Properties

Label 961.2.d.l.531.1
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.1
Root \(1.14412 + 0.831254i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.l.628.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.746033 - 2.29605i) q^{2} +(-0.746033 + 2.29605i) q^{3} +(-3.09726 + 2.25029i) q^{4} +1.00000 q^{5} +5.82843 q^{6} +(-1.95314 + 1.41904i) q^{7} +(3.57117 + 2.59461i) q^{8} +(-2.28825 - 1.66251i) q^{9} +(-0.746033 - 2.29605i) q^{10} +(4.24139 - 3.08155i) q^{11} +(-2.85613 - 8.79027i) q^{12} +(0.565015 - 1.73894i) q^{13} +(4.71530 + 3.42586i) q^{14} +(-0.746033 + 2.29605i) q^{15} +(0.927051 - 2.85317i) q^{16} +(0.138805 + 0.100848i) q^{17} +(-2.11010 + 6.49422i) q^{18} +(0.490035 + 1.50817i) q^{19} +(-3.09726 + 2.25029i) q^{20} +(-1.80108 - 5.54316i) q^{21} +(-10.2396 - 7.43951i) q^{22} +(3.23607 + 2.35114i) q^{23} +(-8.62158 + 6.26394i) q^{24} -4.00000 q^{25} -4.41421 q^{26} +(-0.335106 + 0.243469i) q^{27} +(2.85613 - 8.79027i) q^{28} +(-0.362036 - 1.11423i) q^{29} +5.82843 q^{30} +1.58579 q^{32} +(3.91118 + 12.0374i) q^{33} +(0.127999 - 0.393941i) q^{34} +(-1.95314 + 1.41904i) q^{35} +10.8284 q^{36} +1.00000 q^{37} +(3.09726 - 2.25029i) q^{38} +(3.57117 + 2.59461i) q^{39} +(3.57117 + 2.59461i) q^{40} +(2.93111 + 9.02104i) q^{41} +(-11.3837 + 8.27077i) q^{42} +(2.75010 + 8.46392i) q^{43} +(-6.20230 + 19.0887i) q^{44} +(-2.28825 - 1.66251i) q^{45} +(2.98413 - 9.18421i) q^{46} +(-0.511996 + 1.57576i) q^{47} +(5.85942 + 4.25712i) q^{48} +(-0.362036 + 1.11423i) q^{49} +(2.98413 + 9.18421i) q^{50} +(-0.335106 + 0.243469i) q^{51} +(2.16312 + 6.65740i) q^{52} +(-0.138805 - 0.100848i) q^{53} +(0.809017 + 0.587785i) q^{54} +(4.24139 - 3.08155i) q^{55} -10.6569 q^{56} -3.82843 q^{57} +(-2.28825 + 1.66251i) q^{58} +(-3.11213 + 9.57815i) q^{59} +(-2.85613 - 8.79027i) q^{60} +2.82843 q^{61} +6.82843 q^{63} +(-3.03715 - 9.34739i) q^{64} +(0.565015 - 1.73894i) q^{65} +(24.7206 - 17.9606i) q^{66} -5.24264 q^{67} -0.656854 q^{68} +(-7.81256 + 5.67616i) q^{69} +(4.71530 + 3.42586i) q^{70} +(11.3837 + 8.27077i) q^{71} +(-3.85816 - 11.8742i) q^{72} +(-3.09726 + 2.25029i) q^{73} +(-0.746033 - 2.29605i) q^{74} +(2.98413 - 9.18421i) q^{75} +(-4.91160 - 3.56848i) q^{76} +(-3.91118 + 12.0374i) q^{77} +(3.29315 - 10.1353i) q^{78} +(12.3316 + 8.95940i) q^{79} +(0.927051 - 2.85317i) q^{80} +(-2.93111 - 9.02104i) q^{81} +(18.5261 - 13.4600i) q^{82} +(1.25803 + 3.87182i) q^{83} +(18.0522 + 13.1157i) q^{84} +(0.138805 + 0.100848i) q^{85} +(17.3820 - 12.6287i) q^{86} +2.82843 q^{87} +23.1421 q^{88} +(10.1008 - 7.33866i) q^{89} +(-2.11010 + 6.49422i) q^{90} +(1.36407 + 4.19817i) q^{91} -15.3137 q^{92} +4.00000 q^{94} +(0.490035 + 1.50817i) q^{95} +(-1.18305 + 3.64105i) q^{96} +(-8.76038 + 6.36479i) q^{97} +2.82843 q^{98} -14.8284 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 8 q^{5} + 24 q^{6} - 2 q^{7} + 6 q^{8} + 2 q^{10} + 2 q^{11} + 10 q^{12} + 2 q^{13} + 6 q^{14} + 2 q^{15} - 6 q^{16} + 6 q^{17} + 8 q^{18} - 6 q^{19} - 2 q^{20} + 6 q^{21}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.746033 2.29605i −0.527525 1.62356i −0.759268 0.650778i \(-0.774443\pi\)
0.231743 0.972777i \(-0.425557\pi\)
\(3\) −0.746033 + 2.29605i −0.430722 + 1.32563i 0.466685 + 0.884424i \(0.345448\pi\)
−0.897407 + 0.441203i \(0.854552\pi\)
\(4\) −3.09726 + 2.25029i −1.54863 + 1.12515i
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 5.82843 2.37945
\(7\) −1.95314 + 1.41904i −0.738217 + 0.536346i −0.892152 0.451735i \(-0.850805\pi\)
0.153935 + 0.988081i \(0.450805\pi\)
\(8\) 3.57117 + 2.59461i 1.26260 + 0.917333i
\(9\) −2.28825 1.66251i −0.762749 0.554169i
\(10\) −0.746033 2.29605i −0.235916 0.726076i
\(11\) 4.24139 3.08155i 1.27883 0.929121i 0.279309 0.960201i \(-0.409895\pi\)
0.999517 + 0.0310800i \(0.00989465\pi\)
\(12\) −2.85613 8.79027i −0.824495 2.53753i
\(13\) 0.565015 1.73894i 0.156707 0.482294i −0.841623 0.540066i \(-0.818399\pi\)
0.998330 + 0.0577712i \(0.0183994\pi\)
\(14\) 4.71530 + 3.42586i 1.26022 + 0.915601i
\(15\) −0.746033 + 2.29605i −0.192625 + 0.592838i
\(16\) 0.927051 2.85317i 0.231763 0.713292i
\(17\) 0.138805 + 0.100848i 0.0336652 + 0.0244592i 0.604491 0.796612i \(-0.293377\pi\)
−0.570825 + 0.821071i \(0.693377\pi\)
\(18\) −2.11010 + 6.49422i −0.497355 + 1.53070i
\(19\) 0.490035 + 1.50817i 0.112422 + 0.345999i 0.991401 0.130862i \(-0.0417746\pi\)
−0.878979 + 0.476861i \(0.841775\pi\)
\(20\) −3.09726 + 2.25029i −0.692569 + 0.503181i
\(21\) −1.80108 5.54316i −0.393029 1.20962i
\(22\) −10.2396 7.43951i −2.18309 1.58611i
\(23\) 3.23607 + 2.35114i 0.674767 + 0.490247i 0.871617 0.490187i \(-0.163071\pi\)
−0.196851 + 0.980433i \(0.563071\pi\)
\(24\) −8.62158 + 6.26394i −1.75987 + 1.27862i
\(25\) −4.00000 −0.800000
\(26\) −4.41421 −0.865699
\(27\) −0.335106 + 0.243469i −0.0644911 + 0.0468556i
\(28\) 2.85613 8.79027i 0.539758 1.66121i
\(29\) −0.362036 1.11423i −0.0672284 0.206908i 0.911799 0.410637i \(-0.134694\pi\)
−0.979027 + 0.203729i \(0.934694\pi\)
\(30\) 5.82843 1.06412
\(31\) 0 0
\(32\) 1.58579 0.280330
\(33\) 3.91118 + 12.0374i 0.680850 + 2.09544i
\(34\) 0.127999 0.393941i 0.0219517 0.0675602i
\(35\) −1.95314 + 1.41904i −0.330141 + 0.239861i
\(36\) 10.8284 1.80474
\(37\) 1.00000 0.164399 0.0821995 0.996616i \(-0.473806\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 3.09726 2.25029i 0.502442 0.365046i
