596i
\(875\) 2.27119 21.6089i 0.0767801 0.730514i
\(876\) 28.6269 20.7986i 0.967213 0.702721i
\(877\) −5.03530 47.9077i −0.170030 1.61773i −0.663645 0.748047i \(-0.730992\pi\)
0.493615 0.869680i \(-0.335675\pi\)
\(878\) 19.4999 + 21.6568i 0.658090 + 0.730883i
\(879\) 54.6940 24.3513i 1.84478 0.821351i
\(880\) 15.3842 3.27002i 0.518602 0.110232i
\(881\) −33.5639 7.13422i −1.13080 0.240358i −0.395738 0.918363i \(-0.629511\pi\)
−0.735057 + 0.678005i \(0.762845\pi\)
\(882\) 7.30836 + 3.25389i 0.246085 + 0.109564i
\(883\) 8.12229 + 24.9978i 0.273337 + 0.841244i 0.989655 + 0.143470i \(0.0458260\pi\)
−0.716318 + 0.697774i \(0.754174\pi\)
\(884\) −0.371133 1.14223i −0.0124825 0.0384173i
\(885\) 22.2117 + 9.88928i 0.746637 + 0.332424i
\(886\) −31.2719 6.64705i −1.05060 0.223312i
\(887\) −52.1606 + 11.0871i −1.75138 + 0.372268i −0.968327 0.249685i \(-0.919673\pi\)
−0.783055 + 0.621953i \(0.786339\pi\)
\(888\) 9.73552 4.33453i 0.326703 0.145457i
\(889\) −17.6073 19.5549i −0.590530 0.655850i
\(890\) −3.15071 29.9770i −0.105612 1.00483i
\(891\) −40.2307 + 29.2293i −1.34778 + 0.979220i
\(892\) −0.691479 + 6.57898i −0.0231524 + 0.220281i
\(893\) 1.31371 + 2.27541i 0.0439616 + 0.0761437i
\(894\) −2.91421 + 5.04757i −0.0974659 + 0.168816i
\(895\) 5.46682 + 3.97188i 0.182736 + 0.132765i
\(896\) 33.2072 36.8804i 1.10938 1.23209i
\(897\) 5.45627 16.7927i 0.182179 0.560691i
\(898\) −11.1716 −0.372800
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) −0.00909661 + 0.0279965i −0.000303052 + 0.000932698i
\(902\) 80.3317 89.2174i 2.67475 2.97061i
\(903\) 41.9638 + 30.4885i 1.39647 + 1.01459i
\(904\) 11.7929 20.4259i 0.392226 0.679355i
\(905\) 5.15685 + 8.93193i 0.171420 + 0.296908i
\(906\) 10.5481 100.359i 0.350439 3.33420i
\(907\) −44.7497 + 32.5126i −1.48589 + 1.07956i −0.510292 + 0.860001i \(0.670463\pi\)
−0.975599 + 0.219561i \(0.929537\pi\)
\(908\) 6.23711 + 59.3422i 0.206986 + 1.96934i
\(909\) 16.0591 + 17.8355i 0.532648 + 0.591565i
\(910\) −9.73552 + 4.33453i −0.322729 + 0.143688i
\(911\) −47.9700 + 10.1963i −1.58932 + 0.337819i −0.915888 0.401434i \(-0.868512\pi\)
−0.673427 + 0.739253i \(0.735179\pi\)
\(912\) 11.2343 + 2.38792i 0.372005 + 0.0790721i
\(913\) −19.4979 8.68104i −0.645287 0.287300i
\(914\) −23.2111 71.4364i −0.767755 2.36291i
\(915\) −2.11010 6.49422i −0.0697578 0.214692i
\(916\) 40.1691 + 17.8844i 1.32722 + 0.590919i
\(917\) 11.2343 + 2.38792i 0.370989 + 0.0788562i
