Properties

Label 961.2.g.o.547.1
Level $961$
Weight $2$
Character 961.547
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-2,-4,-8,-24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.26873856000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 8x^{10} - 16x^{8} + 32x^{6} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 547.1
Root \(-0.147826 - 1.40647i\) of defining polynomial
Character \(\chi\) \(=\) 961.547
Dual form 961.2.g.o.448.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.746033 - 2.29605i) q^{2} +(-1.61542 - 1.79411i) q^{3} +(-3.09726 + 2.25029i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-2.91421 + 5.04757i) q^{6} +(-0.252354 - 2.40099i) q^{7} +(3.57117 + 2.59461i) q^{8} +(-0.295651 + 2.81293i) q^{9} +(-1.61542 + 1.79411i) q^{10} +(-4.78939 - 2.13237i) q^{11} +(9.04067 + 1.92165i) q^{12} +(-1.78847 + 0.380151i) q^{13} +(-5.32453 + 2.37063i) q^{14} +(-0.746033 + 2.29605i) q^{15} +(0.927051 - 2.85317i) q^{16} +(-0.156740 + 0.0697850i) q^{17} +(6.67921 - 1.41971i) q^{18} +(-1.55113 - 0.329704i) q^{19} +(3.49744 + 1.55716i) q^{20} +(-3.89998 + 4.33137i) q^{21} +(-1.32300 + 12.5875i) q^{22} +(3.23607 + 2.35114i) q^{23} +(-1.11394 - 10.5985i) q^{24} +(2.00000 - 3.46410i) q^{25} +(2.20711 + 3.82282i) q^{26} +(-0.335106 + 0.243469i) q^{27} +(6.18453 + 6.86862i) q^{28} +(-0.362036 - 1.11423i) q^{29} +5.82843 q^{30} +1.58579 q^{32} +(3.91118 + 12.0374i) q^{33} +(0.277163 + 0.307821i) q^{34} +(-1.95314 + 1.41904i) q^{35} +(-5.41421 - 9.37769i) q^{36} +(-0.500000 + 0.866025i) q^{37} +(0.400180 + 3.80745i) q^{38} +(3.57117 + 2.59461i) q^{39} +(0.461411 - 4.39003i) q^{40} +(6.34689 - 7.04894i) q^{41} +(12.8546 + 5.72322i) q^{42} +(-8.70502 - 1.85031i) q^{43} +(19.6325 - 4.17301i) q^{44} +(2.58390 - 1.15042i) q^{45} +(2.98413 - 9.18421i) q^{46} +(-0.511996 + 1.57576i) q^{47} +(-6.61648 + 2.94585i) q^{48} +(1.14597 - 0.243584i) q^{49} +(-9.44583 - 2.00777i) q^{50} +(0.378403 + 0.168476i) q^{51} +(4.68391 - 5.20201i) q^{52} +(-0.0179342 + 0.170633i) q^{53} +(0.809017 + 0.587785i) q^{54} +(0.548005 + 5.21392i) q^{55} +(5.32843 - 9.22911i) q^{56} +(1.91421 + 3.31552i) q^{57} +(-2.28825 + 1.66251i) q^{58} +(-6.73886 - 7.48426i) q^{59} +(-2.85613 - 8.79027i) q^{60} +2.82843 q^{61} +6.82843 q^{63} +(-3.03715 - 9.34739i) q^{64} +(1.22346 + 1.35879i) q^{65} +(24.7206 - 17.9606i) q^{66} +(2.62132 + 4.54026i) q^{67} +(0.328427 - 0.568852i) q^{68} +(-1.00942 - 9.60395i) q^{69} +(4.71530 + 3.42586i) q^{70} +(1.47083 - 13.9940i) q^{71} +(-8.35428 + 9.27837i) q^{72} +(3.49744 + 1.55716i) q^{73} +(2.36146 + 0.501943i) q^{74} +(-9.44583 + 2.00777i) q^{75} +(5.54620 - 2.46933i) q^{76} +(-3.91118 + 12.0374i) q^{77} +(3.29315 - 10.1353i) q^{78} +(-13.9248 + 6.19974i) q^{79} +(-2.93444 + 0.623735i) q^{80} +(9.27801 + 1.97210i) q^{81} +(-20.9197 - 9.31406i) q^{82} +(2.72408 - 3.02539i) q^{83} +(2.33242 - 22.1915i) q^{84} +(0.138805 + 0.100848i) q^{85} +(2.24582 + 21.3676i) q^{86} +(-1.41421 + 2.44949i) q^{87} +(-11.5711 - 20.0417i) q^{88} +(10.1008 - 7.33866i) q^{89} +(-4.56911 - 5.07451i) q^{90} +(1.36407 + 4.19817i) q^{91} -15.3137 q^{92} +4.00000 q^{94} +(0.490035 + 1.50817i) q^{95} +(-2.56172 - 2.84508i) q^{96} +(-8.76038 + 6.36479i) q^{97} +(-1.41421 - 2.44949i) q^{98} +(7.41421 - 12.8418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 2 q^{3} - 4 q^{4} - 8 q^{5} - 24 q^{6} + 2 q^{7} + 12 q^{8} - 2 q^{10} - 2 q^{11} - 10 q^{12} - 2 q^{13} - 6 q^{14} + 4 q^{15} - 12 q^{16} - 6 q^{17} - 8 q^{18} + 6 q^{19} + 2 q^{20} - 6 q^{21}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.746033 2.29605i −0.527525 1.62356i −0.759268 0.650778i \(-0.774443\pi\)
0.231743 0.972777i \(-0.425557\pi\)
\(3\) −1.61542 1.79411i −0.932666 1.03583i −0.999276 0.0380510i \(-0.987885\pi\)
0.0666102 0.997779i \(-0.478782\pi\)
\(4\) −3.09726 + 2.25029i −1.54863 + 1.12515i
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) −2.91421 + 5.04757i −1.18972 + 2.06066i
\(7\) −0.252354 2.40099i −0.0953809 0.907488i −0.932671 0.360729i \(-0.882528\pi\)
0.837290 0.546759i \(-0.184139\pi\)
\(8\) 3.57117 + 2.59461i 1.26260 + 0.917333i
\(9\) −0.295651 + 2.81293i −0.0985504 + 0.937644i
\(10\) −1.61542 + 1.79411i −0.510842 + 0.567347i
\(11\) −4.78939 2.13237i −1.44406 0.642935i −0.472842 0.881147i \(-0.656772\pi\)
−0.971213 + 0.238212i \(0.923439\pi\)
\(12\) 9.04067 + 1.92165i 2.60982 + 0.554733i
\(13\) −1.78847 + 0.380151i −0.496033 + 0.105435i −0.449134 0.893465i \(-0.648267\pi\)
−0.0468992 + 0.998900i \(0.514934\pi\)
\(14\) −5.32453 + 2.37063i −1.42304 + 0.633579i
\(15\) −0.746033 + 2.29605i −0.192625 + 0.592838i
\(16\) 0.927051 2.85317i 0.231763 0.713292i
\(17\) −0.156740 + 0.0697850i −0.0380149 + 0.0169253i −0.425656 0.904885i \(-0.639957\pi\)
0.387641 + 0.921810i \(0.373290\pi\)
\(18\) 6.67921 1.41971i 1.57430 0.334629i
\(19\) −1.55113 0.329704i −0.355854 0.0756392i 0.0265158 0.999648i \(-0.491559\pi\)
−0.382370 + 0.924009i \(0.624892\pi\)
\(20\) 3.49744 + 1.55716i 0.782052 + 0.348192i
\(21\) −3.89998 + 4.33137i −0.851045 + 0.945181i
\(22\) −1.32300 + 12.5875i −0.282065 + 2.68367i
\(23\) 3.23607 + 2.35114i 0.674767 + 0.490247i 0.871617 0.490187i \(-0.163071\pi\)
−0.196851 + 0.980433i \(0.563071\pi\)
\(24\) −1.11394 10.5985i −0.227383 2.16340i
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 2.20711 + 3.82282i 0.432849 + 0.749717i
\(27\) −0.335106 + 0.243469i −0.0644911 + 0.0468556i
\(28\) 6.18453 + 6.86862i 1.16877 + 1.29805i
\(29\) −0.362036 1.11423i −0.0672284 0.206908i 0.911799 0.410637i \(-0.134694\pi\)
−0.979027 + 0.203729i \(0.934694\pi\)
\(30\) 5.82843 1.06412
\(31\) 0 0
\(32\) 1.58579 0.280330
\(33\) 3.91118 + 12.0374i 0.680850 + 2.09544i
\(34\) 0.277163 + 0.307821i 0.0475331 + 0.0527908i
\(35\) −1.95314 + 1.41904i −0.330141 + 0.239861i
\(36\) −5.41421 9.37769i −0.902369 1.56295i
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0.400180 + 3.80745i 0.0649177 + 0.617651i
\(39\) 3.57117 + 2.59461i 0.571845 + 0.415470i
\(40\) 0.461411 4.39003i 0.0729555 0.694125i
\(41\) 6.34689 7.04894i 0.991218 1.10086i −0.00368202 0.999993i \(-0.501172\pi\)
0.994900 0.100866i \(-0.0321613\pi\)
\(42\) 12.8546 + 5.72322i 1.98350 + 0.883112i
\(43\) −8.70502 1.85031i −1.32750 0.282169i −0.511035 0.859560i \(-0.670738\pi\)
−0.816468 + 0.577390i \(0.804071\pi\)
\(44\) 19.6325 4.17301i 2.95971 0.629105i
\(45\) 2.58390 1.15042i 0.385185 0.171495i
\(46\) 2.98413 9.18421i 0.439986 1.35414i
\(47\) −0.511996 + 1.57576i −0.0746823 + 0.229849i −0.981428 0.191828i \(-0.938558\pi\)
0.906746 + 0.421677i \(0.138558\pi\)
\(48\) −6.61648 + 2.94585i −0.955007 + 0.425196i
\(49\) 1.14597 0.243584i 0.163710 0.0347977i
\(50\) −9.44583 2.00777i −1.33584 0.283942i
\(51\) 0.378403 + 0.168476i 0.0529870 + 0.0235913i
\(52\) 4.68391 5.20201i 0.649542 0.721390i
\(53\) −0.0179342 + 0.170633i −0.00246346 + 0.0234382i −0.995685 0.0928021i \(-0.970418\pi\)
0.993221 + 0.116240i \(0.0370843\pi\)
\(54\) 0.809017 + 0.587785i 0.110093 + 0.0799874i
\(55\) 0.548005 + 5.21392i 0.0738930 + 0.703045i
\(56\) 5.32843 9.22911i 0.712041 1.23329i
\(57\) 1.91421 + 3.31552i 0.253544 + 0.439151i
\(58\) −2.28825 + 1.66251i −0.300461 + 0.218298i
\(59\) −6.73886 7.48426i −0.877325 0.974368i 0.122511 0.992467i \(-0.460905\pi\)
−0.999836 + 0.0180992i \(0.994239\pi\)
\(60\) −2.85613 8.79027i −0.368725 1.13482i
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) 0 0
\(63\) 6.82843 0.860301
\(64\) −3.03715 9.34739i −0.379644 1.16842i
\(65\) 1.22346 + 1.35879i 0.151751 + 0.168537i
\(66\) 24.7206 17.9606i 3.04290 2.21079i
\(67\) 2.62132 + 4.54026i 0.320245 + 0.554681i 0.980539 0.196327i \(-0.0629013\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(68\) 0.328427 0.568852i 0.0398276 0.0689835i
\(69\) −1.00942 9.60395i −0.121519 1.15618i
\(70\) 4.71530 + 3.42586i 0.563586 + 0.409469i
\(71\) 1.47083 13.9940i 0.174555 1.66078i −0.460012 0.887913i \(-0.652155\pi\)