\(39\) 3.57117 + 2.59461i 0.571845 + 0.415470i
\(40\) 3.57117 + 2.59461i 0.564652 + 0.410244i
\(41\) 2.93111 + 9.02104i 0.457763 + 1.40885i 0.867861 + 0.496808i \(0.165495\pi\)
−0.410098 + 0.912042i \(0.634505\pi\)
\(42\) −11.3837 + 8.27077i −1.75655 + 1.27621i
\(43\) 2.75010 + 8.46392i 0.419386 + 1.29074i 0.908269 + 0.418387i \(0.137404\pi\)
−0.488883 + 0.872349i \(0.662596\pi\)
\(44\) −6.20230 + 19.0887i −0.935032 + 2.87773i
\(45\) −2.28825 1.66251i −0.341112 0.247832i
\(46\) 2.98413 9.18421i 0.439986 1.35414i
\(47\) −0.511996 + 1.57576i −0.0746823 + 0.229849i −0.981428 0.191828i \(-0.938558\pi\)
0.906746 + 0.421677i \(0.138558\pi\)
\(48\) 5.85942 + 4.25712i 0.845734 + 0.614462i
\(49\) −0.362036 + 1.11423i −0.0517194 + 0.159176i
\(50\) 2.98413 + 9.18421i 0.422020 + 1.29884i
\(51\) −0.335106 + 0.243469i −0.0469242 + 0.0340924i
\(52\) 2.16312 + 6.65740i 0.299971 + 0.923215i
\(53\) −0.138805 0.100848i −0.0190664 0.0138525i 0.578211 0.815887i \(-0.303751\pi\)
−0.597278 + 0.802035i \(0.703751\pi\)
\(54\) 0.809017 + 0.587785i 0.110093 + 0.0799874i
\(55\) 4.24139 3.08155i 0.571908 0.415516i
\(56\) −10.6569 −1.42408
\(57\) −3.82843 −0.507088
\(58\) −2.28825 + 1.66251i −0.300461 + 0.218298i
\(59\) −3.11213 + 9.57815i −0.405165 + 1.24697i 0.515592 + 0.856834i \(0.327572\pi\)
−0.920757 + 0.390136i \(0.872428\pi\)
\(60\) −2.85613 8.79027i −0.368725 1.13482i
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) 0 0
\(63\) 6.82843 0.860301
\(64\) −3.03715 9.34739i −0.379644 1.16842i
\(65\) 0.565015 1.73894i 0.0700815 0.215689i
\(66\) 24.7206 17.9606i 3.04290 2.21079i
\(67\) −5.24264 −0.640490 −0.320245 0.947335i \(-0.603765\pi\)
−0.320245 + 0.947335i \(0.603765\pi\)
\(68\) −0.656854 −0.0796553
\(69\) −7.81256 + 5.67616i −0.940522 + 0.683329i
\(70\) 4.71530 + 3.42586i 0.563586 + 0.409469i
\(71\) 11.3837 + 8.27077i 1.35100 + 0.981559i 0.998961 + 0.0455742i \(0.0145118\pi\)
0.352040 + 0.935985i \(0.385488\pi\)
\(72\) −3.85816 11.8742i −0.454689 1.39939i
\(73\) −3.09726 + 2.25029i −0.362507 + 0.263377i −0.754097 0.656763i \(-0.771925\pi\)
0.391590 + 0.920140i \(0.371925\pi\)
\(74\) −0.746033 2.29605i −0.0867246 0.266911i
\(75\) 2.98413 9.18421i 0.344578 1.06050i
\(76\) −4.91160 3.56848i −0.563399 0.409333i
\(77\) −3.91118 + 12.0374i −0.445721 + 1.37179i
\(78\) 3.29315 10.1353i 0.372876 1.14759i
\(79\) 12.3316 + 8.95940i 1.38741 + 1.00801i 0.996144 + 0.0877328i \(0.0279622\pi\)
0.391264 + 0.920278i \(0.372038\pi\)
\(80\) 0.927051 2.85317i 0.103647 0.318994i
\(81\) −2.93111 9.02104i −0.325679 1.00234i
\(82\) 18.5261 13.4600i 2.04586 1.48641i
\(83\) 1.25803 + 3.87182i 0.138087 + 0.424987i 0.996057 0.0887116i \(-0.0282750\pi\)
−0.857971 + 0.513699i \(0.828275\pi\)
\(84\) 18.0522 + 13.1157i 1.96965 + 1.43104i
\(85\) 0.138805 + 0.100848i 0.0150556 + 0.0109385i
\(86\) 17.3820 12.6287i 1.87434 1.36179i
\(87\) 2.82843 0.303239
\(88\) 23.1421 2.46696
\(89\) 10.1008 7.33866i 1.07068 0.777897i 0.0946482 0.995511i \(-0.469827\pi\)
0.976035 + 0.217614i \(0.0698274\pi\)
\(90\) −2.11010 + 6.49422i −0.222424 + 0.684551i
\(91\) 1.36407 + 4.19817i 0.142993 + 0.440087i
\(92\) −15.3137 −1.59656
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0.490035 + 1.50817i 0.0502765 + 0.154735i
\(96\) −1.18305 + 3.64105i −0.120744 + 0.371613i
\(97\) −8.76038 + 6.36479i −0.889482 + 0.646246i −0.935743 0.352683i \(-0.885269\pi\)
0.0462609 + 0.998929i \(0.485269\pi\)
\(98\) 2.82843 0.285714
\(99\) −14.8284 −1.49031
\(100\) 12.3891 9.00117i 1.23891 0.900117i
\(101\) −6.86474 4.98752i −0.683067 0.496277i 0.191307 0.981530i \(-0.438727\pi\)
−0.874374 + 0.485253i \(0.838727\pi\)
\(102\) 0.809017 + 0.587785i 0.0801046 + 0.0581994i
\(103\) −3.73017 11.4803i −0.367544 1.13118i −0.948373 0.317158i \(-0.897271\pi\)
0.580828 0.814026i \(-0.302729\pi\)
\(104\) 6.52963 4.74405i 0.640283 0.465193i
\(105\) −1.80108 5.54316i −0.175768 0.540957i
\(106\) −0.127999 + 0.393941i −0.0124324 + 0.0382629i
\(107\) −7.75506 5.63438i −0.749710 0.544696i 0.146027 0.989281i \(-0.453351\pi\)
−0.895737 + 0.444584i \(0.853351\pi\)
\(108\) 0.490035 1.50817i 0.0471536 0.145124i
\(109\) −1.59810 + 4.91846i −0.153071 + 0.471103i −0.997960 0.0638377i \(-0.979666\pi\)
0.844890 + 0.534941i \(0.179666\pi\)
\(110\) −10.2396 7.43951i −0.976309 0.709330i
\(111\) −0.746033 + 2.29605i −0.0708103 + 0.217932i
\(112\) 2.23810 + 6.88816i 0.211480 + 0.650870i
\(113\) −4.32270 + 3.14062i −0.406645 + 0.295445i −0.772242 0.635328i \(-0.780865\pi\)
0.365597 + 0.930773i \(0.380865\pi\)
\(114\) 2.85613 + 8.79027i 0.267501 + 0.823285i
\(115\) 3.23607 + 2.35114i 0.301765 + 0.219245i
\(116\) 3.62867 + 2.63638i 0.336913 + 0.244782i
\(117\) −4.18389 + 3.03977i −0.386801 + 0.281027i
\(118\) 24.3137 2.23826
\(119\) −0.414214 −0.0379709
\(120\) −8.62158 + 6.26394i −0.787039 + 0.571817i
\(121\) 5.09423 15.6784i 0.463112 1.42531i
\(122\) −2.11010 6.49422i −0.191039 0.587959i
\(123\) −22.8995 −2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −5.09423 15.6784i −0.453830 1.39675i
\(127\) −3.36813 + 10.3660i −0.298873 + 0.919837i 0.683020 + 0.730400i \(0.260666\pi\)
−0.981893 + 0.189437i \(0.939334\pi\)
\(128\) −16.6304 + 12.0827i −1.46994 + 1.06797i
\(129\) −21.4853 −1.89167
\(130\) −4.41421 −0.387152