\(918\) −0.167824 + 0.0356720i −0.00553900 + 0.00117735i
\(919\) −13.7950 + 6.14193i −0.455055 + 0.202604i −0.621447 0.783456i \(-0.713455\pi\)
0.166392 + 0.986060i \(0.446788\pi\)
\(920\) 11.8147 + 13.1216i 0.389520 + 0.432606i
\(921\) −0.695831 6.62039i −0.0229284 0.218149i
\(922\) 51.0592 37.0967i 1.68155 1.22172i
\(923\) 2.68930 25.5870i 0.0885194 0.842206i
\(924\) −58.4914 101.310i −1.92423 3.33286i
\(925\) 2.00000 3.46410i 0.0657596 0.113899i
\(926\) 48.7710 + 35.4342i 1.60271 + 1.16444i
\(927\) −22.8455 + 25.3726i −0.750346 + 0.833344i
\(928\) −0.574112 + 1.76693i −0.0188461 + 0.0580025i
\(929\) 24.4853 0.803336 0.401668 0.915785i \(-0.368431\pi\)
0.401668 + 0.915785i \(0.368431\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) −17.5428 + 53.9911i −0.574632 + 1.76854i
\(933\) 18.2764 20.2980i 0.598344 0.664528i
\(934\) −15.6251 11.3523i −0.511269 0.371459i
\(935\) −0.449747 + 0.778985i −0.0147083 + 0.0254755i
\(936\) 11.4142 + 19.7700i 0.373085 + 0.646203i
\(937\) −4.00487 + 38.1038i −0.130834 + 1.24480i 0.710272 + 0.703927i \(0.248572\pi\)
−0.841106 + 0.540871i \(0.818095\pi\)
\(938\) −24.7206 + 17.9606i −0.807156 + 0.586433i
\(939\) 0.966119 + 9.19201i 0.0315281 + 0.299970i
\(940\) −4.24439 4.71388i −0.138437 0.153750i
\(941\) −31.9741 + 14.2358i −1.04233 + 0.464073i −0.855219 0.518266i \(-0.826578\pi\)
−0.187106 + 0.982340i \(0.559911\pi\)
\(942\) −84.5378 + 17.9691i −2.75439 + 0.585464i
\(943\) 37.1120 + 7.88840i 1.20853 + 0.256882i
\(944\) −27.6011 12.2888i −0.898340 0.399967i
\(945\) 0.309017 + 0.951057i 0.0100523 + 0.0309379i
\(946\) 34.8076 + 107.127i 1.13169 + 3.48299i
\(947\) 35.5365 + 15.8218i 1.15478 + 0.514141i 0.892587 0.450875i \(-0.148888\pi\)
0.262192 + 0.965016i \(0.415555\pi\)
\(948\) −137.804 29.2911i −4.47565 0.951330i
\(949\) −6.84703 + 1.45538i −0.222264 + 0.0472437i
\(950\) 13.9898 6.22865i 0.453888 0.202084i
\(951\) 3.50801 + 3.89604i 0.113755 + 0.126338i
\(952\) −0.191123 1.81841i −0.00619432 0.0589350i
\(953\) −16.5729 + 12.0409i −0.536850 + 0.390045i −0.822914 0.568166i \(-0.807653\pi\)
0.286064 + 0.958211i \(0.407653\pi\)
\(954\) 0.122463 1.16515i 0.00396488 0.0377233i
\(955\) 0.550253 + 0.953065i 0.0178058 + 0.0308405i
\(956\) 24.4203 42.2972i 0.789809 1.36799i
\(957\) 11.9964 + 8.71593i 0.387790 + 0.281746i
\(958\) −15.7147 + 17.4530i −0.507720 + 0.563880i
\(959\) −5.58427 + 17.1866i −0.180325 + 0.554984i
\(960\) 23.7279 0.765815
\(961\) 0 0
\(962\) −4.41421 −0.142320