0.634567 0.772868i \(-0.281178\pi\)
\(72\) −8.35428 + 9.27837i −0.984562 + 1.09347i
\(73\) 3.49744 + 1.55716i 0.409345 + 0.182252i 0.601070 0.799197i \(-0.294741\pi\)
−0.191725 + 0.981449i \(0.561408\pi\)
\(74\) 2.36146 + 0.501943i 0.274514 + 0.0583497i
\(75\) −9.44583 + 2.00777i −1.09071 + 0.231838i
\(76\) 5.54620 2.46933i 0.636192 0.283251i
\(77\) −3.91118 + 12.0374i −0.445721 + 1.37179i
\(78\) 3.29315 10.1353i 0.372876 1.14759i
\(79\) −13.9248 + 6.19974i −1.56667 + 0.697525i −0.992617 0.121294i \(-0.961296\pi\)
−0.574051 + 0.818820i \(0.694629\pi\)
\(80\) −2.93444 + 0.623735i −0.328081 + 0.0697357i
\(81\) 9.27801 + 1.97210i 1.03089 + 0.219122i
\(82\) −20.9197 9.31406i −2.31020 1.02857i
\(83\) 2.72408 3.02539i 0.299006 0.332080i −0.574855 0.818255i \(-0.694942\pi\)
0.873861 + 0.486175i \(0.161608\pi\)
\(84\) 2.33242 22.1915i 0.254488 2.42129i
\(85\) 0.138805 + 0.100848i 0.0150556 + 0.0109385i
\(86\) 2.24582 + 21.3676i 0.242173 + 2.30413i
\(87\) −1.41421 + 2.44949i −0.151620 + 0.262613i
\(88\) −11.5711 20.0417i −1.23348 2.13645i
\(89\) 10.1008 7.33866i 1.07068 0.777897i 0.0946482 0.995511i \(-0.469827\pi\)
0.976035 + 0.217614i \(0.0698274\pi\)
\(90\) −4.56911 5.07451i −0.481626 0.534900i
\(91\) 1.36407 + 4.19817i 0.142993 + 0.440087i
\(92\) −15.3137 −1.59656
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0.490035 + 1.50817i 0.0502765 + 0.154735i
\(96\) −2.56172 2.84508i −0.261454 0.290374i
\(97\) −8.76038 + 6.36479i −0.889482 + 0.646246i −0.935743 0.352683i \(-0.885269\pi\)
0.0462609 + 0.998929i \(0.485269\pi\)
\(98\) −1.41421 2.44949i −0.142857 0.247436i
\(99\) 7.41421 12.8418i 0.745157 1.29065i
\(100\) 1.60072 + 15.2298i 0.160072 + 1.52298i
\(101\) −6.86474 4.98752i −0.683067 0.496277i 0.191307 0.981530i \(-0.438727\pi\)
−0.874374 + 0.485253i \(0.838727\pi\)
\(102\) 0.104528 0.994522i 0.0103499 0.0984723i
\(103\) −8.07712 + 8.97055i −0.795862 + 0.883895i −0.995381 0.0959992i \(-0.969395\pi\)
0.199519 + 0.979894i \(0.436062\pi\)
\(104\) −7.37329 3.28280i −0.723010 0.321905i
\(105\) 5.70106 + 1.21180i 0.556367 + 0.118259i
\(106\) 0.405162 0.0861198i 0.0393528 0.00836470i
\(107\) 8.75705 3.89889i 0.846576 0.376920i 0.0628473 0.998023i \(-0.479982\pi\)
0.783729 + 0.621103i \(0.213315\pi\)
\(108\) 0.490035 1.50817i 0.0471536 0.145124i
\(109\) −1.59810 + 4.91846i −0.153071 + 0.471103i −0.997960 0.0638377i \(-0.979666\pi\)
0.844890 + 0.534941i \(0.179666\pi\)
\(110\) 11.5626 5.14801i 1.10245 0.490843i
\(111\) 2.36146 0.501943i 0.224140 0.0476423i
\(112\) −7.08437 1.50583i −0.669410 0.142288i
\(113\) 4.88121 + 2.17325i 0.459185 + 0.204442i 0.623275 0.782003i \(-0.285802\pi\)
−0.164089 + 0.986445i \(0.552469\pi\)
\(114\) 6.18453 6.86862i 0.579235 0.643305i
\(115\) 0.418114 3.97809i 0.0389893 0.370959i
\(116\) 3.62867 + 2.63638i 0.336913 + 0.244782i
\(117\) −0.540577 5.14324i −0.0499763 0.475493i
\(118\) −12.1569 + 21.0563i −1.11913 + 1.93839i
\(119\) 0.207107 + 0.358719i 0.0189854 + 0.0328838i
\(120\) −8.62158 + 6.26394i −0.787039 + 0.571817i
\(121\) 11.0308 + 12.2510i 1.00280 + 1.11372i
\(122\) −2.11010 6.49422i −0.191039 0.587959i
\(123\) −22.8995 −2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −5.09423 15.6784i −0.453830 1.39675i
\(127\) −7.29319 8.09990i −0.647166 0.718750i 0.326889 0.945063i \(-0.394000\pi\)
−0.974055 + 0.226312i \(0.927333\pi\)
\(128\) −16.6304 + 12.0827i −1.46994 + 1.06797i
\(129\) 10.7426 + 18.6068i 0.945837 + 1.63824i
\(130\) 2.20711 3.82282i 0.193576 0.335284i
\(131\) 0.497279 + 4.73130i 0.0434475 + 0.413375i 0.994531 + 0.104442i \(0.0333055\pi\)
−0.951084 + 0.308934i \(0.900028\pi\)
\(132\) −39.2016 28.4816i −3.41206 2.47901i
\(133\) −0.400180 + 3.80745i −0.0347000 + 0.330148i
\(134\) 8.46909 9.40588i 0.731618 0.812544i
\(135\) 0.378403 + 0.168476i 0.0325677 + 0.0145001i
\(136\) −0.740809 0.157464i −0.0635239 0.0135024i
\(137\) 7.32171 1.55628i 0.625536 0.132962i 0.115772 0.993276i \(-0.463066\pi\)
0.509764 + 0.860314i \(0.329733\pi\)
\(138\) −21.2981 + 9.48254i −1.81302 + 0.807207i
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 2.85613 8.79027i 0.241387 0.742914i
\(141\) 3.65418 1.62695i 0.307738 0.137014i
\(142\) −33.2282 + 7.06288i −2.78845 + 0.592703i
\(143\) 9.37631 + 1.99300i 0.784087 + 0.166663i
\(144\) 7.75169 + 3.45127i 0.645974 + 0.287606i
\(145\) −0.783935 + 0.870648i −0.0651023 + 0.0723034i
\(146\) 0.966119 9.19201i 0.0799566 0.760736i
\(147\) −2.28825 1.66251i −0.188731 0.137121i
\(148\) −0.400180 3.80745i −0.0328946 0.312971i
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 11.6569 + 20.1903i 0.951778 + 1.64853i
\(151\) 14.0071 10.1767i 1.13988 0.828172i 0.152778 0.988261i \(-0.451178\pi\)
0.987103 + 0.160089i \(0.0511781\pi\)
\(152\) −4.68391 5.20201i −0.379916 0.421939i
\(153\) −0.149960 0.461530i −0.0121236 0.0373125i
\(154\) 30.5563 2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 4.58224 + 14.1027i 0.365702 + 1.12552i 0.949540 + 0.313646i \(0.101550\pi\)
−0.583838 + 0.811870i \(0.698450\pi\)
\(158\) 24.6233 + 27.3470i 1.95893 + 2.17561i
\(159\) 0.335106 0.243469i 0.0265756 0.0193083i
\(160\) −0.792893 1.37333i −0.0626837 0.108571i
\(161\) 4.82843 8.36308i 0.380533 0.659103i
\(162\) −2.39365 22.7740i −0.188063 1.78930i
\(163\) 10.4934 + 7.62391i 0.821907 + 0.597150i 0.917258 0.398293i \(-0.130397\pi\)
−0.0953511 + 0.995444i \(0.530397\pi\)
\(164\) −3.79582 + 36.1148i −0.296403 + 2.82009i
\(165\) 8.46909 9.40588i 0.659318 0.732246i
\(166\) −8.97871 3.99758i −0.696883 0.310272i
\(167\) 8.36937 + 1.77897i 0.647641 + 0.137660i 0.520009 0.854161i \(-0.325929\pi\)
0.127633 + 0.991821i \(0.459262\pi\)
\(168\) −25.1657 + 5.34914i −1.94158 + 0.412695i
\(169\) −8.82198 + 3.92780i −0.678613 + 0.302138i
\(170\) 0.127999 0.393941i 0.00981708 0.0302139i
\(171\) 1.38603 4.26576i 0.105992 0.326211i
\(172\) 31.1255 13.8580i 2.37329 1.05666i
\(173\) 14.0009 2.97599i 1.06447 0.226260i 0.357796 0.933800i \(-0.383528\pi\)
0.706674 + 0.707539i \(0.250195\pi\)
\(174\) 6.67921 + 1.41971i 0.506350 + 0.107628i
\(175\) −8.82198 3.92780i −0.666879 0.296914i
\(176\) −10.5240 + 11.6881i −0.793279 + 0.881025i
\(177\) −2.54147 + 24.1805i −0.191029 + 1.81752i
\(178\) −24.3855 17.7171i −1.82777 1.32795i
\(179\) 0.706336 + 6.72034i 0.0527941 + 0.502302i 0.988684 + 0.150010i \(0.0479307\pi\)
−0.935890 + 0.352291i \(0.885403\pi\)
\(180\) −5.41421 + 9.37769i −0.403552 + 0.698972i
\(181\) 5.15685 + 8.93193i 0.383306 + 0.663905i 0.991533 0.129858i \(-0.0414522\pi\)
−0.608227 + 0.793763i \(0.708119\pi\)
\(182\) 8.62158 6.26394i 0.639074 0.464314i
\(183\) −4.56911 5.07451i −0.337758 0.375119i
\(184\) 5.45627 + 16.7927i 0.402241 + 1.23797i
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) −1.96014 6.03269i −0.142958 0.439979i
\(189\) 0.669131 + 0.743145i 0.0486721 + 0.0540558i
\(190\) 3.09726 2.25029i 0.224699 0.163253i
\(191\) 0.550253 + 0.953065i 0.0398149 + 0.0689614i 0.885246 0.465123i \(-0.153990\pi\)
−0.845431 + 0.534084i \(0.820657\pi\)
\(192\) −11.8640 + 20.5490i −0.856208 + 1.48300i
\(193\) 2.20995 + 21.0263i 0.159076 + 1.51351i 0.724827 + 0.688931i \(0.241920\pi\)
−0.565751 + 0.824576i \(0.691414\pi\)
\(194\) 21.1494 + 15.3660i 1.51844 + 1.10321i
\(195\) 0.461411 4.39003i 0.0330423 0.314377i
\(196\) −3.00124 + 3.33321i −0.214374 + 0.238087i
\(197\) 3.18396 + 1.41759i 0.226848 + 0.100999i 0.517013 0.855977i \(-0.327044\pi\)
−0.290166 + 0.956976i \(0.593710\pi\)
\(198\) −35.0167 7.44303i −2.48853 0.528953i
\(199\) −15.2452 + 3.24047i −1.08070 + 0.229711i −0.713659 0.700493i \(-0.752964\pi\)
−0.367044 + 0.930204i \(0.619630\pi\)
\(200\) 16.1303 7.18169i 1.14059 0.507822i
\(201\) 3.91118 12.0374i 0.275874 0.849052i
\(202\) −6.33030 + 19.4827i −0.445398 + 1.37080i
\(203\) −2.58390 + 1.15042i −0.181354 + 0.0807440i
\(204\) −1.55113 + 0.329704i −0.108601 + 0.0230839i
\(205\) −9.27801 1.97210i −0.648004 0.137738i