\(131\) 3.84878 2.79631i 0.336270 0.244314i −0.406816 0.913510i \(-0.633361\pi\)
0.743086 + 0.669196i \(0.233361\pi\)
\(132\) −39.2016 28.4816i −3.41206 2.47901i
\(133\) −3.09726 2.25029i −0.268567 0.195125i
\(134\) 3.91118 + 12.0374i 0.337875 + 1.03987i
\(135\) −0.335106 + 0.243469i −0.0288413 + 0.0209544i
\(136\) 0.234037 + 0.720292i 0.0200685 + 0.0617645i
\(137\) −2.31308 + 7.11893i −0.197620 + 0.608211i 0.802316 + 0.596899i \(0.203601\pi\)
−0.999936 + 0.0113118i \(0.996399\pi\)
\(138\) 18.8612 + 13.7035i 1.60557 + 1.16652i
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 2.85613 8.79027i 0.241387 0.742914i
\(141\) −3.23607 2.35114i −0.272526 0.198002i
\(142\) 10.4975 32.3079i 0.880929 2.71122i
\(143\) −2.96217 9.11662i −0.247709 0.762370i
\(144\) −6.86474 + 4.98752i −0.572061 + 0.415627i
\(145\) −0.362036 1.11423i −0.0300654 0.0925319i
\(146\) 7.47745 + 5.43269i 0.618838 + 0.449612i
\(147\) −2.28825 1.66251i −0.188731 0.137121i
\(148\) −3.09726 + 2.25029i −0.254593 + 0.184973i
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) −23.3137 −1.90356
\(151\) 14.0071 10.1767i 1.13988 0.828172i 0.152778 0.988261i \(-0.451178\pi\)
0.987103 + 0.160089i \(0.0511781\pi\)
\(152\) −2.16312 + 6.65740i −0.175452 + 0.539986i
\(153\) −0.149960 0.461530i −0.0121236 0.0373125i
\(154\) 30.5563 2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 4.58224 + 14.1027i 0.365702 + 1.12552i 0.949540 + 0.313646i \(0.101550\pi\)
−0.583838 + 0.811870i \(0.698450\pi\)
\(158\) 11.3715 34.9979i 0.904669 2.78428i
\(159\) 0.335106 0.243469i 0.0265756 0.0193083i
\(160\) 1.58579 0.125367
\(161\) −9.65685 −0.761067
\(162\) −18.5261 + 13.4600i −1.45555 + 1.05752i
\(163\) 10.4934 + 7.62391i 0.821907 + 0.597150i 0.917258 0.398293i \(-0.130397\pi\)
−0.0953511 + 0.995444i \(0.530397\pi\)
\(164\) −29.3784 21.3447i −2.29407 1.66674i
\(165\) 3.91118 + 12.0374i 0.304485 + 0.937109i
\(166\) 7.95136 5.77700i 0.617146 0.448383i
\(167\) −2.64406 8.13757i −0.204603 0.629704i −0.999729 0.0232601i \(-0.992595\pi\)
0.795126 0.606444i \(-0.207405\pi\)
\(168\) 7.95037 24.4687i 0.613384 1.88780i
\(169\) 7.81256 + 5.67616i 0.600966 + 0.436627i
\(170\) 0.127999 0.393941i 0.00981708 0.0302139i
\(171\) 1.38603 4.26576i 0.105992 0.326211i
\(172\) −27.5641 20.0265i −2.10174 1.52700i
\(173\) −4.42318 + 13.6131i −0.336288 + 1.03499i 0.629796 + 0.776761i \(0.283138\pi\)
−0.966084 + 0.258228i \(0.916862\pi\)
\(174\) −2.11010 6.49422i −0.159966 0.492326i
\(175\) 7.81256 5.67616i 0.590574 0.429077i
\(176\) −4.86020 14.9581i −0.366351 1.12751i
\(177\) −19.6702 14.2912i −1.47850 1.07420i
\(178\) −24.3855 17.7171i −1.82777 1.32795i
\(179\) 5.46682 3.97188i 0.408609 0.296872i −0.364429 0.931231i \(-0.618736\pi\)
0.773039 + 0.634359i \(0.218736\pi\)
\(180\) 10.8284 0.807103
\(181\) −10.3137 −0.766612 −0.383306 0.923621i \(-0.625215\pi\)
−0.383306 + 0.923621i \(0.625215\pi\)
\(182\) 8.62158 6.26394i 0.639074 0.464314i
\(183\) −2.11010 + 6.49422i −0.155983 + 0.480067i
\(184\) 5.45627 + 16.7927i 0.402241 + 1.23797i
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) −1.96014 6.03269i −0.142958 0.439979i
\(189\) 0.309017 0.951057i 0.0224777 0.0691792i
\(190\) 3.09726 2.25029i 0.224699 0.163253i
\(191\) −1.10051 −0.0796298 −0.0398149 0.999207i \(-0.512677\pi\)
−0.0398149 + 0.999207i \(0.512677\pi\)
\(192\) 23.7279 1.71242
\(193\) 17.1043 12.4270i 1.23120 0.894518i 0.234218 0.972184i \(-0.424747\pi\)
0.996979 + 0.0776664i \(0.0247469\pi\)
\(194\) 21.1494 + 15.3660i 1.51844 + 1.10321i
\(195\) 3.57117 + 2.59461i 0.255737 + 0.185804i
\(196\) −1.38603 4.26576i −0.0990020 0.304697i
\(197\) −2.81965 + 2.04860i −0.200892 + 0.145956i −0.683683 0.729779i \(-0.739623\pi\)
0.482791 + 0.875735i \(0.339623\pi\)
\(198\) 11.0625 + 34.0469i 0.786177 + 2.41961i
\(199\) 4.81627 14.8230i 0.341417 1.05077i −0.622058 0.782971i \(-0.713703\pi\)
0.963474 0.267801i \(-0.0862969\pi\)
\(200\) −14.2847 10.3784i −1.01008 0.733866i
\(201\) 3.91118 12.0374i 0.275874 0.849052i
\(202\) −6.33030 + 19.4827i −0.445398 + 1.37080i
\(203\) 2.28825 + 1.66251i 0.160603 + 0.116685i
\(204\) 0.490035 1.50817i 0.0343093 0.105593i
\(205\) 2.93111 + 9.02104i 0.204718 + 0.630057i
\(206\) −23.5765 + 17.1293i −1.64265 + 1.19346i
\(207\) −3.49613 10.7600i −0.242998 0.747870i
\(208\) −4.43769 3.22417i −0.307698 0.223556i
\(209\) 6.72593 + 4.88668i 0.465242 + 0.338018i
\(210\) −11.3837 + 8.27077i −0.785552 + 0.570737i
\(211\) 7.58579 0.522227 0.261114 0.965308i \(-0.415910\pi\)
0.261114 + 0.965308i \(0.415910\pi\)
\(212\) 0.656854 0.0451129
\(213\) −27.4828 + 19.9674i −1.88309 + 1.36814i
\(214\) −7.15131 + 22.0095i −0.488854 + 1.50454i
\(215\) 2.75010 + 8.46392i 0.187555 + 0.577235i
\(216\) −1.82843 −0.124409
\(217\) 0 0
\(218\) 12.4853 0.845610
\(219\) −2.85613 8.79027i −0.193000 0.593992i
\(220\) −6.20230 + 19.0887i −0.418159 + 1.28696i
\(221\) 0.253796 0.184393i 0.0170721 0.0124036i
\(222\) 5.82843 0.391178
\(223\) 1.72792 0.115710 0.0578551 0.998325i \(-0.481574\pi\)
0.0578551 + 0.998325i \(0.481574\pi\)
\(224\) −3.09726 + 2.25029i −0.206945 + 0.150354i
\(225\) 9.15298 + 6.65003i 0.610199 + 0.443335i
\(226\) 10.4359 + 7.58213i 0.694186 + 0.504356i
\(227\) −4.81627 14.8230i −0.319667 0.983835i −0.973791 0.227447i \(-0.926962\pi\)
0.654123 0.756388i \(-0.273038\pi\)
\(228\) 11.8576 8.61508i 0.785292 0.570548i