\(963\) 8.37828 25.7857i 0.269986 0.830933i
\(964\) 63.1639 70.1506i 2.03437 2.25940i
\(965\) 17.1043 + 12.4270i 0.550608 + 0.400040i
\(966\) 28.1421 48.7436i 0.905458 1.56830i
\(967\) 23.2782 + 40.3190i 0.748576 + 1.29657i 0.948505 + 0.316761i \(0.102595\pi\)
−0.199930 + 0.979810i \(0.564071\pi\)
\(968\) 7.60649 72.3709i 0.244482 2.32609i
\(969\) −0.531406 + 0.386089i −0.0170712 + 0.0124030i
\(970\) 2.73260 + 25.9989i 0.0877384 + 0.834775i
\(971\) 39.2770 + 43.6215i 1.26046 + 1.39988i 0.879925 + 0.475112i \(0.157592\pi\)
0.380532 + 0.924768i \(0.375741\pi\)
\(972\) 75.7436 33.7232i 2.42948 1.08167i
\(973\) 0 0
\(974\) −41.0534 8.72617i −1.31544 0.279605i
\(975\) 16.1303 + 7.18169i 0.516584 + 0.229998i
\(976\) 2.62210 + 8.06998i 0.0839313 + 0.258314i
\(977\) 5.09423 + 15.6784i 0.162979 + 0.501598i 0.998882 0.0472800i \(-0.0150553\pi\)
−0.835903 + 0.548878i \(0.815055\pi\)
\(978\) −69.0622 30.7485i −2.20837 0.983228i
\(979\) −64.0255 13.6090i −2.04626 0.434947i
\(980\) 4.38727 0.932542i 0.140146 0.0297890i
\(981\) −13.3628 + 5.94951i −0.426642 + 0.189953i
\(982\) −7.13083 7.91959i −0.227554 0.252724i
\(983\) −5.10523 48.5731i −0.162832 1.54924i −0.705145 0.709064i \(-0.749118\pi\)
0.542313 0.840177i \(-0.317549\pi\)
\(984\) −81.7781 + 59.4153i −2.60699 + 1.89409i
\(985\) −0.364311 + 3.46619i −0.0116079 + 0.110442i
\(986\) 0.242641 + 0.420266i 0.00772725 + 0.0133840i
\(987\) −4.82843 + 8.36308i −0.153691 + 0.266200i
\(988\) −8.98050 6.52471i −0.285708 0.207579i
\(989\) −23.8197 + 26.4545i −0.757422 + 0.841203i
\(990\) 11.0625 34.0469i 0.351589 1.08208i
\(991\) −19.9411 −0.633451 −0.316725 0.948517i \(-0.602583\pi\)
−0.316725 + 0.948517i \(0.602583\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 25.3432 77.9982i 0.803836 2.47395i
\(995\) 10.4289 11.5825i 0.330619 0.367190i
\(996\) 30.4412 + 22.1168i 0.964567 + 0.700799i
\(997\) 23.2990 40.3550i 0.737886 1.27806i −0.215559 0.976491i \(-0.569157\pi\)
0.953445 0.301566i \(-0.0975093\pi\)
\(998\) 48.5416 + 84.0766i 1.53656 + 2.66140i
\(999\) −0.0432971 + 0.411944i −0.00136986 + 0.0130333i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.o.448.1 16
31.2 even 5 31.2.c.a.25.1 yes 4
31.3 odd 30 961.2.d.i.374.2 8
31.4 even 5 inner 961.2.g.o.844.1 16
31.5 even 3 inner 961.2.g.o.846.1 16
31.6 odd 6 961.2.d.i.628.1 8
31.7 even 15 961.2.d.l.531.1 8
31.8 even 5 inner 961.2.g.o.338.2 16
31.9 even 15 inner 961.2.g.o.235.2 16
31.10 even 15 31.2.c.a.5.1 4