\(206\) 26.6227 + 11.8532i 1.85489 + 0.825850i
\(207\) −7.57035 + 8.40772i −0.526176 + 0.584377i
\(208\) −0.573368 + 5.45523i −0.0397559 + 0.378252i
\(209\) 6.72593 + 4.88668i 0.465242 + 0.338018i
\(210\) −1.47083 13.9940i −0.101497 0.965677i
\(211\) −3.79289 + 6.56948i −0.261114 + 0.452262i −0.966538 0.256523i \(-0.917423\pi\)
0.705425 + 0.708785i \(0.250756\pi\)
\(212\) −0.328427 0.568852i −0.0225565 0.0390689i
\(213\) −27.4828 + 19.9674i −1.88309 + 1.36814i
\(214\) −15.4851 17.1980i −1.05854 1.17563i
\(215\) 2.75010 + 8.46392i 0.187555 + 0.577235i
\(216\) −1.82843 −0.124409
\(217\) 0 0
\(218\) 12.4853 0.845610
\(219\) −2.85613 8.79027i −0.193000 0.593992i
\(220\) −13.4302 14.9157i −0.905462 1.00562i
\(221\) 0.253796 0.184393i 0.0170721 0.0124036i
\(222\) −2.91421 5.04757i −0.195589 0.338770i
\(223\) −0.863961 + 1.49642i −0.0578551 + 0.100208i −0.893502 0.449059i \(-0.851759\pi\)
0.835647 + 0.549266i \(0.185093\pi\)
\(224\) −0.400180 3.80745i −0.0267381 0.254396i
\(225\) 9.15298 + 6.65003i 0.610199 + 0.443335i
\(226\) 1.34836 12.8288i 0.0896919 0.853361i
\(227\) −10.4289 + 11.5825i −0.692192 + 0.768757i −0.982113 0.188293i \(-0.939704\pi\)
0.289921 + 0.957051i \(0.406371\pi\)
\(228\) −13.3897 5.96148i −0.886755 0.394809i
\(229\) −11.2343 2.38792i −0.742383 0.157798i −0.178832 0.983880i \(-0.557232\pi\)
−0.563551 + 0.826081i \(0.690565\pi\)
\(230\) −9.44583 + 2.00777i −0.622840 + 0.132389i
\(231\) 27.9146 12.4284i 1.83665 0.817728i
\(232\) 1.59810 4.91846i 0.104921 0.322913i
\(233\) −4.58224 + 14.1027i −0.300192 + 0.923897i 0.681235 + 0.732064i \(0.261443\pi\)
−0.981428 + 0.191832i \(0.938557\pi\)
\(234\) −11.4059 + 5.07822i −0.745625 + 0.331974i
\(235\) 1.62065 0.344479i 0.105719 0.0224714i
\(236\) 37.7138 + 8.01632i 2.45496 + 0.521818i
\(237\) 33.6176 + 14.9675i 2.18369 + 0.972243i
\(238\) 0.669131 0.743145i 0.0433733 0.0481709i
\(239\) 1.33351 12.6875i 0.0862574 0.820684i −0.862792 0.505558i \(-0.831287\pi\)
0.949050 0.315126i \(-0.102047\pi\)
\(240\) 5.85942 + 4.25712i 0.378224 + 0.274796i
\(241\) −2.57734 24.5218i −0.166021 1.57959i −0.687411 0.726268i \(-0.741253\pi\)
0.521390 0.853318i \(-0.325414\pi\)
\(242\) 19.8995 34.4669i 1.27919 2.21562i
\(243\) −10.8284 18.7554i −0.694644 1.20316i
\(244\) −8.76038 + 6.36479i −0.560826 + 0.407464i
\(245\) −0.783935 0.870648i −0.0500838 0.0556237i
\(246\) 17.0838 + 52.5785i 1.08922 + 3.35228i
\(247\) 2.89949 0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 6.71430 + 20.6645i 0.424649 + 1.30694i
\(251\) 2.39936 + 2.66476i 0.151446 + 0.168198i 0.814094 0.580733i \(-0.197234\pi\)
−0.662648 + 0.748931i \(0.730567\pi\)
\(252\) −21.1494 + 15.3660i −1.33229 + 0.967965i
\(253\) −10.4853 18.1610i −0.659204 1.14177i
\(254\) −13.1569 + 22.7883i −0.825534 + 1.42987i
\(255\) −0.0432971 0.411944i −0.00271137 0.0257970i
\(256\) 24.2467 + 17.6163i 1.51542 + 1.10102i
\(257\) 0.0327915 0.311990i 0.00204548 0.0194614i −0.993452 0.114254i \(-0.963552\pi\)
0.995497 + 0.0947928i \(0.0302188\pi\)
\(258\) 34.7078 38.5470i 2.16082 2.39983i
\(259\) 2.20549 + 0.981949i 0.137043 + 0.0610153i
\(260\) −6.84703 1.45538i −0.424635 0.0902589i
\(261\) 3.24130 0.688959i 0.200631 0.0426455i
\(262\) 10.4923 4.67148i 0.648218 0.288605i
\(263\) −0.212076 + 0.652702i −0.0130772 + 0.0402473i −0.957382 0.288824i \(-0.906736\pi\)
0.944305 + 0.329071i \(0.106736\pi\)
\(264\) −17.2648 + 53.1356i −1.06257 + 3.27027i
\(265\) 0.156740 0.0697850i 0.00962844 0.00428686i
\(266\) 9.04067 1.92165i 0.554319 0.117824i
\(267\) −29.4835 6.26690i −1.80436 0.383528i
\(268\) −18.3358 8.16364i −1.12004 0.498674i
\(269\) −21.2974 + 23.6531i −1.29852 + 1.44216i −0.469512 + 0.882926i \(0.655570\pi\)
−0.829012 + 0.559231i \(0.811097\pi\)
\(270\) 0.104528 0.994522i 0.00636140 0.0605247i
\(271\) 18.8612 + 13.7035i 1.14574 + 0.832426i 0.987908 0.155041i \(-0.0495510\pi\)
0.157827 + 0.987467i \(0.449551\pi\)
\(272\) 0.0538027 + 0.511899i 0.00326227 + 0.0310384i
\(273\) 5.32843 9.22911i 0.322491 0.558571i
\(274\) −9.03553 15.6500i −0.545857 0.945451i
\(275\) −16.9655 + 12.3262i −1.02306 + 0.743297i
\(276\) 24.7381 + 27.4745i 1.48906 + 1.65377i
\(277\) −4.37016 13.4500i −0.262577 0.808130i −0.992242 0.124325i \(-0.960324\pi\)
0.729664 0.683806i \(-0.239676\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.6569 −0.636869
\(281\) 0.618034 + 1.90211i 0.0368688 + 0.113471i 0.967797 0.251731i \(-0.0809999\pi\)
−0.930928 + 0.365202i \(0.881000\pi\)
\(282\) −6.46170 7.17644i −0.384788 0.427351i
\(283\) 1.89564 1.37727i 0.112684 0.0818700i −0.530016 0.847988i \(-0.677814\pi\)
0.642700 + 0.766118i \(0.277814\pi\)
\(284\) 26.9350 + 46.6528i 1.59830 + 2.76834i
\(285\) 1.91421 3.31552i 0.113388 0.196394i
\(286\) −2.41901 23.0154i −0.143039 1.36093i
\(287\) −18.5261 13.4600i −1.09356 0.794518i
\(288\) −0.468840 + 4.46071i −0.0276266 + 0.262850i
\(289\) −11.3555 + 12.6116i −0.667972 + 0.741858i
\(290\) 2.58390 + 1.15042i 0.151732 + 0.0675553i
\(291\) 25.5709 + 5.43526i 1.49899 + 0.318620i
\(292\) −14.3366 + 3.04733i −0.838984 + 0.178332i
\(293\) −22.6550 + 10.0867i −1.32352 + 0.589269i −0.942162 0.335159i \(-0.891210\pi\)
−0.381358 + 0.924428i \(0.624543\pi\)
\(294\) −2.11010 + 6.49422i −0.123064 + 0.378751i
\(295\) −3.11213 + 9.57815i −0.181195 + 0.557662i
\(296\) −4.03258 + 1.79542i −0.234389 + 0.104357i
\(297\) 2.12412 0.451495i 0.123254 0.0261984i
\(298\) 2.36146 + 0.501943i 0.136796 + 0.0290768i
\(299\) −6.68141 2.97475i −0.386396 0.172034i
\(300\) 24.7381 27.4745i 1.42826 1.58624i
\(301\) −2.24582 + 21.3676i −0.129447 + 1.23161i
\(302\) −33.8161 24.5688i −1.94590 1.41378i
\(303\) 2.14129 + 20.3731i 0.123014 + 1.17040i
\(304\) −2.37868 + 4.11999i −0.136427 + 0.236298i
\(305\) −1.41421 2.44949i −0.0809776 0.140257i
\(306\) −0.947822 + 0.688633i −0.0541834 + 0.0393665i
\(307\) −1.84503 2.04912i −0.105302 0.116949i 0.688190 0.725531i \(-0.258406\pi\)
−0.793492 + 0.608581i \(0.791739\pi\)
\(308\) −14.9737 46.0842i −0.853205 2.62589i
\(309\) 29.1421 1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 6.02128 + 18.5316i 0.340888 + 1.04915i
\(313\) 2.56172 + 2.84508i 0.144797 + 0.160813i 0.811181 0.584796i \(-0.198825\pi\)
−0.666384 + 0.745609i \(0.732159\pi\)
\(314\) 28.9620 21.0421i 1.63442 1.18748i
\(315\) −3.41421 5.91359i −0.192369 0.333193i
\(316\) 29.1777 50.5372i 1.64137 2.84294i
\(317\) 0.226991 + 2.15968i 0.0127491 + 0.121300i 0.999045 0.0436841i \(-0.0139095\pi\)
−0.986296 + 0.164984i \(0.947243\pi\)
\(318\) −0.809017 0.587785i −0.0453674 0.0329614i
\(319\) −0.642028 + 6.10849i −0.0359467 + 0.342010i
\(320\) −6.57650 + 7.30394i −0.367638 + 0.408303i
\(321\) −21.1414 9.41275i −1.18000 0.525369i
\(322\) −22.8042 4.84719i −1.27083 0.270123i
\(323\) 0.266132 0.0565682i 0.0148080 0.00314754i
\(324\) −33.1742 + 14.7701i −1.84301 + 0.820562i
\(325\) −2.26006 + 6.95575i −0.125366 + 0.385836i
\(326\) 9.67647 29.7811i 0.535930 1.64942i
\(327\) 11.4059 5.07822i 0.630746 0.280826i
\(328\) 40.9551 8.70527i 2.26137 0.480668i
\(329\) 3.91259 + 0.831647i 0.215708 + 0.0458502i
\(330\) −27.9146 12.4284i −1.53665 0.684160i
\(331\) 0.506772 0.562828i 0.0278547 0.0309358i −0.729056 0.684454i \(-0.760041\pi\)
0.756911 + 0.653518i \(0.226708\pi\)
\(332\) −1.62916 + 15.5004i −0.0894117 + 0.850695i
\(333\) −2.28825 1.66251i −0.125395 0.0911049i
\(334\) −2.15923 20.5437i −0.118148 1.12410i
\(335\) 2.62132 4.54026i 0.143218 0.248061i
\(336\) 8.74264 + 15.1427i 0.476950 + 0.826102i
\(337\) 10.7710 7.82560i 0.586735 0.426288i −0.254411 0.967096i \(-0.581882\pi\)
0.841146 + 0.540808i \(0.181882\pi\)
\(338\) 15.5999 + 17.3255i 0.848524 + 0.942381i
\(339\) −3.98616 12.2681i −0.216499 0.666314i
\(340\) −0.656854 −0.0356229
\(341\) 0 0
\(342\) −10.8284 −0.585534
\(343\) −6.09626 18.7624i −0.329167 1.01307i
\(344\) −26.2863 29.1939i −1.41726 1.57403i
\(345\) −7.81256 + 5.67616i −0.420614 + 0.305594i
\(346\) −17.2782 29.9267i −0.928880 1.60887i