\(229\) 3.54915 + 10.9232i 0.234534 + 0.721822i 0.997183 + 0.0750091i \(0.0238986\pi\)
−0.762649 + 0.646813i \(0.776101\pi\)
\(230\) 2.98413 9.18421i 0.196768 0.605589i
\(231\) −24.7206 17.9606i −1.62650 1.18172i
\(232\) 1.59810 4.91846i 0.104921 0.322913i
\(233\) −4.58224 + 14.1027i −0.300192 + 0.923897i 0.681235 + 0.732064i \(0.261443\pi\)
−0.981428 + 0.191832i \(0.938557\pi\)
\(234\) 10.1008 + 7.33866i 0.660310 + 0.479743i
\(235\) −0.511996 + 1.57576i −0.0333989 + 0.102791i
\(236\) −11.9146 36.6693i −0.775572 2.38697i
\(237\) −29.7710 + 21.6299i −1.93383 + 1.40501i
\(238\) 0.309017 + 0.951057i 0.0200306 + 0.0616478i
\(239\) 10.3209 + 7.49859i 0.667605 + 0.485043i 0.869223 0.494421i \(-0.164620\pi\)
−0.201618 + 0.979464i \(0.564620\pi\)
\(240\) 5.85942 + 4.25712i 0.378224 + 0.274796i
\(241\) −19.9478 + 14.4929i −1.28495 + 0.933572i −0.999690 0.0248778i \(-0.992080\pi\)
−0.285261 + 0.958450i \(0.592080\pi\)
\(242\) −39.7990 −2.55838
\(243\) 21.6569 1.38929
\(244\) −8.76038 + 6.36479i −0.560826 + 0.407464i
\(245\) −0.362036 + 1.11423i −0.0231296 + 0.0711857i
\(246\) 17.0838 + 52.5785i 1.08922 + 3.35228i
\(247\) 2.89949 0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 6.71430 + 20.6645i 0.424649 + 1.30694i
\(251\) 1.10807 3.41029i 0.0699407 0.215255i −0.909977 0.414660i \(-0.863901\pi\)
0.979917 + 0.199404i \(0.0639007\pi\)
\(252\) −21.1494 + 15.3660i −1.33229 + 0.967965i
\(253\) 20.9706 1.31841
\(254\) 26.3137 1.65107
\(255\) −0.335106 + 0.243469i −0.0209851 + 0.0152466i
\(256\) 24.2467 + 17.6163i 1.51542 + 1.10102i
\(257\) 0.253796 + 0.184393i 0.0158313 + 0.0115021i 0.595673 0.803227i \(-0.296886\pi\)
−0.579841 + 0.814729i \(0.696886\pi\)
\(258\) 16.0287 + 49.3314i 0.997905 + 3.07124i
\(259\) −1.95314 + 1.41904i −0.121362 + 0.0881748i
\(260\) 2.16312 + 6.65740i 0.134151 + 0.412874i
\(261\) −1.02399 + 3.15152i −0.0633835 + 0.195074i
\(262\) −9.29179 6.75088i −0.574049 0.417071i
\(263\) −0.212076 + 0.652702i −0.0130772 + 0.0402473i −0.957382 0.288824i \(-0.906736\pi\)
0.944305 + 0.329071i \(0.106736\pi\)
\(264\) −17.2648 + 53.1356i −1.06257 + 3.27027i
\(265\) −0.138805 0.100848i −0.00852675 0.00619504i
\(266\) −2.85613 + 8.79027i −0.175121 + 0.538966i
\(267\) 9.31443 + 28.6669i 0.570034 + 1.75438i
\(268\) 16.2378 11.7975i 0.991884 0.720646i
\(269\) −9.83552 30.2706i −0.599683 1.84563i −0.529881 0.848072i \(-0.677763\pi\)
−0.0698018 0.997561i \(-0.522237\pi\)
\(270\) 0.809017 + 0.587785i 0.0492352 + 0.0357715i
\(271\) 18.8612 + 13.7035i 1.14574 + 0.832426i 0.987908 0.155041i \(-0.0495510\pi\)
0.157827 + 0.987467i \(0.449551\pi\)
\(272\) 0.416416 0.302544i 0.0252489 0.0183444i
\(273\) −10.6569 −0.644982
\(274\) 18.0711 1.09171
\(275\) −16.9655 + 12.3262i −1.02306 + 0.743297i
\(276\) 11.4245 35.1611i 0.687676 2.11645i
\(277\) −4.37016 13.4500i −0.262577 0.808130i −0.992242 0.124325i \(-0.960324\pi\)
0.729664 0.683806i \(-0.239676\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.6569 −0.636869
\(281\) 0.618034 + 1.90211i 0.0368688 + 0.113471i 0.967797 0.251731i \(-0.0809999\pi\)
−0.930928 + 0.365202i \(0.881000\pi\)
\(282\) −2.98413 + 9.18421i −0.177702 + 0.546912i
\(283\) 1.89564 1.37727i 0.112684 0.0818700i −0.530016 0.847988i \(-0.677814\pi\)
0.642700 + 0.766118i \(0.277814\pi\)
\(284\) −53.8701 −3.19660
\(285\) −3.82843 −0.226776
\(286\) −18.7224 + 13.6026i −1.10708 + 0.804339i
\(287\) −18.5261 13.4600i −1.09356 0.794518i
\(288\) −3.62867 2.63638i −0.213821 0.155350i
\(289\) −5.24419 16.1400i −0.308482 0.949410i
\(290\) −2.28825 + 1.66251i −0.134370 + 0.0976258i
\(291\) −8.07836 24.8626i −0.473562 1.45747i
\(292\) 4.52922 13.9395i 0.265052 0.815747i
\(293\) 20.0628 + 14.5765i 1.17208 + 0.851567i 0.991257 0.131948i \(-0.0421233\pi\)
0.180825 + 0.983515i \(0.442123\pi\)
\(294\) −2.11010 + 6.49422i −0.123064 + 0.378751i
\(295\) −3.11213 + 9.57815i −0.181195 + 0.557662i
\(296\) 3.57117 + 2.59461i 0.207570 + 0.150809i
\(297\) −0.671053 + 2.06529i −0.0389384 + 0.119840i
\(298\) −0.746033 2.29605i −0.0432165 0.133007i
\(299\) 5.91691 4.29889i 0.342184 0.248611i
\(300\) 11.4245 + 35.1611i 0.659596 + 2.03003i
\(301\) −17.3820 12.6287i −1.00188 0.727908i
\(302\) −33.8161 24.5688i −1.94590 1.41378i
\(303\) 16.5729 12.0409i 0.952091 0.691734i
\(304\) 4.75736 0.272853
\(305\) 2.82843 0.161955
\(306\) −0.947822 + 0.688633i −0.0541834 + 0.0393665i
\(307\) −0.852071 + 2.62240i −0.0486303 + 0.149669i −0.972423 0.233225i \(-0.925072\pi\)
0.923793 + 0.382893i \(0.125072\pi\)
\(308\) −14.9737 46.0842i −0.853205 2.62589i
\(309\) 29.1421 1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 6.02128 + 18.5316i 0.340888 + 1.04915i
\(313\) 1.18305 3.64105i 0.0668699 0.205804i −0.912038 0.410105i \(-0.865492\pi\)
0.978908 + 0.204301i \(0.0654920\pi\)
\(314\) 28.9620 21.0421i 1.63442 1.18748i
\(315\) 6.82843 0.384738
\(316\) −58.3553 −3.28274
\(317\) 1.75684 1.27642i 0.0986739 0.0716908i −0.537354 0.843357i \(-0.680576\pi\)
0.636028 + 0.771666i \(0.280576\pi\)
\(318\) −0.809017 0.587785i −0.0453674 0.0329614i
\(319\) −4.96909 3.61026i −0.278216 0.202136i
\(320\) −3.03715 9.34739i −0.169782 0.522535i
\(321\) 18.7224 13.6026i 1.04498 0.759223i
\(322\) 7.20433 + 22.1727i 0.401482 + 1.23563i
\(323\) −0.0840767 + 0.258761i −0.00467815 + 0.0143979i
\(324\) 29.3784 + 21.3447i 1.63213 + 1.18581i