31.11 odd 30 961.2.g.r.547.1 16
31.12 odd 30 961.2.a.c.1.1 2
31.13 odd 30 961.2.g.r.816.2 16
31.14 even 15 961.2.d.l.388.2 8
31.15 odd 10 961.2.g.r.732.2 16
31.16 even 5 inner 961.2.g.o.732.2 16
31.17 odd 30 961.2.d.i.388.2 8
31.18 even 15 inner 961.2.g.o.816.2 16
31.19 even 15 961.2.a.a.1.1 2
31.20 even 15 inner 961.2.g.o.547.1 16
31.21 odd 30 961.2.c.a.439.1 4
31.22 odd 30 961.2.g.r.235.2 16
31.23 odd 10 961.2.g.r.338.2 16
31.24 odd 30 961.2.d.i.531.1 8
31.25 even 3 961.2.d.l.628.1 8
31.26 odd 6 961.2.g.r.846.1 16
31.27 odd 10 961.2.g.r.844.1 16
31.28 even 15 961.2.d.l.374.2 8
31.29 odd 10 961.2.c.a.521.1 4
31.30 odd 2 961.2.g.r.448.1 16
93.2 odd 10 279.2.h.c.118.2 4
93.41 odd 30 279.2.h.c.253.2 4
93.50 odd 30 8649.2.a.l.1.2 2
93.74 even 30 8649.2.a.k.1.2 2
124.95 odd 10 496.2.i.h.273.1 4
124.103 odd 30 496.2.i.h.129.1 4
155.2 odd 20 775.2.o.d.149.1 8
155.33 odd 20 775.2.o.d.149.4 8
155.64 even 10 775.2.e.e.676.2 4
155.72 odd 60 775.2.o.d.749.1 8
155.103 odd 60 775.2.o.d.749.4 8
155.134 even 30 775.2.e.e.501.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 31.10 even 15
31.2.c.a.25.1 yes 4 31.2 even 5
279.2.h.c.118.2 4 93.2 odd 10
279.2.h.c.253.2 4 93.41 odd 30
496.2.i.h.129.1 4 124.103 odd 30
496.2.i.h.273.1 4 124.95 odd 10
775.2.e.e.501.2 4 155.134 even 30
775.2.e.e.676.2 4 155.64 even 10
775.2.o.d.149.1 8 155.2 odd 20
775.2.o.d.149.4 8 155.33 odd 20
775.2.o.d.749.1 8 155.72 odd 60
775.2.o.d.749.4 8 155.103 odd 60
961.2.a.a.1.1 2 31.19 even 15
961.2.a.c.1.1 2 31.12 odd 30
961.2.c.a.439.1 4 31.21 odd 30
961.2.c.a.521.1 4 31.29 odd 10
961.2.d.i.374.2 8 31.3 odd 30
961.2.d.i.388.2 8 31.17 odd 30
961.2.d.i.531.1 8 31.24 odd 30
961.2.d.i.628.1 8 31.6 odd 6
961.2.d.l.374.2 8 31.28 even 15
961.2.d.l.388.2 8 31.14 even 15
961.2.d.l.531.1 8 31.7 even 15
961.2.d.l.628.1 8 31.25 even 3
961.2.g.o.235.2 16 31.9 even 15 inner
961.2.g.o.338.2 16 31.8 even 5 inner
961.2.g.o.448.1 16 1.1 even 1 trivial
961.2.g.o.547.1 16 31.20 even 15 inner
961.2.g.o.732.2 16 31.16 even 5 inner
961.2.g.o.816.2 16 31.18 even 15 inner
961.2.g.o.844.1 16 31.4 even 5 inner
961.2.g.o.846.1 16 31.5 even 3 inner
961.2.g.r.235.2 16 31.22 odd 30
961.2.g.r.338.2 16 31.23 odd 10
961.2.g.r.448.1 16 31.30 odd 2
961.2.g.r.547.1 16 31.11 odd 30
961.2.g.r.732.2 16 31.15 odd 10
961.2.g.r.816.2 16 31.13 odd 30
961.2.g.r.844.1 16 31.27 odd 10
961.2.g.r.846.1 16 31.26 odd 6
8649.2.a.k.1.2 2 93.74 even 30
8649.2.a.l.1.2 2 93.50 odd 30