\(347\) −11.2782 + 19.5344i −0.605444 + 1.04866i 0.386537 + 0.922274i \(0.373671\pi\)
−0.991981 + 0.126386i \(0.959662\pi\)
\(348\) −1.13188 10.7691i −0.0606751 0.577285i
\(349\) −28.4068 20.6387i −1.52058 1.10477i −0.961199 0.275854i \(-0.911039\pi\)
−0.559380 0.828911i \(-0.688961\pi\)
\(350\) −2.43695 + 23.1860i −0.130260 + 1.23934i
\(351\) 0.506772 0.562828i 0.0270495 0.0300415i
\(352\) −7.59495 3.38149i −0.404812 0.180234i
\(353\) −2.93444 0.623735i −0.156185 0.0331981i 0.129156 0.991624i \(-0.458773\pi\)
−0.285340 + 0.958426i \(0.592107\pi\)
\(354\) 57.4158 12.2041i 3.05161 0.648641i
\(355\) −12.8546 + 5.72322i −0.682249 + 0.303757i
\(356\) −14.7707 + 45.4595i −0.782846 + 2.40935i
\(357\) 0.309017 0.951057i 0.0163549 0.0503352i
\(358\) 14.9033 6.63538i 0.787665 0.350691i
\(359\) −26.3117 + 5.59272i −1.38868 + 0.295172i −0.840782 0.541374i \(-0.817904\pi\)
−0.547895 + 0.836547i \(0.684571\pi\)
\(360\) 12.2124 + 2.59584i 0.643653 + 0.136813i
\(361\) −15.0601 6.70517i −0.792634 0.352904i
\(362\) 16.6610 18.5039i 0.875683 0.972545i
\(363\) 4.16013 39.5810i 0.218350 2.07746i
\(364\) −13.6720 9.93327i −0.716606 0.520645i
\(365\) −0.400180 3.80745i −0.0209464 0.199291i
\(366\) −8.24264 + 14.2767i −0.430850 + 0.746254i
\(367\) −9.10660 15.7731i −0.475361 0.823349i 0.524241 0.851570i \(-0.324349\pi\)
−0.999602 + 0.0282210i \(0.991016\pi\)
\(368\) 9.70820 7.05342i 0.506075 0.367685i
\(369\) 17.9517 + 19.9374i 0.934529 + 1.03790i
\(370\) −0.746033 2.29605i −0.0387844 0.119366i
\(371\) 0.414214 0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −0.671053 2.06529i −0.0346993 0.106794i
\(375\) 14.5388 + 16.1470i 0.750781 + 0.833827i
\(376\) −5.91691 + 4.29889i −0.305142 + 0.221698i
\(377\) 1.07107 + 1.85514i 0.0551628 + 0.0955448i
\(378\) 1.20711 2.09077i 0.0620869 0.107538i
\(379\) 3.07155 + 29.2238i 0.157775 + 1.50113i 0.731366 + 0.681985i \(0.238883\pi\)
−0.573592 + 0.819141i \(0.694450\pi\)
\(380\) −4.91160 3.56848i −0.251960 0.183059i
\(381\) −2.75053 + 26.1696i −0.140914 + 1.34071i
\(382\) 1.77778 1.97443i 0.0909593 0.101020i
\(383\) 22.7468 + 10.1275i 1.16231 + 0.517493i 0.894977 0.446112i \(-0.147192\pi\)
0.267331 + 0.963605i \(0.413858\pi\)
\(384\) 48.5429 + 10.3181i 2.47720 + 0.526544i
\(385\) 12.3803 2.63151i 0.630957 0.134114i
\(386\) 46.6288 20.7605i 2.37335 1.05668i
\(387\) 7.77844 23.9396i 0.395401 1.21692i
\(388\) 12.8106 39.4269i 0.650358 2.00160i
\(389\) 15.6601 6.97233i 0.794000 0.353511i 0.0306774 0.999529i \(-0.490234\pi\)
0.763322 + 0.646018i \(0.223567\pi\)
\(390\) −10.4240 + 2.21568i −0.527839 + 0.112196i
\(391\) −0.671294 0.142688i −0.0339488 0.00721604i
\(392\) 4.72447 + 2.10347i 0.238622 + 0.106241i
\(393\) 7.68515 8.53523i 0.387665 0.430545i
\(394\) 0.879525 8.36812i 0.0443098 0.421580i
\(395\) 12.3316 + 8.95940i 0.620468 + 0.450796i
\(396\) 5.93403 + 56.4586i 0.298196 + 2.83715i
\(397\) 8.25736 14.3022i 0.414425 0.717805i −0.580943 0.813944i \(-0.697316\pi\)
0.995368 + 0.0961392i \(0.0306494\pi\)
\(398\) 18.8137 + 32.5863i 0.943046 + 1.63340i
\(399\) 7.47745 5.43269i 0.374341 0.271975i
\(400\) −8.02957 8.91774i −0.401478 0.445887i
\(401\) −6.54238 20.1354i −0.326711 1.00551i −0.970663 0.240446i \(-0.922706\pi\)
0.643952 0.765066i \(-0.277294\pi\)
\(402\) −30.5563 −1.52401
\(403\) 0 0
\(404\) 32.4853 1.61620
\(405\) −2.93111 9.02104i −0.145648 0.448259i
\(406\) 4.56911 + 5.07451i 0.226761 + 0.251844i
\(407\) 4.24139 3.08155i 0.210238 0.152747i
\(408\) 0.914214 + 1.58346i 0.0452603 + 0.0783932i
\(409\) −4.67157 + 8.09140i −0.230994 + 0.400094i −0.958101 0.286431i \(-0.907531\pi\)
0.727107 + 0.686525i \(0.240865\pi\)
\(410\) 2.39365 + 22.7740i 0.118214 + 1.12473i
\(411\) −14.6198 10.6219i −0.721142 0.523940i
\(412\) 4.83060 45.9600i 0.237986 2.26429i
\(413\) −16.2690 + 18.0686i −0.800547 + 0.889098i
\(414\) 24.9523 + 11.1095i 1.22634 + 0.546001i
\(415\) −3.98211 0.846423i −0.195474 0.0415493i
\(416\) −2.83613 + 0.602839i −0.139053 + 0.0295566i
\(417\) 0 0
\(418\) 6.20230 19.0887i 0.303364 0.933660i
\(419\) 8.65248 26.6296i 0.422701 1.30094i −0.482477 0.875908i \(-0.660263\pi\)
0.905178 0.425032i \(-0.139737\pi\)
\(420\) −20.3846 + 9.07580i −0.994666 + 0.442854i
\(421\) 2.79541 0.594183i 0.136240 0.0289587i −0.139287 0.990252i \(-0.544481\pi\)
0.275527 + 0.961293i \(0.411148\pi\)
\(422\) 17.9135 + 3.80763i 0.872016 + 0.185353i
\(423\) −4.28114 1.90609i −0.208156 0.0926771i
\(424\) −0.506772 + 0.562828i −0.0246110 + 0.0273333i
\(425\) −0.0717370 + 0.682532i −0.00347976 + 0.0331077i
\(426\) 66.3493 + 48.2056i 3.21463 + 2.33557i
\(427\) −0.713765 6.79102i −0.0345415 0.328641i
\(428\) −18.3492 + 31.7818i −0.886944 + 1.53623i
\(429\) −11.5711 20.0417i −0.558656 0.967621i
\(430\) 17.3820 12.6287i 0.838232 0.609012i
\(431\) −16.8906 18.7589i −0.813593 0.903586i 0.183244 0.983068i \(-0.441340\pi\)
−0.996836 + 0.0794813i \(0.974674\pi\)
\(432\) 0.383997 + 1.18182i 0.0184751 + 0.0568604i
\(433\) −35.1127 −1.68741 −0.843704 0.536808i \(-0.819630\pi\)
−0.843704 + 0.536808i \(0.819630\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) −6.11822 18.8300i −0.293010 0.901791i
\(437\) −4.24439 4.71388i −0.203037 0.225495i
\(438\) −18.0522 + 13.1157i −0.862566 + 0.626691i
\(439\) 6.03553 + 10.4539i 0.288060 + 0.498935i 0.973347 0.229339i \(-0.0736563\pi\)
−0.685286 + 0.728274i \(0.740323\pi\)
\(440\) −11.5711 + 20.0417i −0.551629 + 0.955449i
\(441\) 0.346377 + 3.29556i 0.0164941 + 0.156931i
\(442\) −0.612717 0.445165i −0.0291440 0.0211743i
\(443\) 1.38423 13.1701i 0.0657669 0.625730i −0.911145 0.412086i \(-0.864800\pi\)
0.976912 0.213644i \(-0.0685332\pi\)
\(444\) −6.18453 + 6.86862i −0.293505 + 0.325970i
\(445\) −11.4059 5.07822i −0.540690 0.240731i
\(446\) 4.08041 + 0.867319i 0.193213 + 0.0410687i
\(447\) 2.36146 0.501943i 0.111693 0.0237411i
\(448\) −21.6765 + 9.65102i −1.02412 + 0.455968i
\(449\) 1.42995 4.40094i 0.0674835 0.207693i −0.911628 0.411016i \(-0.865174\pi\)
0.979112 + 0.203323i \(0.0651741\pi\)
\(450\) 8.44040 25.9769i 0.397884 1.22456i
\(451\) −45.4287 + 20.2262i −2.13915 + 0.952413i
\(452\) −20.0088 + 4.25301i −0.941136 + 0.200045i
\(453\) −40.8856 8.69050i −1.92097 0.408315i
\(454\) 34.3744 + 15.3044i 1.61327 + 0.718273i
\(455\) 2.95369 3.28040i 0.138471 0.153788i
\(456\) −1.76648 + 16.8069i −0.0827229 + 0.787056i
\(457\) −25.1707 18.2876i −1.17744 0.855457i −0.185556 0.982634i \(-0.559409\pi\)
−0.991880 + 0.127177i \(0.959409\pi\)
\(458\) 2.89836 + 27.5760i 0.135431 + 1.28854i
\(459\) 0.0355339 0.0615465i 0.00165858 0.00287275i
\(460\) 7.65685 + 13.2621i 0.357003 + 0.618347i
\(461\) −21.1494 + 15.3660i −0.985027 + 0.715664i −0.958826 0.283993i \(-0.908341\pi\)
−0.0262008 + 0.999657i \(0.508341\pi\)
\(462\) −49.3615 54.8215i −2.29650 2.55053i
\(463\) 7.71633 + 23.7484i 0.358608 + 1.10368i 0.953888 + 0.300164i \(0.0970413\pi\)
−0.595279 + 0.803519i \(0.702959\pi\)
\(464\) −3.51472 −0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) −2.47214 7.60845i −0.114397 0.352077i 0.877424 0.479716i \(-0.159260\pi\)
−0.991821 + 0.127639i \(0.959260\pi\)
\(468\) 13.2481 + 14.7135i 0.612394 + 0.680133i
\(469\) 10.2396 7.43951i 0.472821 0.343525i
\(470\) −2.00000 3.46410i −0.0922531 0.159787i
\(471\) 17.8995 31.0028i 0.824765 1.42854i
\(472\) −4.64690 44.2123i −0.213891 2.03504i
\(473\) 37.7462 + 27.4242i 1.73557 + 1.26097i
\(474\) 9.28637 88.3539i 0.426537 4.05823i
\(475\) −4.24439 + 4.71388i −0.194746 + 0.216287i
\(476\) −1.44869 0.644997i −0.0664005 0.0295634i
\(477\) −0.474677 0.100896i −0.0217340 0.00461970i
\(478\) −30.1260 + 6.40347i −1.37793 + 0.292888i
\(479\) 8.88690 3.95670i 0.406053 0.180786i −0.193539 0.981093i \(-0.561996\pi\)
0.599591 + 0.800306i \(0.295330\pi\)
\(480\) −1.18305 + 3.64105i −0.0539986 + 0.166190i
\(481\) 0.565015 1.73894i 0.0257625 0.0792887i
\(482\) −54.3805 + 24.2118i −2.47697 + 1.10282i