\(325\) −2.26006 + 6.95575i −0.125366 + 0.385836i
\(326\) 9.67647 29.7811i 0.535930 1.64942i
\(327\) −10.1008 7.33866i −0.558576 0.405829i
\(328\) −12.9386 + 39.8208i −0.714412 + 2.19874i
\(329\) −1.23607 3.80423i −0.0681466 0.209734i
\(330\) 24.7206 17.9606i 1.36082 0.988697i
\(331\) 0.234037 + 0.720292i 0.0128638 + 0.0395908i 0.957282 0.289155i \(-0.0933742\pi\)
−0.944419 + 0.328745i \(0.893374\pi\)
\(332\) −12.6092 9.16110i −0.692018 0.502780i
\(333\) −2.28825 1.66251i −0.125395 0.0911049i
\(334\) −16.7117 + 12.1418i −0.914426 + 0.664369i
\(335\) −5.24264 −0.286436
\(336\) −17.4853 −0.953900
\(337\) 10.7710 7.82560i 0.586735 0.426288i −0.254411 0.967096i \(-0.581882\pi\)
0.841146 + 0.540808i \(0.181882\pi\)
\(338\) 7.20433 22.1727i 0.391864 1.20603i
\(339\) −3.98616 12.2681i −0.216499 0.666314i
\(340\) −0.656854 −0.0356229
\(341\) 0 0
\(342\) −10.8284 −0.585534
\(343\) −6.09626 18.7624i −0.329167 1.01307i
\(344\) −12.1395 + 37.3616i −0.654518 + 2.01440i
\(345\) −7.81256 + 5.67616i −0.420614 + 0.305594i
\(346\) 34.5563 1.85776
\(347\) 22.5563 1.21089 0.605444 0.795888i \(-0.292996\pi\)
0.605444 + 0.795888i \(0.292996\pi\)
\(348\) −8.76038 + 6.36479i −0.469606 + 0.341189i
\(349\) −28.4068 20.6387i −1.52058 1.10477i −0.961199 0.275854i \(-0.911039\pi\)
−0.559380 0.828911i \(-0.688961\pi\)
\(350\) −18.8612 13.7035i −1.00817 0.732480i
\(351\) 0.234037 + 0.720292i 0.0124920 + 0.0384463i
\(352\) 6.72593 4.88668i 0.358493 0.260461i
\(353\) 0.927051 + 2.85317i 0.0493419 + 0.151859i 0.972692 0.232101i \(-0.0745600\pi\)
−0.923350 + 0.383960i \(0.874560\pi\)
\(354\) −18.1388 + 55.8256i −0.964068 + 2.96710i
\(355\) 11.3837 + 8.27077i 0.604186 + 0.438967i
\(356\) −14.7707 + 45.4595i −0.782846 + 2.40935i
\(357\) 0.309017 0.951057i 0.0163549 0.0503352i
\(358\) −13.1981 9.58896i −0.697540 0.506792i
\(359\) 8.31240 25.5829i 0.438712 1.35022i −0.450523 0.892765i \(-0.648762\pi\)
0.889235 0.457451i \(-0.151238\pi\)
\(360\) −3.85816 11.8742i −0.203343 0.625826i
\(361\) 13.3369 9.68981i 0.701941 0.509990i
\(362\) 7.69437 + 23.6808i 0.404407 + 1.24464i
\(363\) 32.1981 + 23.3933i 1.68996 + 1.22783i
\(364\) −13.6720 9.93327i −0.716606 0.520645i
\(365\) −3.09726 + 2.25029i −0.162118 + 0.117786i
\(366\) 16.4853 0.861699
\(367\) 18.2132 0.950721 0.475361 0.879791i \(-0.342318\pi\)
0.475361 + 0.879791i \(0.342318\pi\)
\(368\) 9.70820 7.05342i 0.506075 0.367685i
\(369\) 8.29044 25.5154i 0.431583 1.32828i
\(370\) −0.746033 2.29605i −0.0387844 0.119366i
\(371\) 0.414214 0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −0.671053 2.06529i −0.0346993 0.106794i
\(375\) 6.71430 20.6645i 0.346725 1.06711i
\(376\) −5.91691 + 4.29889i −0.305142 + 0.221698i
\(377\) −2.14214 −0.110326
\(378\) −2.41421 −0.124174
\(379\) 23.7728 17.2719i 1.22113 0.887200i 0.224933 0.974374i \(-0.427784\pi\)
0.996193 + 0.0871744i \(0.0277837\pi\)
\(380\) −4.91160 3.56848i −0.251960 0.183059i
\(381\) −21.2882 15.4668i −1.09063 0.792389i
\(382\) 0.821013 + 2.52682i 0.0420067 + 0.129283i
\(383\) −20.1441 + 14.6356i −1.02932 + 0.747842i −0.968172 0.250287i \(-0.919475\pi\)
−0.0611445 + 0.998129i \(0.519475\pi\)
\(384\) −15.3357 47.1985i −0.782597 2.40859i
\(385\) −3.91118 + 12.0374i −0.199332 + 0.613482i
\(386\) −41.2935 30.0015i −2.10179 1.52704i
\(387\) 7.77844 23.9396i 0.395401 1.21692i
\(388\) 12.8106 39.4269i 0.650358 2.00160i
\(389\) −13.8683 10.0759i −0.703150 0.510868i 0.177807 0.984065i \(-0.443100\pi\)
−0.880956 + 0.473197i \(0.843100\pi\)
\(390\) 3.29315 10.1353i 0.166755 0.513219i
\(391\) 0.212076 + 0.652702i 0.0107251 + 0.0330086i
\(392\) −4.18389 + 3.03977i −0.211318 + 0.153532i
\(393\) 3.54915 + 10.9232i 0.179031 + 0.551000i
\(394\) 6.80724 + 4.94575i 0.342944 + 0.249163i
\(395\) 12.3316 + 8.95940i 0.620468 + 0.450796i
\(396\) 45.9275 33.3683i 2.30795 1.67682i
\(397\) −16.5147 −0.828850 −0.414425 0.910083i \(-0.636017\pi\)
−0.414425 + 0.910083i \(0.636017\pi\)
\(398\) −37.6274 −1.88609
\(399\) 7.47745 5.43269i 0.374341 0.271975i
\(400\) −3.70820 + 11.4127i −0.185410 + 0.570634i
\(401\) −6.54238 20.1354i −0.326711 1.00551i −0.970663 0.240446i \(-0.922706\pi\)
0.643952 0.765066i \(-0.277294\pi\)
\(402\) −30.5563 −1.52401
\(403\) 0 0
\(404\) 32.4853 1.61620
\(405\) −2.93111 9.02104i −0.145648 0.448259i
\(406\) 2.11010 6.49422i 0.104723 0.322303i
\(407\) 4.24139 3.08155i 0.210238 0.152747i
\(408\) −1.82843 −0.0905206
\(409\) 9.34315 0.461989 0.230994 0.972955i \(-0.425802\pi\)
0.230994 + 0.972955i \(0.425802\pi\)
\(410\) 18.5261 13.4600i 0.914938 0.664741i
\(411\) −14.6198 10.6219i −0.721142 0.523940i
\(412\) 37.3873 + 27.1634i 1.84194 + 1.33825i
\(413\) −7.51335 23.1237i −0.369708 1.13784i
\(414\) −22.0973 + 16.0546i −1.08602 + 0.789040i
\(415\) 1.25803 + 3.87182i 0.0617542 + 0.190060i
\(416\) 0.895993 2.75758i 0.0439297 0.135202i
\(417\) 0 0
\(418\) 6.20230 19.0887i 0.303364 0.933660i
\(419\) 8.65248 26.6296i 0.422701 1.30094i −0.482477 0.875908i \(-0.660263\pi\)
0.905178 0.425032i \(-0.139737\pi\)
\(420\) 18.0522 + 13.1157i 0.880856 + 0.639979i
\(421\) −0.883129 + 2.71799i −0.0430411 + 0.132467i −0.970268 0.242033i \(-0.922186\pi\)
0.927227 + 0.374500i \(0.122186\pi\)
\(422\) −5.65925 17.4174i −0.275488 0.847864i
\(423\) 3.79129 2.75453i 0.184339 0.133930i
\(424\) −0.234037 0.720292i −0.0113658 0.0349804i