\(483\) −22.8042 + 4.84719i −1.03763 + 0.220555i
\(484\) −61.7335 13.1219i −2.80607 0.596449i
\(485\) 9.89226 + 4.40432i 0.449184 + 0.199990i
\(486\) −34.9850 + 38.8548i −1.58695 + 1.76249i
\(487\) 1.81720 17.2895i 0.0823454 0.783464i −0.872950 0.487810i \(-0.837796\pi\)
0.955295 0.295654i \(-0.0955375\pi\)
\(488\) 10.1008 + 7.33866i 0.457242 + 0.332206i
\(489\) −3.27317 31.1422i −0.148018 1.40830i
\(490\) −1.41421 + 2.44949i −0.0638877 + 0.110657i
\(491\) −2.20711 3.82282i −0.0996053 0.172522i 0.811916 0.583774i \(-0.198425\pi\)
−0.911521 + 0.411253i \(0.865091\pi\)
\(492\) 70.9257 51.5306i 3.19758 2.32318i
\(493\) 0.134502 + 0.149380i 0.00605767 + 0.00672772i
\(494\) −2.16312 6.65740i −0.0973233 0.299530i
\(495\) −14.8284 −0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 7.33233 + 22.5666i 0.328570 + 1.01123i
\(499\) 26.9079 + 29.8842i 1.20456 + 1.33780i 0.926065 + 0.377365i \(0.123170\pi\)
0.278498 + 0.960437i \(0.410163\pi\)
\(500\) 27.8754 20.2526i 1.24662 0.905725i
\(501\) −10.3284 17.8894i −0.461440 0.799238i
\(502\) 4.32843 7.49706i 0.193187 0.334610i
\(503\) −2.44437 23.2567i −0.108989 1.03696i −0.903170 0.429282i \(-0.858766\pi\)
0.794181 0.607681i \(-0.207900\pi\)
\(504\) 24.3855 + 17.7171i 1.08622 + 0.789182i
\(505\) −0.886953 + 8.43880i −0.0394689 + 0.375522i
\(506\) −33.8764 + 37.6235i −1.50599 + 1.67257i
\(507\) 21.2981 + 9.48254i 0.945883 + 0.421134i
\(508\) 40.8161 + 8.67572i 1.81092 + 0.384923i
\(509\) −6.65042 + 1.41359i −0.294774 + 0.0626563i −0.352925 0.935652i \(-0.614813\pi\)
0.0581506 + 0.998308i \(0.481480\pi\)
\(510\) −0.913545 + 0.406737i −0.0404525 + 0.0180106i
\(511\) 2.85613 8.79027i 0.126348 0.388859i
\(512\) 9.65451 29.7135i 0.426673 1.31316i
\(513\) 0.600066 0.267167i 0.0264936 0.0117957i
\(514\) −0.740809 + 0.157464i −0.0326757 + 0.00694543i
\(515\) 11.8073 + 2.50972i 0.520291 + 0.110591i
\(516\) −75.1435 33.4561i −3.30801 1.47282i
\(517\) 5.81226 6.45517i 0.255623 0.283898i
\(518\) 0.609237 5.79650i 0.0267683 0.254684i
\(519\) −27.9567 20.3117i −1.22716 0.891585i
\(520\) 0.843656 + 8.02685i 0.0369968 + 0.352001i
\(521\) −15.2279 + 26.3755i −0.667147 + 1.15553i 0.311551 + 0.950229i \(0.399152\pi\)
−0.978698 + 0.205304i \(0.934182\pi\)
\(522\) −4.00000 6.92820i −0.175075 0.303239i
\(523\) 6.47214 4.70228i 0.283007 0.205616i −0.437221 0.899354i \(-0.644037\pi\)
0.720228 + 0.693738i \(0.244037\pi\)
\(524\) −12.1870 13.5350i −0.532392 0.591281i
\(525\) 7.20433 + 22.1727i 0.314423 + 0.967694i
\(526\) 1.65685 0.0722423
\(527\) 0 0
\(528\) 37.9706 1.65246
\(529\) −2.16312 6.65740i −0.0940487 0.289452i
\(530\) −0.277163 0.307821i −0.0120392 0.0133709i
\(531\) 23.0451 16.7432i 1.00007 0.726594i
\(532\) −7.32843 12.6932i −0.317728 0.550320i
\(533\) −8.67157 + 15.0196i −0.375608 + 0.650571i
\(534\) 7.60649 + 72.3709i 0.329165 + 3.13180i
\(535\) −7.75506 5.63438i −0.335281 0.243596i
\(536\) −2.41901 + 23.0154i −0.104485 + 0.994112i
\(537\) 10.9160 12.1234i 0.471060 0.523165i
\(538\) 70.1974 + 31.2539i 3.02642 + 1.34745i
\(539\) −6.00792 1.27702i −0.258779 0.0550052i
\(540\) −1.55113 + 0.329704i −0.0667501 + 0.0141882i
\(541\) 23.0983 10.2840i 0.993075 0.442145i 0.155126 0.987895i \(-0.450422\pi\)
0.837949 + 0.545749i \(0.183755\pi\)
\(542\) 17.3928 53.5295i 0.747085 2.29929i
\(543\) 7.69437 23.6808i 0.330197 1.01624i
\(544\) −0.248556 + 0.110664i −0.0106567 + 0.00474468i
\(545\) 5.05856 1.07523i 0.216685 0.0460578i
\(546\) −25.1657 5.34914i −1.07699 0.228922i
\(547\) 5.23272 + 2.32976i 0.223735 + 0.0996132i 0.515543 0.856864i \(-0.327590\pi\)
−0.291808 + 0.956477i \(0.594257\pi\)
\(548\) −19.1752 + 21.2962i −0.819123 + 0.909728i
\(549\) −0.836228 + 7.95618i −0.0356893 + 0.339561i
\(550\) 40.9584 + 29.7580i 1.74647 + 1.26889i
\(551\) 0.194200 + 1.84769i 0.00827319 + 0.0787141i
\(552\) 21.3137 36.9164i 0.907172 1.57127i
\(553\) 18.3995 + 31.8689i 0.782426 + 1.35520i
\(554\) −27.6216 + 20.0682i −1.17353 + 0.852618i
\(555\) −1.61542 1.79411i −0.0685709 0.0761557i
\(556\) 0 0
\(557\) 44.4853 1.88490 0.942451 0.334344i \(-0.108515\pi\)
0.942451 + 0.334344i \(0.108515\pi\)
\(558\) 0 0
\(559\) 16.2721 0.688236
\(560\) 2.23810 + 6.88816i 0.0945769 + 0.291078i
\(561\) −1.45307 1.61379i −0.0613485 0.0681344i
\(562\) 3.90628 2.83808i 0.164776 0.119717i
\(563\) −2.37868 4.11999i −0.100249 0.173637i 0.811538 0.584300i \(-0.198631\pi\)
−0.911787 + 0.410663i \(0.865297\pi\)
\(564\) −7.65685 + 13.2621i −0.322412 + 0.558433i
\(565\) −0.558511 5.31388i −0.0234967 0.223556i
\(566\) −4.57649 3.32502i −0.192364 0.139761i
\(567\) 2.39365 22.7740i 0.100524 0.956420i
\(568\) 41.5615 46.1587i 1.74388 1.93678i
\(569\) 13.8330 + 6.15886i 0.579911 + 0.258193i 0.675661 0.737212i \(-0.263858\pi\)
−0.0957502 + 0.995405i \(0.530525\pi\)
\(570\) −9.04067 1.92165i −0.378672 0.0804892i
\(571\) 40.0057 8.50348i 1.67419 0.355860i 0.729538 0.683940i \(-0.239735\pi\)
0.944650 + 0.328080i \(0.106402\pi\)
\(572\) −33.5257 + 14.9266i −1.40178 + 0.624113i
\(573\) 0.821013 2.52682i 0.0342983 0.105559i
\(574\) −17.0838 + 52.5785i −0.713063 + 2.19458i
\(575\) 14.6167 6.50779i 0.609560 0.271393i
\(576\) 27.1915 5.77973i 1.13298 0.240822i
\(577\) 33.2282 + 7.06288i 1.38331 + 0.294031i 0.838670 0.544639i \(-0.183333\pi\)
0.544639 + 0.838671i \(0.316667\pi\)
\(578\) 37.4285 + 16.6642i 1.55682 + 0.693141i
\(579\) 34.1535 37.9313i 1.41937 1.57637i
\(580\) 0.468840 4.46071i 0.0194675 0.185221i
\(581\) −7.95136 5.77700i −0.329878 0.239671i
\(582\) −6.59707 62.7670i −0.273457 2.60177i
\(583\) 0.449747 0.778985i 0.0186266 0.0322623i
\(584\) 8.44975 + 14.6354i 0.349653 + 0.605617i
\(585\) −4.18389 + 3.03977i −0.172983 + 0.125679i
\(586\) 40.0609 + 44.4921i 1.65490 + 1.83795i
\(587\) −6.28638 19.3475i −0.259467 0.798556i −0.992917 0.118813i \(-0.962091\pi\)
0.733450 0.679743i \(-0.237909\pi\)
\(588\) 10.8284 0.446557
\(589\) 0 0
\(590\) 24.3137 1.00098
\(591\) −2.60013 8.00239i −0.106955 0.329174i
\(592\) 2.00739 + 2.22943i 0.0825033 + 0.0916292i
\(593\) −17.2432 + 12.5279i −0.708091 + 0.514459i −0.882557 0.470205i \(-0.844180\pi\)
0.174466 + 0.984663i \(0.444180\pi\)
\(594\) −2.62132 4.54026i −0.107554 0.186289i
\(595\) 0.207107 0.358719i 0.00849055 0.0147061i
\(596\) −0.400180 3.80745i −0.0163920 0.155959i
\(597\) 30.4412 + 22.1168i 1.24588 + 0.905182i
\(598\) −1.84564 + 17.5601i −0.0754740 + 0.718087i
\(599\) 23.3523 25.9354i 0.954150 1.05969i −0.0440086 0.999031i \(-0.514013\pi\)
0.998159 0.0606597i \(-0.0193204\pi\)
\(600\) −38.9421 17.3381i −1.58980 0.707826i
\(601\) 22.9721 + 4.88286i 0.937050 + 0.199176i 0.651034 0.759049i \(-0.274336\pi\)
0.286016 + 0.958225i \(0.407669\pi\)
\(602\) 50.7366 10.7844i 2.06787 0.439539i
\(603\) −13.5464 + 6.03126i −0.551654 + 0.245612i
\(604\) −20.4830 + 63.0401i −0.833440 + 2.56506i
\(605\) 5.09423 15.6784i 0.207110 0.637419i
\(606\) 45.1802 20.1155i 1.83532 0.817136i
\(607\) 4.31775 0.917767i 0.175252 0.0372510i −0.119450 0.992840i \(-0.538113\pi\)
0.294702 + 0.955589i \(0.404780\pi\)
\(608\) −2.45977 0.522839i −0.0997567 0.0212039i
\(609\) 6.23808 + 2.77737i 0.252780 + 0.112545i
\(610\) −4.56911 + 5.07451i −0.184998 + 0.205461i
\(611\) 0.316662 3.01284i 0.0128108 0.121887i
\(612\) 1.50304 + 1.09203i 0.0607569 + 0.0441425i
\(613\) 1.07808 + 10.2572i 0.0435431 + 0.414285i 0.994482 + 0.104906i \(0.0334543\pi\)
−0.950939 + 0.309378i \(0.899879\pi\)
\(614\) −3.32843 + 5.76500i −0.134324 + 0.232657i
\(615\) 11.4497 + 19.8315i 0.461698 + 0.799685i
\(616\) −45.1998 + 32.8396i −1.82115 + 1.32315i
\(617\) 15.5802 + 17.3036i 0.627236 + 0.696616i 0.970083 0.242775i \(-0.0780578\pi\)
−0.342847 + 0.939391i \(0.611391\pi\)
\(618\) −21.7410 66.9119i −0.874551 2.69159i
\(619\) −31.6569 −1.27240 −0.636198 0.771526i \(-0.719494\pi\)
−0.636198 + 0.771526i \(0.719494\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 8.44040 + 25.9769i 0.338429 + 1.04158i
\(623\) −20.1690 22.4000i −0.808055 0.897436i
\(624\) 10.7135 7.78383i 0.428884 0.311603i
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 4.62132 8.00436i 0.184705 0.319919i
\(627\) −2.09800 19.9611i −0.0837860 0.797170i
\(628\) −45.9275 33.3683i −1.83271 1.33154i
\(629\) 0.0179342 0.170633i 0.000715085 0.00680358i
\(630\) −11.0308 + 12.2510i −0.439478 + 0.488090i
\(631\) −29.2446 13.0205i −1.16421 0.518339i −0.268631 0.963243i \(-0.586571\pi\)
−0.895578 + 0.444904i \(0.853238\pi\)
\(632\) −65.8139 13.9892i −2.61794 0.556460i
\(633\) 17.9135 3.80763i 0.711998 0.151340i
\(634\) 4.78939 2.13237i 0.190211 0.0846874i
\(635\) −3.36813 + 10.3660i −0.133660 + 0.411364i
\(636\) −0.490035 + 1.50817i −0.0194312 + 0.0598029i
\(637\) −1.95694 + 0.871285i −0.0775367 + 0.0345216i
\(638\) 14.5044 3.08300i 0.574234 0.122057i
\(639\) 38.9293 + 8.27468i 1.54002 + 0.327341i
\(640\) 18.7792 + 8.36102i 0.742311 + 0.330498i
\(641\) 13.3629 14.8410i 0.527803 0.586185i −0.419005 0.907984i \(-0.637621\pi\)
0.946808 + 0.321799i \(0.104288\pi\)
\(642\) −5.84001 + 55.5640i −0.230487 + 2.19294i
\(643\) −10.2634 7.45682i −0.404750 0.294068i 0.366723 0.930330i \(-0.380480\pi\)
−0.771473 + 0.636262i \(0.780480\pi\)
\(644\) 3.86448 + 36.7680i 0.152282 + 1.44886i
\(645\) 10.7426 18.6068i 0.422991 0.732642i
\(646\) −0.328427 0.568852i −0.0129218 0.0223812i
\(647\) 18.3536 13.3347i 0.721554 0.524240i −0.165326 0.986239i \(-0.552868\pi\)
0.886880 + 0.461999i \(0.152868\pi\)
\(648\) 28.0165 + 31.1155i 1.10059 + 1.22233i
\(649\) 16.3158 + 50.2148i 0.640451 + 1.97110i
\(650\) 17.6569 0.692559
\(651\) 0 0
\(652\) −49.6569 −1.94471
\(653\) 6.84230 + 21.0584i 0.267760 + 0.824080i 0.991045 + 0.133530i \(0.0426313\pi\)
−0.723285 + 0.690550i \(0.757369\pi\)
\(654\) −20.1690 22.4000i −0.788671 0.875908i
\(655\) 3.84878 2.79631i 0.150384 0.109261i
\(656\) −14.2279 24.6435i −0.555507 0.962166i
\(657\) −5.41421 + 9.37769i −0.211229 + 0.365859i
\(658\) −1.00942 9.60395i −0.0393511 0.374401i
\(659\) −7.81256 5.67616i −0.304334 0.221112i 0.425127 0.905134i \(-0.360229\pi\)
−0.729462 + 0.684022i \(0.760229\pi\)
\(660\) −5.06501 + 48.1904i −0.197155 + 1.87581i
\(661\) 22.1764 24.6294i 0.862563 0.957973i −0.136905 0.990584i \(-0.543716\pi\)
0.999468 + 0.0326112i \(0.0103823\pi\)
\(662\) −1.67035 0.743688i −0.0649200 0.0289043i
\(663\) −0.740809 0.157464i −0.0287706 0.00611539i
\(664\) 17.5779 3.73629i 0.682153 0.144996i
\(665\) 3.49744 1.55716i 0.135625 0.0603841i
\(666\) −2.11010 + 6.49422i −0.0817647 + 0.251646i
\(667\) 1.44814 4.45693i 0.0560723 0.172573i
\(668\) −29.9253 + 13.3236i −1.15785 + 0.515506i
\(669\) 4.08041 0.867319i 0.157758 0.0335325i
\(670\) −12.3803 2.63151i −0.478292 0.101664i
\(671\) −13.5464 6.03126i −0.522955 0.232834i
\(672\) −6.18453 + 6.86862i −0.238574 + 0.264963i
\(673\) −2.15923 + 20.5437i −0.0832322 + 0.791901i 0.870687 + 0.491838i \(0.163675\pi\)
−0.953919 + 0.300064i \(0.902992\pi\)
\(674\) −26.0035 18.8927i −1.00162 0.727719i
\(675\) 0.173188 + 1.64778i 0.00666603 + 0.0634230i
\(676\) 18.4853 32.0174i 0.710972 1.23144i
\(677\) −20.2990 35.1589i −0.780154 1.35127i −0.931852 0.362839i \(-0.881808\pi\)
0.151698 0.988427i \(-0.451526\pi\)
\(678\) −25.1945 + 18.3049i −0.967590 + 0.702995i
\(679\) 17.4925 + 19.4274i 0.671301 + 0.745555i
\(680\) 0.234037 + 0.720292i 0.00897491 + 0.0276219i
\(681\) 37.6274 1.44189
\(682\) 0 0
\(683\) −46.6274 −1.78415 −0.892074 0.451889i \(-0.850750\pi\)
−0.892074 + 0.451889i \(0.850750\pi\)
\(684\) 5.30631 + 16.3311i 0.202892 + 0.624437i
\(685\) −5.00863 5.56265i −0.191370 0.212538i
\(686\) −38.5314 + 27.9947i −1.47114 + 1.06884i
\(687\) 13.8640 + 24.0131i 0.528943 + 0.916156i
\(688\) −13.3492 + 23.1216i −0.508935 + 0.881501i
\(689\) −0.0327915 0.311990i −0.00124926 0.0118859i
\(690\) 18.8612 + 13.7035i 0.718033 + 0.521682i
\(691\) −1.47083 + 13.9940i −0.0559529 + 0.532356i 0.930263 + 0.366893i \(0.119579\pi\)
−0.986216 + 0.165463i \(0.947088\pi\)
\(692\) −36.6677 + 40.7236i −1.39390 + 1.54808i
\(693\) −32.7040 14.5608i −1.24232 0.553118i
\(694\) 53.2659 + 11.3220i 2.02194 + 0.429777i
\(695\) 0 0
\(696\) −11.4059 + 5.07822i −0.432338 + 0.192489i
\(697\) −0.502900 + 1.54777i −0.0190487 + 0.0586258i
\(698\) −26.1952 + 80.6206i −0.991504 + 3.05154i
\(699\) 32.7040 14.5608i 1.23698 0.550739i
\(700\) 36.1627 7.68661i 1.36682 0.290527i
\(701\) −3.40912 0.724631i −0.128761 0.0273689i 0.143081 0.989711i \(-0.454299\pi\)
−0.271841 + 0.962342i \(0.587633\pi\)
\(702\) −1.67035 0.743688i −0.0630433 0.0280687i
\(703\) 1.06110 1.17847i 0.0400201 0.0444468i
\(704\) −5.38603 + 51.2446i −0.202994 + 1.93136i
\(705\) −3.23607 2.35114i −0.121877 0.0885491i
\(706\) 0.757062 + 7.20296i 0.0284924 + 0.271087i
\(707\) −10.2426 + 17.7408i −0.385214 + 0.667210i
\(708\) −46.5416 80.6125i −1.74914 3.02960i
\(709\) 4.29888 3.12332i 0.161448 0.117299i −0.504128 0.863629i \(-0.668186\pi\)
0.665576 + 0.746330i \(0.268186\pi\)
\(710\) 22.7307 + 25.2450i 0.853070 + 0.947430i
\(711\) −13.3226 41.0026i −0.499635 1.53772i
\(712\) 55.1127 2.06544
\(713\) 0 0
\(714\) −2.41421 −0.0903497
\(715\) −2.96217 9.11662i −0.110779 0.340942i
\(716\) −17.3104 19.2252i −0.646922 0.718479i
\(717\) −24.9169 + 18.1032i −0.930539 + 0.676076i
\(718\) 32.4706 + 56.2407i 1.21179 + 2.09888i
\(719\) −3.03553 + 5.25770i −0.113206 + 0.196079i −0.917061 0.398746i \(-0.869445\pi\)
0.803855 + 0.594825i \(0.202779\pi\)
\(720\) −0.886953 8.43880i −0.0330548 0.314495i
\(721\) 23.5765 + 17.1293i 0.878034 + 0.637929i
\(722\) −4.16013 + 39.5810i −0.154824 + 1.47305i
\(723\) −39.8313 + 44.2371i −1.48134 + 1.64520i
\(724\) −36.0716 16.0601i −1.34059 0.596869i
\(725\) −4.58388 0.974335i −0.170241 0.0361859i
\(726\) −93.9836 + 19.9768i −3.48806 + 0.741410i
\(727\) −42.7910 + 19.0518i −1.58703 + 0.706592i −0.995052 0.0993605i \(-0.968320\pi\)
−0.591980 + 0.805953i \(0.701654\pi\)
\(728\) −6.02128 + 18.5316i −0.223164 + 0.686827i
\(729\) −7.36339 + 22.6622i −0.272718 + 0.839340i
\(730\) −8.44357 + 3.75932i −0.312511 + 0.139139i
\(731\) 1.49355 0.317463i 0.0552408 0.0117418i
\(732\) 25.5709 + 5.43526i 0.945126 + 0.200893i
\(733\) −27.0660 12.0506i −0.999705 0.445097i −0.159402 0.987214i \(-0.550957\pi\)
−0.840303 + 0.542116i \(0.817623\pi\)
\(734\) −29.4220 + 32.6765i −1.08599 + 1.20611i
\(735\) −0.295651 + 2.81293i −0.0109053 + 0.103757i
\(736\) 5.13171 + 3.72841i 0.189157 + 0.137431i
\(737\) −2.87299 27.3347i −0.105828 1.00689i
\(738\) 32.3848 56.0921i 1.19210 2.06478i
\(739\) 3.93503 + 6.81567i 0.144752 + 0.250718i 0.929281 0.369375i \(-0.120428\pi\)
−0.784528 + 0.620093i \(0.787095\pi\)
\(740\) −3.09726 + 2.25029i −0.113858 + 0.0827224i
\(741\) −4.68391 5.20201i −0.172068 0.191101i
\(742\) −0.309017 0.951057i −0.0113444 0.0349144i
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) −7.46033 22.9605i −0.273142 0.840645i
\(747\) 7.70485 + 8.55710i 0.281906 + 0.313088i
\(748\) −2.78597 + 2.02413i −0.101865 + 0.0740094i
\(749\) −11.5711 20.0417i −0.422798 0.732307i
\(750\) 26.2279 45.4281i 0.957708 1.65880i
\(751\) 0.129891 + 1.23583i 0.00473980 + 0.0450962i 0.996636 0.0819535i \(-0.0261159\pi\)
−0.991896 + 0.127050i \(0.959449\pi\)
\(752\) 4.02127 + 2.92162i 0.146641 + 0.106541i
\(753\) 0.904888 8.60943i 0.0329759 0.313745i
\(754\) 3.46046 3.84323i 0.126022 0.139962i
\(755\) −15.8169 7.04212i −0.575634 0.256289i
\(756\) −3.74477 0.795975i −0.136196 0.0289493i
\(757\) −33.8995 + 7.20557i −1.23210 + 0.261891i −0.777544 0.628828i \(-0.783535\pi\)
−0.454555 + 0.890719i \(0.650202\pi\)
\(758\) 64.8079 28.8544i 2.35393 1.04804i
\(759\) −15.6447 + 48.1495i −0.567868 + 1.74772i
\(760\) −2.16312 + 6.65740i −0.0784646 + 0.241489i
\(761\) −18.6873 + 8.32014i −0.677416 + 0.301605i −0.716456 0.697633i \(-0.754237\pi\)
0.0390399 + 0.999238i \(0.487570\pi\)
\(762\) 62.1387 13.2080i 2.25105 0.478475i
\(763\) 12.2124 + 2.59584i 0.442120 + 0.0939756i
\(764\) −3.84895 1.71366i −0.139250 0.0619982i