\(425\) −0.555221 0.403392i −0.0269322 0.0195674i
\(426\) 66.3493 + 48.2056i 3.21463 + 2.33557i
\(427\) −5.52431 + 4.01365i −0.267340 + 0.194234i
\(428\) 36.6985 1.77389
\(429\) 23.1421 1.11731
\(430\) 17.3820 12.6287i 0.838232 0.609012i
\(431\) −7.80040 + 24.0072i −0.375732 + 1.15639i 0.567251 + 0.823545i \(0.308007\pi\)
−0.942983 + 0.332840i \(0.891993\pi\)
\(432\) 0.383997 + 1.18182i 0.0184751 + 0.0568604i
\(433\) −35.1127 −1.68741 −0.843704 0.536808i \(-0.819630\pi\)
−0.843704 + 0.536808i \(0.819630\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) −6.11822 18.8300i −0.293010 0.901791i
\(437\) −1.96014 + 6.03269i −0.0937662 + 0.288583i
\(438\) −18.0522 + 13.1157i −0.862566 + 0.626691i
\(439\) −12.0711 −0.576121 −0.288060 0.957612i \(-0.593010\pi\)
−0.288060 + 0.957612i \(0.593010\pi\)
\(440\) 23.1421 1.10326
\(441\) 2.68085 1.94775i 0.127659 0.0927500i
\(442\) −0.612717 0.445165i −0.0291440 0.0211743i
\(443\) 10.7135 + 7.78383i 0.509015 + 0.369821i 0.812450 0.583031i \(-0.198134\pi\)
−0.303435 + 0.952852i \(0.598134\pi\)
\(444\) −2.85613 8.79027i −0.135546 0.417168i
\(445\) 10.1008 7.33866i 0.478824 0.347886i
\(446\) −1.28909 3.96740i −0.0610400 0.187862i
\(447\) −0.746033 + 2.29605i −0.0352862 + 0.108600i
\(448\) 19.1963 + 13.9469i 0.906940 + 0.658930i
\(449\) 1.42995 4.40094i 0.0674835 0.207693i −0.911628 0.411016i \(-0.865174\pi\)
0.979112 + 0.203323i \(0.0651741\pi\)
\(450\) 8.44040 25.9769i 0.397884 1.22456i
\(451\) 40.2307 + 29.2293i 1.89439 + 1.37636i
\(452\) 6.32120 19.4547i 0.297324 0.915070i
\(453\) 12.9166 + 39.7532i 0.606875 + 1.86777i
\(454\) −30.4412 + 22.1168i −1.42868 + 1.03799i
\(455\) 1.36407 + 4.19817i 0.0639484 + 0.196813i
\(456\) −13.6720 9.93327i −0.640249 0.465168i
\(457\) −25.1707 18.2876i −1.17744 0.855457i −0.185556 0.982634i \(-0.559409\pi\)
−0.991880 + 0.127177i \(0.959409\pi\)
\(458\) 22.4324 16.2981i 1.04820 0.761559i
\(459\) −0.0710678 −0.00331716
\(460\) −15.3137 −0.714005
\(461\) −21.1494 + 15.3660i −0.985027 + 0.715664i −0.958826 0.283993i \(-0.908341\pi\)
−0.0262008 + 0.999657i \(0.508341\pi\)
\(462\) −22.7960 + 70.1590i −1.06057 + 3.26409i
\(463\) 7.71633 + 23.7484i 0.358608 + 1.10368i 0.953888 + 0.300164i \(0.0970413\pi\)
−0.595279 + 0.803519i \(0.702959\pi\)
\(464\) −3.51472 −0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) −2.47214 7.60845i −0.114397 0.352077i 0.877424 0.479716i \(-0.159260\pi\)
−0.991821 + 0.127639i \(0.959260\pi\)
\(468\) 6.11822 18.8300i 0.282815 0.870415i
\(469\) 10.2396 7.43951i 0.472821 0.343525i
\(470\) 4.00000 0.184506
\(471\) −35.7990 −1.64953
\(472\) −35.9655 + 26.1305i −1.65545 + 1.20275i
\(473\) 37.7462 + 27.4242i 1.73557 + 1.26097i
\(474\) 71.8736 + 52.2192i 3.30126 + 2.39851i
\(475\) −1.96014 6.03269i −0.0899374 0.276799i
\(476\) 1.28293 0.932102i 0.0588029 0.0427228i
\(477\) 0.149960 + 0.461530i 0.00686621 + 0.0211320i
\(478\) 9.51741 29.2916i 0.435316 1.33977i
\(479\) −7.87005 5.71793i −0.359592 0.261259i 0.393290 0.919415i \(-0.371337\pi\)
−0.752882 + 0.658156i \(0.771337\pi\)
\(480\) −1.18305 + 3.64105i −0.0539986 + 0.166190i
\(481\) 0.565015 1.73894i 0.0257625 0.0792887i
\(482\) 48.1583 + 34.9890i 2.19355 + 1.59371i
\(483\) 7.20433 22.1727i 0.327808 1.00889i
\(484\) 19.5029 + 60.0237i 0.886495 + 2.72835i
\(485\) −8.76038 + 6.36479i −0.397788 + 0.289010i
\(486\) −16.1567 49.7253i −0.732884 2.25559i
\(487\) 14.0646 + 10.2185i 0.637327 + 0.463045i 0.858931 0.512092i \(-0.171129\pi\)
−0.221604 + 0.975137i \(0.571129\pi\)
\(488\) 10.1008 + 7.33866i 0.457242 + 0.332206i
\(489\) −25.3333 + 18.4057i −1.14561 + 0.832336i
\(490\) 2.82843 0.127775
\(491\) 4.41421 0.199211 0.0996053 0.995027i \(-0.468242\pi\)
0.0996053 + 0.995027i \(0.468242\pi\)
\(492\) 70.9257 51.5306i 3.19758 2.32318i
\(493\) 0.0621155 0.191172i 0.00279754 0.00860995i
\(494\) −2.16312 6.65740i −0.0973233 0.299530i
\(495\) −14.8284 −0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 7.33233 + 22.5666i 0.328570 + 1.01123i
\(499\) 12.4266 38.2450i 0.556289 1.71208i −0.136224 0.990678i \(-0.543497\pi\)
0.692514 0.721405i \(-0.256503\pi\)
\(500\) 27.8754 20.2526i 1.24662 0.905725i
\(501\) 20.6569 0.922880
\(502\) −8.65685 −0.386374
\(503\) −18.9187 + 13.7452i −0.843542 + 0.612869i −0.923358 0.383940i \(-0.874567\pi\)
0.0798156 + 0.996810i \(0.474567\pi\)
\(504\) 24.3855 + 17.7171i 1.08622 + 0.789182i
\(505\) −6.86474 4.98752i −0.305477 0.221942i
\(506\) −15.6447 48.1495i −0.695493 2.14051i
\(507\) −18.8612 + 13.7035i −0.837655 + 0.608592i
\(508\) −12.8946 39.6856i −0.572107 1.76076i
\(509\) 2.10100 6.46622i 0.0931253 0.286610i −0.893635 0.448794i \(-0.851854\pi\)
0.986761 + 0.162184i \(0.0518537\pi\)
\(510\) 0.809017 + 0.587785i 0.0358239 + 0.0260276i
\(511\) 2.85613 8.79027i 0.126348 0.388859i
\(512\) 9.65451 29.7135i 0.426673 1.31316i
\(513\) −0.531406 0.386089i −0.0234622 0.0170463i
\(514\) 0.234037 0.720292i 0.0103229 0.0317707i
\(515\) −3.73017 11.4803i −0.164371 0.505881i
\(516\) 66.5456 48.3482i 2.92950 2.12841i
\(517\) 2.68421 + 8.26115i 0.118051 + 0.363325i
\(518\) 4.71530 + 3.42586i 0.207178 + 0.150524i
\(519\) −27.9567 20.3117i −1.22716 0.891585i
\(520\) 6.52963 4.74405i 0.286343 0.208041i
\(521\) 30.4558 1.33429 0.667147 0.744926i \(-0.267515\pi\)
0.667147 + 0.744926i \(0.267515\pi\)
\(522\) 8.00000 0.350150
\(523\) 6.47214 4.70228i 0.283007 0.205616i −0.437221 0.899354i \(-0.644037\pi\)
0.720228 + 0.693738i \(0.244037\pi\)
\(524\) −5.62819 + 17.3218i −0.245869 + 0.756706i
\(525\) 7.20433 + 22.1727i 0.314423 + 0.967694i
\(526\) 1.65685 0.0722423
\(527\) 0 0
\(528\) 37.9706 1.65246
\(529\) −2.16312 6.65740i −0.0940487 0.289452i
\(530\) −0.127999 + 0.393941i −0.00555992 + 0.0171117i
\(531\) 23.0451 16.7432i 1.00007 0.726594i
\(532\) 14.6569 0.635455
\(533\) 17.3431 0.751215
\(534\) 58.8718 42.7729i 2.54763 1.85096i
\(535\) −7.75506 5.63438i −0.335281 0.243596i
\(536\) −18.7224 13.6026i −0.808684 0.587543i
\(537\) 5.04121 + 15.5153i 0.217544 + 0.669533i
\(538\) −62.1654 + 45.1658i −2.68014 + 1.94724i
\(539\) 1.89802 + 5.84152i 0.0817537 + 0.251612i
\(540\) 0.490035 1.50817i 0.0210877 0.0649014i
\(541\) −20.4554 14.8617i −0.879447 0.638955i 0.0536584 0.998559i \(-0.482912\pi\)
−0.933105 + 0.359604i \(0.882912\pi\)
\(542\) 17.3928 53.5295i 0.747085 2.29929i
\(543\) 7.69437 23.6808i 0.330197 1.01624i
\(544\) 0.220116 + 0.159923i 0.00943738 + 0.00685666i
\(545\) −1.59810 + 4.91846i −0.0684553 + 0.210684i
\(546\) 7.95037 + 24.4687i 0.340244 + 1.04716i
\(547\) −4.63399 + 3.36679i −0.198135 + 0.143953i −0.682429 0.730952i \(-0.739076\pi\)
0.484294 + 0.874905i \(0.339076\pi\)
\(548\) −8.85545 27.2543i −0.378286 1.16425i
\(549\) −6.47214 4.70228i −0.276224 0.200689i
\(550\) 40.9584 + 29.7580i 1.74647 + 1.26889i
\(551\) 1.50304 1.09203i 0.0640318 0.0465218i
\(552\) −42.6274 −1.81434
\(553\) −36.7990 −1.56485
\(554\) −27.6216 + 20.0682i −1.17353 + 0.852618i
\(555\) −0.746033 + 2.29605i −0.0316673 + 0.0974620i
\(556\) 0 0
\(557\) 44.4853 1.88490 0.942451 0.334344i \(-0.108515\pi\)
0.942451 + 0.334344i \(0.108515\pi\)
\(558\) 0 0
\(559\) 16.2721 0.688236
\(560\) 2.23810 + 6.88816i 0.0945769 + 0.291078i
\(561\) −0.671053 + 2.06529i −0.0283319 + 0.0871966i
\(562\) 3.90628 2.83808i 0.164776 0.119717i
\(563\) 4.75736 0.200499 0.100249 0.994962i \(-0.468036\pi\)
0.100249 + 0.994962i \(0.468036\pi\)
\(564\) 15.3137 0.644823
\(565\) −4.32270 + 3.14062i −0.181857 + 0.132127i
\(566\) −4.57649 3.32502i −0.192364 0.139761i
\(567\) 18.5261 + 13.4600i 0.778022 + 0.565266i
\(568\) 19.1939 + 59.0727i 0.805357 + 2.47863i
\(569\) −12.2502 + 8.90032i −0.513557 + 0.373121i −0.814171 0.580625i \(-0.802808\pi\)
0.300614 + 0.953746i \(0.402808\pi\)
\(570\) 2.85613 + 8.79027i 0.119630 + 0.368184i
\(571\) −12.6386 + 38.8977i −0.528911 + 1.62782i 0.227540 + 0.973769i \(0.426932\pi\)
−0.756451 + 0.654051i \(0.773068\pi\)
\(572\) 29.6897 + 21.5708i 1.24139 + 0.901922i
\(573\) 0.821013 2.52682i 0.0342983 0.105559i
\(574\) −17.0838 + 52.5785i −0.713063 + 2.19458i
\(575\) −12.9443 9.40456i −0.539813 0.392197i
\(576\) −8.59036 + 26.4384i −0.357932 + 1.10160i
\(577\) −10.4975 32.3079i −0.437016 1.34500i −0.891007 0.453990i \(-0.850000\pi\)
0.453991 0.891006i \(-0.350000\pi\)
\(578\) −33.1459 + 24.0819i −1.37869 + 1.00167i
\(579\) 15.7727 + 48.5435i 0.655492 + 2.01740i
\(580\) 3.62867 + 2.63638i 0.150672 + 0.109470i
\(581\) −7.95136 5.77700i −0.329878 0.239671i
\(582\) −51.0592 + 37.0967i −2.11647 + 1.53771i
\(583\) −0.899495 −0.0372533
\(584\) −16.8995 −0.699306
\(585\) −4.18389 + 3.03977i −0.172983 + 0.125679i
\(586\) 18.5009 56.9398i 0.764264 2.35216i
\(587\) −6.28638 19.3475i −0.259467 0.798556i −0.992917 0.118813i \(-0.962091\pi\)
0.733450 0.679743i \(-0.237909\pi\)
\(588\) 10.8284 0.446557
\(589\) 0 0
\(590\) 24.3137 1.00098
\(591\) −2.60013 8.00239i −0.106955 0.329174i
\(592\) 0.927051 2.85317i 0.0381016 0.117265i
\(593\) −17.2432 + 12.5279i −0.708091 + 0.514459i −0.882557 0.470205i \(-0.844180\pi\)
0.174466 + 0.984663i \(0.444180\pi\)
\(594\) 5.24264 0.215108
\(595\) −0.414214 −0.0169811
\(596\) −3.09726 + 2.25029i −0.126869 + 0.0921756i
\(597\) 30.4412 + 22.1168i 1.24588 + 0.905182i
\(598\) −14.2847 10.3784i −0.584145 0.424406i
\(599\) 10.7845 + 33.1914i 0.440644 + 1.35616i 0.887191 + 0.461403i \(0.152654\pi\)
−0.446546 + 0.894760i \(0.647346\pi\)
\(600\) 34.4863 25.0558i 1.40790 1.02290i
\(601\) −7.25735 22.3358i −0.296034 0.911098i −0.982872 0.184288i \(-0.941002\pi\)
0.686839 0.726810i \(-0.258998\pi\)
\(602\) −16.0287 + 49.3314i −0.653282 + 2.01060i
\(603\) 11.9964 + 8.71593i 0.488533 + 0.354940i
\(604\) −20.4830 + 63.0401i −0.833440 + 2.56506i
\(605\) 5.09423 15.6784i 0.207110 0.637419i
\(606\) −40.0106 29.0694i −1.62532 1.18086i
\(607\) −1.36407 + 4.19817i −0.0553658 + 0.170398i −0.974915 0.222575i \(-0.928554\pi\)
0.919550 + 0.392974i \(0.128554\pi\)
\(608\) 0.777091 + 2.39164i 0.0315152 + 0.0969938i
\(609\) −5.52431 + 4.01365i −0.223856 + 0.162641i
\(610\) −2.11010 6.49422i −0.0854355 0.262943i
\(611\) 2.45087 + 1.78066i 0.0991514 + 0.0720377i
\(612\) 1.50304 + 1.09203i 0.0607569 + 0.0441425i
\(613\) 8.34397 6.06225i 0.337010 0.244852i −0.406389 0.913700i \(-0.633212\pi\)
0.743399 + 0.668848i \(0.233212\pi\)
\(614\) 6.65685 0.268649
\(615\) −22.8995 −0.923397
\(616\) −45.1998 + 32.8396i −1.82115 + 1.32315i
\(617\) 7.19524 22.1447i 0.289669 0.891510i −0.695291 0.718728i \(-0.744724\pi\)
0.984960 0.172782i \(-0.0552756\pi\)
\(618\) −21.7410 66.9119i −0.874551 2.69159i
\(619\) −31.6569 −1.27240 −0.636198 0.771526i \(-0.719494\pi\)
−0.636198 + 0.771526i \(0.719494\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 8.44040 + 25.9769i 0.338429 + 1.04158i