\(765\) −0.324717 + 0.360634i −0.0117402 + 0.0130388i
\(766\) 6.28349 59.7834i 0.227032 2.16006i
\(767\) 14.8974 + 10.8236i 0.537914 + 0.390818i
\(768\) −7.56319 71.9590i −0.272913 2.59660i
\(769\) 13.0563 22.6143i 0.470824 0.815491i −0.528619 0.848859i \(-0.677290\pi\)
0.999443 + 0.0333680i \(0.0106233\pi\)
\(770\) −15.2782 26.4626i −0.550587 0.953645i
\(771\) −0.612717 + 0.445165i −0.0220664 + 0.0160322i
\(772\) −54.1602 60.1510i −1.94927 2.16488i
\(773\) 5.56231 + 17.1190i 0.200062 + 0.615728i 0.999880 + 0.0154855i \(0.00492938\pi\)
−0.799818 + 0.600243i \(0.795071\pi\)
\(774\) −60.7696 −2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) −1.80108 5.54316i −0.0646135 0.198860i
\(778\) −27.6918 30.7549i −0.992800 1.10262i
\(779\) −12.1689 + 8.84125i −0.435997 + 0.316771i
\(780\) 8.44975 + 14.6354i 0.302549 + 0.524031i
\(781\) −36.8848 + 63.8863i −1.31984 + 2.28603i
\(782\) 0.173188 + 1.64778i 0.00619321 + 0.0589244i
\(783\) 0.392601 + 0.285241i 0.0140304 + 0.0101937i
\(784\) 0.367388 3.49546i 0.0131210 0.124838i
\(785\) 9.92215 11.0197i 0.354137 0.393309i
\(786\) −25.3307 11.2780i −0.903517 0.402272i
\(787\) −38.7207 8.23035i −1.38025 0.293380i −0.542782 0.839874i \(-0.682629\pi\)
−0.837463 + 0.546493i \(0.815962\pi\)
\(788\) −13.0516 + 2.77420i −0.464943 + 0.0988266i
\(789\) 1.51361 0.673903i 0.0538860 0.0239916i
\(790\) 11.3715 34.9979i 0.404580 1.24517i
\(791\) 3.98616 12.2681i 0.141732 0.436205i
\(792\) 59.7969 26.6233i 2.12479 0.946017i
\(793\) −5.05856 + 1.07523i −0.179635 + 0.0381826i
\(794\) −38.9988 8.28945i −1.38402 0.294182i
\(795\) −0.378403 0.168476i −0.0134206 0.00597522i
\(796\) 39.9264 44.3427i 1.41515 1.57169i
\(797\) 2.34727 22.3328i 0.0831447 0.791069i −0.870911 0.491441i \(-0.836471\pi\)
0.954056 0.299629i \(-0.0968628\pi\)
\(798\) −18.0522 13.1157i −0.639040 0.464290i
\(799\) −0.0297144 0.282714i −0.00105122 0.0100017i
\(800\) 3.17157 5.49333i 0.112132 0.194218i
\(801\) 17.6569 + 30.5826i 0.623874 + 1.08058i
\(802\) −41.3510 + 30.0433i −1.46016 + 1.06087i
\(803\) −13.4302 14.9157i −0.473940 0.526364i
\(804\) 14.9737 + 46.0842i 0.528081 + 1.62527i
\(805\) −9.65685 −0.340359
\(806\) 0 0
\(807\) 76.8406 2.70492
\(808\) −11.5745 35.6226i −0.407189 1.25320i
\(809\) −30.7603 34.1628i −1.08147 1.20110i −0.978464 0.206419i \(-0.933819\pi\)
−0.103011 0.994680i \(-0.532848\pi\)
\(810\) −18.5261 + 13.4600i −0.650940 + 0.472936i
\(811\) −5.86396 10.1567i −0.205912 0.356649i 0.744511 0.667610i \(-0.232683\pi\)
−0.950423 + 0.310961i \(0.899349\pi\)
\(812\) 5.41421 9.37769i 0.190002 0.329093i
\(813\) −5.88331 55.9759i −0.206337 1.96316i
\(814\) −10.2396 7.43951i −0.358898 0.260755i
\(815\) 1.35579 12.8995i 0.0474914 0.451850i
\(816\) 0.831489 0.923462i 0.0291079 0.0323276i
\(817\) 12.8926 + 5.74015i 0.451055 + 0.200822i
\(818\) 22.0634 + 4.68973i 0.771430 + 0.163973i
\(819\) −12.2124 + 2.59584i −0.426737 + 0.0907058i
\(820\) 33.1742 14.7701i 1.15849 0.515795i
\(821\) −2.62210 + 8.06998i −0.0915118 + 0.281644i −0.986329 0.164789i \(-0.947306\pi\)
0.894817 + 0.446433i \(0.147306\pi\)
\(822\) −13.4816 + 41.4921i −0.470225 + 1.44720i
\(823\) −5.67604 + 2.52714i −0.197854 + 0.0880905i −0.503272 0.864128i \(-0.667871\pi\)
0.305418 + 0.952219i \(0.401204\pi\)
\(824\) −52.1199 + 11.0784i −1.81568 + 0.385935i
\(825\) 49.5211 + 10.5260i 1.72410 + 0.366469i
\(826\) 53.6237 + 23.8748i 1.86581 + 0.830711i
\(827\) 11.4425 12.7082i 0.397894 0.441906i −0.510591 0.859824i \(-0.670573\pi\)
0.908485 + 0.417918i \(0.137240\pi\)
\(828\) 4.52752 43.0764i 0.157342 1.49701i
\(829\) 37.5598 + 27.2888i 1.30450 + 0.947778i 0.999989 0.00472973i \(-0.00150553\pi\)
0.304515 + 0.952507i \(0.401506\pi\)
\(830\) 1.02735 + 9.77459i 0.0356599 + 0.339281i
\(831\) −17.0711 + 29.5680i −0.592189 + 1.02570i
\(832\) 8.98528 + 15.5630i 0.311509 + 0.539549i
\(833\) −0.162621 + 0.118151i −0.00563447 + 0.00409368i
\(834\) 0 0
\(835\) −2.64406 8.13757i −0.0915014 0.281612i
\(836\) −31.8284 −1.10081
\(837\) 0 0
\(838\) −67.5980 −2.33513
\(839\) 9.46439 + 29.1284i 0.326747 + 1.00562i 0.970646 + 0.240513i \(0.0773158\pi\)
−0.643899 + 0.765111i \(0.722684\pi\)
\(840\) 17.2153 + 19.1196i 0.593986 + 0.659688i
\(841\) 22.3510 16.2390i 0.770726 0.559965i
\(842\) −3.44975 5.97514i −0.118886 0.205917i
\(843\) 2.41421 4.18154i 0.0831499 0.144020i
\(844\) −3.03568 28.8825i −0.104492 0.994178i
\(845\) 7.81256 + 5.67616i 0.268760 + 0.195266i
\(846\) −1.18260 + 11.2517i −0.0406588 + 0.386842i
\(847\) 26.6307 29.5764i 0.915042 1.01626i
\(848\) 0.470219 + 0.209355i 0.0161474 + 0.00718928i
\(849\) −5.53324 1.17613i −0.189900 0.0403645i
\(850\) 1.62065 0.344479i 0.0555878 0.0118155i
\(851\) −3.65418 + 1.62695i −0.125264 + 0.0557710i
\(852\) 40.1888 123.689i 1.37685 4.23750i
\(853\) −10.0385 + 30.8953i −0.343712 + 1.05784i 0.618558 + 0.785739i \(0.287717\pi\)
−0.962270 + 0.272097i \(0.912283\pi\)
\(854\) −15.0601 + 6.70517i −0.515344 + 0.229446i
\(855\) −4.38727 + 0.932542i −0.150041 + 0.0318923i
\(856\) 41.3891 + 8.79751i 1.41465 + 0.300693i
\(857\) −2.29731 1.02283i −0.0784746 0.0349391i 0.367124 0.930172i \(-0.380342\pi\)
−0.445599 + 0.895233i \(0.647009\pi\)
\(858\) −37.3844 + 41.5195i −1.27628 + 1.41745i
\(859\) 1.31865 12.5461i 0.0449918 0.428068i −0.948722 0.316113i \(-0.897622\pi\)
0.993713 0.111955i \(-0.0357112\pi\)
\(860\) −27.5641 20.0265i −0.939927 0.682897i
\(861\) 5.77878 + 54.9814i 0.196940 + 1.87376i
\(862\) −30.4706 + 52.7766i −1.03783 + 1.79758i
\(863\) 19.6924 + 34.1082i 0.670337 + 1.16106i 0.977809 + 0.209500i \(0.0671836\pi\)
−0.307472 + 0.951557i \(0.599483\pi\)
\(864\) −0.531406 + 0.386089i −0.0180788 + 0.0131350i
\(865\) −9.57774 10.6372i −0.325653 0.361674i
\(866\) 26.1952 + 80.6206i 0.890150 + 2.73960i
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) −2.11010 6.49422i −0.0715391 0.220175i
\(871\) −6.41414 7.12363i −0.217335 0.241375i
\(872\) −18.4686 + 13.4182i −0.625425 + 0.454398i
\(873\) −15.3137 26.5241i −0.518291 0.897705i
\(874\) −7.65685 + 13.2621i −0.258997 + 0.448596i
\(875\) 2.27119 + 21.6089i 0.0767801 + 0.730514i
\(876\) 28.6269 + 20.7986i 0.967213 + 0.702721i
\(877\) −5.03530 + 47.9077i −0.170030 + 1.61773i 0.493615 + 0.869680i \(0.335675\pi\)
−0.663645 + 0.748047i \(0.730992\pi\)
\(878\) 19.4999 21.6568i 0.658090 0.730883i
\(879\) 54.6940 + 24.3513i 1.84478 + 0.821351i
\(880\) 15.3842 + 3.27002i 0.518602 + 0.110232i
\(881\) −33.5639 + 7.13422i −1.13080 + 0.240358i −0.735057 0.678005i \(-0.762845\pi\)
−0.395738 + 0.918363i \(0.629511\pi\)
\(882\) 7.30836 3.25389i 0.246085 0.109564i
\(883\) 8.12229 24.9978i 0.273337 0.841244i −0.716318 0.697774i \(-0.754174\pi\)
0.989655 0.143470i \(-0.0458260\pi\)
\(884\) −0.371133 + 1.14223i −0.0124825 + 0.0384173i
\(885\) 22.2117 9.88928i 0.746637 0.332424i
\(886\) −31.2719 + 6.64705i −1.05060 + 0.223312i
\(887\) −52.1606 11.0871i −1.75138 0.372268i −0.783055 0.621953i \(-0.786339\pi\)
−0.968327 + 0.249685i \(0.919673\pi\)
\(888\) 9.73552 + 4.33453i 0.326703 + 0.145457i
\(889\) −17.6073 + 19.5549i −0.590530 + 0.655850i
\(890\) −3.15071 + 29.9770i −0.105612 + 1.00483i
\(891\) −40.2307 29.2293i −1.34778 0.979220i
\(892\) −0.691479 6.57898i −0.0231524 0.220281i
\(893\) 1.31371 2.27541i 0.0439616 0.0761437i
\(894\) −2.91421 5.04757i −0.0974659 0.168816i
\(895\) 5.46682 3.97188i 0.182736 0.132765i
\(896\) 33.2072 + 36.8804i 1.10938 + 1.23209i
\(897\) 5.45627 + 16.7927i 0.182179 + 0.560691i
\(898\) −11.1716 −0.372800
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) −0.00909661 0.0279965i −0.000303052 0.000932698i
\(902\) 80.3317 + 89.2174i 2.67475 + 2.97061i
\(903\) 41.9638 30.4885i 1.39647 1.01459i
\(904\) 11.7929 + 20.4259i 0.392226 + 0.679355i
\(905\) 5.15685 8.93193i 0.171420 0.296908i
\(906\) 10.5481 + 100.359i 0.350439 + 3.33420i
\(907\) −44.7497 32.5126i −1.48589 1.07956i −0.975599 0.219561i \(-0.929537\pi\)
−0.510292 0.860001i \(-0.670463\pi\)
\(908\) 6.23711 59.3422i 0.206986 1.96934i
\(909\) 16.0591 17.8355i 0.532648 0.591565i
\(910\) −9.73552 4.33453i −0.322729 0.143688i
\(911\) −47.9700 10.1963i −1.58932 0.337819i −0.673427 0.739253i \(-0.735179\pi\)
−0.915888 + 0.401434i \(0.868512\pi\)
\(912\) 11.2343 2.38792i 0.372005 0.0790721i
\(913\) −19.4979 + 8.68104i −0.645287 + 0.287300i
\(914\) −23.2111 + 71.4364i −0.767755 + 2.36291i
\(915\) −2.11010 + 6.49422i −0.0697578 + 0.214692i
\(916\) 40.1691 17.8844i 1.32722 0.590919i
\(917\) 11.2343 2.38792i 0.370989 0.0788562i
\(918\) −0.167824 0.0356720i −0.00553900 0.00117735i
\(919\) −13.7950 6.14193i −0.455055 0.202604i 0.166392 0.986060i \(-0.446788\pi\)
−0.621447 + 0.783456i \(0.713455\pi\)
\(920\) 11.8147 13.1216i 0.389520 0.432606i
\(921\) −0.695831 + 6.62039i −0.0229284 + 0.218149i
\(922\) 51.0592 + 37.0967i 1.68155 + 1.22172i
\(923\) 2.68930 + 25.5870i 0.0885194 + 0.842206i
\(924\) −58.4914 + 101.310i −1.92423 + 3.33286i
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) 48.7710 35.4342i 1.60271 1.16444i
\(927\) −22.8455 25.3726i −0.750346 0.833344i
\(928\) −0.574112 1.76693i −0.0188461 0.0580025i
\(929\) 24.4853 0.803336 0.401668 0.915785i \(-0.368431\pi\)
0.401668 + 0.915785i \(0.368431\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) −17.5428 53.9911i −0.574632 1.76854i
\(933\) 18.2764 + 20.2980i 0.598344 + 0.664528i
\(934\) −15.6251 + 11.3523i −0.511269 + 0.371459i
\(935\) −0.449747 0.778985i −0.0147083 0.0254755i
\(936\) 11.4142 19.7700i 0.373085 0.646203i
\(937\) −4.00487 38.1038i −0.130834 1.24480i −0.841106 0.540871i \(-0.818095\pi\)
0.710272 0.703927i \(-0.248572\pi\)
\(938\) −24.7206 17.9606i −0.807156 0.586433i
\(939\) 0.966119 9.19201i 0.0315281 0.299970i
\(940\) −4.24439 + 4.71388i −0.138437 + 0.153750i
\(941\) −31.9741 14.2358i −1.04233 0.464073i −0.187106 0.982340i \(-0.559911\pi\)
−0.855219 + 0.518266i \(0.826578\pi\)
\(942\) −84.5378 17.9691i −2.75439 0.585464i
\(943\) 37.1120 7.88840i 1.20853 0.256882i
\(944\) −27.6011 + 12.2888i −0.898340 + 0.399967i
\(945\) 0.309017 0.951057i 0.0100523 0.0309379i
\(946\) 34.8076 107.127i 1.13169 3.48299i
\(947\) 35.5365 15.8218i 1.15478 0.514141i 0.262192 0.965016i \(-0.415555\pi\)
0.892587 + 0.450875i \(0.148888\pi\)
\(948\) −137.804 + 29.2911i −4.47565 + 0.951330i
\(949\) −6.84703 1.45538i −0.222264 0.0472437i
\(950\) 13.9898 + 6.22865i 0.453888 + 0.202084i
\(951\) 3.50801 3.89604i 0.113755 0.126338i
\(952\) −0.191123 + 1.81841i −0.00619432 + 0.0589350i
\(953\) −16.5729 12.0409i −0.536850 0.390045i 0.286064 0.958211i \(-0.407653\pi\)
−0.822914 + 0.568166i \(0.807653\pi\)
\(954\) 0.122463 + 1.16515i 0.00396488 + 0.0377233i
\(955\) 0.550253 0.953065i 0.0178058 0.0308405i
\(956\) 24.4203 + 42.2972i 0.789809 + 1.36799i
\(957\) 11.9964 8.71593i 0.387790 0.281746i
\(958\) −15.7147 17.4530i −0.507720 0.563880i
\(959\) −5.58427 17.1866i −0.180325 0.554984i
\(960\) 23.7279 0.765815
\(961\) 0 0
\(962\) −4.41421 −0.142320
\(963\) 8.37828 + 25.7857i 0.269986 + 0.830933i
\(964\) 63.1639 + 70.1506i 2.03437 + 2.25940i
\(965\) 17.1043 12.4270i 0.550608 0.400040i
\(966\) 28.1421 + 48.7436i 0.905458 + 1.56830i
\(967\) 23.2782 40.3190i 0.748576 1.29657i −0.199930 0.979810i \(-0.564071\pi\)
0.948505 0.316761i \(-0.102595\pi\)
\(968\) 7.60649 + 72.3709i 0.244482 + 2.32609i
\(969\) −0.531406 0.386089i −0.0170712 0.0124030i
\(970\) 2.73260 25.9989i 0.0877384 0.834775i
\(971\) 39.2770 43.6215i 1.26046 1.39988i 0.380532 0.924768i \(-0.375741\pi\)
0.879925 0.475112i \(-0.157592\pi\)
\(972\) 75.7436 + 33.7232i 2.42948 + 1.08167i
\(973\) 0 0
\(974\) −41.0534 + 8.72617i −1.31544 + 0.279605i
\(975\) 16.1303 7.18169i 0.516584 0.229998i
\(976\) 2.62210 8.06998i 0.0839313 0.258314i
\(977\) 5.09423 15.6784i 0.162979 0.501598i −0.835903 0.548878i \(-0.815055\pi\)
0.998882 + 0.0472800i \(0.0150553\pi\)
\(978\) −69.0622 + 30.7485i −2.20837 + 0.983228i
\(979\) −64.0255 + 13.6090i −2.04626 + 0.434947i
\(980\) 4.38727 + 0.932542i 0.140146 + 0.0297890i
\(981\) −13.3628 5.94951i −0.426642 0.189953i
\(982\) −7.13083 + 7.91959i −0.227554 + 0.252724i
\(983\) −5.10523 + 48.5731i −0.162832 + 1.54924i 0.542313 + 0.840177i \(0.317549\pi\)
−0.705145 + 0.709064i \(0.749118\pi\)
\(984\) −81.7781 59.4153i −2.60699 1.89409i
\(985\) −0.364311 3.46619i −0.0116079 0.110442i
\(986\) 0.242641 0.420266i 0.00772725 0.0133840i
\(987\) −4.82843 8.36308i −0.153691 0.266200i
\(988\) −8.98050 + 6.52471i −0.285708 + 0.207579i
\(989\) −23.8197 26.4545i −0.757422 0.841203i
\(990\) 11.0625 + 34.0469i 0.351589 + 1.08208i
\(991\) −19.9411 −0.633451 −0.316725 0.948517i \(-0.602583\pi\)
−0.316725 + 0.948517i \(0.602583\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 25.3432 + 77.9982i 0.803836 + 2.47395i
\(995\) 10.4289 + 11.5825i 0.330619 + 0.367190i
\(996\) 30.4412 22.1168i 0.964567 0.700799i
\(997\) 23.2990 + 40.3550i 0.737886 + 1.27806i 0.953445 + 0.301566i \(0.0975093\pi\)
−0.215559 + 0.976491i \(0.569157\pi\)
\(998\) 48.5416 84.0766i 1.53656 2.66140i
\(999\) −0.0432971 0.411944i −0.00136986 0.0130333i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.o.547.1 16
31.2 even 5 inner 961.2.g.o.235.2 16
31.3 odd 30 961.2.c.a.521.1 4
31.4 even 5 inner 961.2.g.o.816.2 16
31.5 even 3 961.2.d.l.531.1 8
31.6 odd 6 961.2.g.r.844.1 16
31.7 even 15 inner 961.2.g.o.732.2 16
31.8 even 5 inner 961.2.g.o.846.1 16
31.9 even 15 961.2.d.l.628.1 8
31.10 even 15 961.2.d.l.388.2 8
31.11 odd 30 961.2.d.i.374.2 8
31.12 odd 30 961.2.g.r.338.2 16
31.13 odd 30 961.2.a.c.1.1 2
31.14 even 15 inner 961.2.g.o.448.1 16
31.15 odd 10 961.2.c.a.439.1 4
31.16 even 5 31.2.c.a.5.1 4
31.17 odd 30 961.2.g.r.448.1 16
31.18 even 15 961.2.a.a.1.1 2
31.19 even 15 inner 961.2.g.o.338.2 16
31.20 even 15 961.2.d.l.374.2 8
31.21 odd 30 961.2.d.i.388.2 8
31.22 odd 30 961.2.d.i.628.1 8
31.23 odd 10 961.2.g.r.846.1 16
31.24 odd 30 961.2.g.r.732.2 16
31.25 even 3 inner 961.2.g.o.844.1 16
31.26 odd 6 961.2.d.i.531.1 8
31.27 odd 10 961.2.g.r.816.2 16
31.28 even 15 31.2.c.a.25.1 yes 4
31.29 odd 10 961.2.g.r.235.2 16
31.30 odd 2 961.2.g.r.547.1 16
93.44 even 30 8649.2.a.k.1.2 2
93.47 odd 10 279.2.h.c.253.2 4
93.59 odd 30 279.2.h.c.118.2 4
93.80 odd 30 8649.2.a.l.1.2 2
124.47 odd 10 496.2.i.h.129.1 4
124.59 odd 30 496.2.i.h.273.1 4
155.28 odd 60 775.2.o.d.149.4 8
155.47 odd 20 775.2.o.d.749.1 8
155.59 even 30 775.2.e.e.676.2 4
155.78 odd 20 775.2.o.d.749.4 8
155.109 even 10 775.2.e.e.501.2 4
155.152 odd 60 775.2.o.d.149.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 31.16 even 5
31.2.c.a.25.1 yes 4 31.28 even 15
279.2.h.c.118.2 4 93.59 odd 30
279.2.h.c.253.2 4 93.47 odd 10
496.2.i.h.129.1 4 124.47 odd 10
496.2.i.h.273.1 4 124.59 odd 30
775.2.e.e.501.2 4 155.109 even 10
775.2.e.e.676.2 4 155.59 even 30
775.2.o.d.149.1 8 155.152 odd 60
775.2.o.d.149.4 8 155.28 odd 60
775.2.o.d.749.1 8 155.47 odd 20
775.2.o.d.749.4 8 155.78 odd 20
961.2.a.a.1.1 2 31.18 even 15
961.2.a.c.1.1 2 31.13 odd 30
961.2.c.a.439.1 4 31.15 odd 10
961.2.c.a.521.1 4 31.3 odd 30
961.2.d.i.374.2 8 31.11 odd 30
961.2.d.i.388.2 8 31.21 odd 30
961.2.d.i.531.1 8 31.26 odd 6
961.2.d.i.628.1 8 31.22 odd 30
961.2.d.l.374.2 8 31.20 even 15
961.2.d.l.388.2 8 31.10 even 15
961.2.d.l.531.1 8 31.5 even 3
961.2.d.l.628.1 8 31.9 even 15
961.2.g.o.235.2 16 31.2 even 5 inner
961.2.g.o.338.2 16 31.19 even 15 inner
961.2.g.o.448.1 16 31.14 even 15 inner
961.2.g.o.547.1 16 1.1 even 1 trivial
961.2.g.o.732.2 16 31.7 even 15 inner
961.2.g.o.816.2 16 31.4 even 5 inner
961.2.g.o.844.1 16 31.25 even 3 inner
961.2.g.o.846.1 16 31.8 even 5 inner
961.2.g.r.235.2 16 31.29 odd 10
961.2.g.r.338.2 16 31.12 odd 30
961.2.g.r.448.1 16 31.17 odd 30
961.2.g.r.547.1 16 31.30 odd 2
961.2.g.r.732.2 16 31.24 odd 30
961.2.g.r.816.2 16 31.27 odd 10
961.2.g.r.844.1 16 31.6 odd 6
961.2.g.r.846.1 16 31.23 odd 10
8649.2.a.k.1.2 2 93.44 even 30
8649.2.a.l.1.2 2 93.80 odd 30