\(623\) −9.31443 + 28.6669i −0.373175 + 1.14851i
\(624\) 10.7135 7.78383i 0.428884 0.311603i
\(625\) 11.0000 0.440000
\(626\) −9.24264 −0.369410
\(627\) −16.2378 + 11.7975i −0.648477 + 0.471146i
\(628\) −45.9275 33.3683i −1.83271 1.33154i
\(629\) 0.138805 + 0.100848i 0.00553453 + 0.00402107i
\(630\) −5.09423 15.6784i −0.202959 0.624644i
\(631\) 25.8984 18.8163i 1.03100 0.749065i 0.0624909 0.998046i \(-0.480096\pi\)
0.968508 + 0.248981i \(0.0800956\pi\)
\(632\) 20.7920 + 63.9911i 0.827061 + 2.54543i
\(633\) −5.65925 + 17.4174i −0.224935 + 0.692278i
\(634\) −4.24139 3.08155i −0.168447 0.122384i
\(635\) −3.36813 + 10.3660i −0.133660 + 0.411364i
\(636\) −0.490035 + 1.50817i −0.0194312 + 0.0598029i
\(637\) 1.73302 + 1.25912i 0.0686649 + 0.0498880i
\(638\) −4.58224 + 14.1027i −0.181412 + 0.558330i
\(639\) −12.2986 37.8511i −0.486524 1.49737i
\(640\) −16.6304 + 12.0827i −0.657376 + 0.477611i
\(641\) 6.17124 + 18.9931i 0.243749 + 0.750184i 0.995840 + 0.0911234i \(0.0290458\pi\)
−0.752090 + 0.659060i \(0.770954\pi\)
\(642\) −45.1998 32.8396i −1.78389 1.29608i
\(643\) −10.2634 7.45682i −0.404750 0.294068i 0.366723 0.930330i \(-0.380480\pi\)
−0.771473 + 0.636262i \(0.780480\pi\)
\(644\) 29.9098 21.7308i 1.17861 0.856312i
\(645\) −21.4853 −0.845982
\(646\) 0.656854 0.0258436
\(647\) 18.3536 13.3347i 0.721554 0.524240i −0.165326 0.986239i \(-0.552868\pi\)
0.886880 + 0.461999i \(0.152868\pi\)
\(648\) 12.9386 39.8208i 0.508275 1.56431i
\(649\) 16.3158 + 50.2148i 0.640451 + 1.97110i
\(650\) 17.6569 0.692559
\(651\) 0 0
\(652\) −49.6569 −1.94471
\(653\) 6.84230 + 21.0584i 0.267760 + 0.824080i 0.991045 + 0.133530i \(0.0426313\pi\)
−0.723285 + 0.690550i \(0.757369\pi\)
\(654\) −9.31443 + 28.6669i −0.364223 + 1.12096i
\(655\) 3.84878 2.79631i 0.150384 0.109261i
\(656\) 28.4558 1.11101
\(657\) 10.8284 0.422457
\(658\) −7.81256 + 5.67616i −0.304565 + 0.221280i
\(659\) −7.81256 5.67616i −0.304334 0.221112i 0.425127 0.905134i \(-0.360229\pi\)
−0.729462 + 0.684022i \(0.760229\pi\)
\(660\) −39.2016 28.4816i −1.52592 1.10865i
\(661\) 10.2415 + 31.5200i 0.398348 + 1.22599i 0.926324 + 0.376728i \(0.122951\pi\)
−0.527976 + 0.849259i \(0.677049\pi\)
\(662\) 1.47923 1.07472i 0.0574919 0.0417703i
\(663\) 0.234037 + 0.720292i 0.00908924 + 0.0279738i
\(664\) −5.55321 + 17.0910i −0.215506 + 0.663260i
\(665\) −3.09726 2.25029i −0.120107 0.0872626i
\(666\) −2.11010 + 6.49422i −0.0817647 + 0.251646i
\(667\) 1.44814 4.45693i 0.0560723 0.172573i
\(668\) 26.5013 + 19.2543i 1.02536 + 0.744971i
\(669\) −1.28909 + 3.96740i −0.0498390 + 0.153389i
\(670\) 3.91118 + 12.0374i 0.151102 + 0.465045i
\(671\) 11.9964 8.71593i 0.463118 0.336475i
\(672\) −2.85613 8.79027i −0.110178 0.339092i
\(673\) −16.7117 12.1418i −0.644190 0.468032i 0.217097 0.976150i \(-0.430341\pi\)
−0.861287 + 0.508118i \(0.830341\pi\)
\(674\) −26.0035 18.8927i −1.00162 0.727719i
\(675\) 1.34042 0.973874i 0.0515929 0.0374844i
\(676\) −36.9706 −1.42194
\(677\) 40.5980 1.56031 0.780154 0.625588i \(-0.215141\pi\)
0.780154 + 0.625588i \(0.215141\pi\)
\(678\) −25.1945 + 18.3049i −0.967590 + 0.702995i
\(679\) 8.07836 24.8626i 0.310019 0.954141i
\(680\) 0.234037 + 0.720292i 0.00897491 + 0.0276219i
\(681\) 37.6274 1.44189
\(682\) 0 0
\(683\) −46.6274 −1.78415 −0.892074 0.451889i \(-0.850750\pi\)
−0.892074 + 0.451889i \(0.850750\pi\)
\(684\) 5.30631 + 16.3311i 0.202892 + 0.624437i
\(685\) −2.31308 + 7.11893i −0.0883782 + 0.272000i
\(686\) −38.5314 + 27.9947i −1.47114 + 1.06884i
\(687\) −27.7279 −1.05789
\(688\) 26.6985 1.01787
\(689\) −0.253796 + 0.184393i −0.00966884 + 0.00702482i
\(690\) 18.8612 + 13.7035i 0.718033 + 0.521682i
\(691\) −11.3837 8.27077i −0.433058 0.314635i 0.349813 0.936820i \(-0.386245\pi\)
−0.782870 + 0.622185i \(0.786245\pi\)
\(692\) −16.9338 52.1169i −0.643727 1.98119i
\(693\) 28.9620 21.0421i 1.10018 0.799324i
\(694\) −16.8278 51.7906i −0.638774 1.96594i
\(695\) 0 0
\(696\) 10.1008 + 7.33866i 0.382870 + 0.278171i
\(697\) −0.502900 + 1.54777i −0.0190487 + 0.0586258i
\(698\) −26.1952 + 80.6206i −0.991504 + 3.05154i
\(699\) −28.9620 21.0421i −1.09544 0.795886i
\(700\) −11.4245 + 35.1611i −0.431807 + 1.32896i
\(701\) 1.07701 + 3.31470i 0.0406782 + 0.125194i 0.969333 0.245750i \(-0.0790341\pi\)
−0.928655 + 0.370944i \(0.879034\pi\)
\(702\) 1.47923 1.07472i 0.0558299 0.0405628i
\(703\) 0.490035 + 1.50817i 0.0184820 + 0.0568818i
\(704\) −41.6861 30.2868i −1.57111 1.14148i
\(705\) −3.23607 2.35114i −0.121877 0.0885491i
\(706\) 5.85942 4.25712i 0.220522 0.160219i
\(707\) 20.4853 0.770428
\(708\) 93.0833 3.49828
\(709\) 4.29888 3.12332i 0.161448 0.117299i −0.504128 0.863629i \(-0.668186\pi\)
0.665576 + 0.746330i \(0.268186\pi\)
\(710\) 10.4975 32.3079i 0.393963 1.21249i
\(711\) −13.3226 41.0026i −0.499635 1.53772i
\(712\) 55.1127 2.06544
\(713\) 0 0
\(714\) −2.41421 −0.0903497
\(715\) −2.96217 9.11662i −0.110779 0.340942i
\(716\) −7.99429 + 24.6039i −0.298761 + 0.919490i
\(717\) −24.9169 + 18.1032i −0.930539 + 0.676076i
\(718\) −64.9411 −2.42358
\(719\) 6.07107 0.226413 0.113206 0.993572i \(-0.463888\pi\)
0.113206 + 0.993572i \(0.463888\pi\)
\(720\) −6.86474 + 4.98752i −0.255834 + 0.185874i
\(721\) 23.5765 + 17.1293i 0.878034 + 0.637929i
\(722\) −32.1981 23.3933i −1.19829 0.870607i
\(723\) −18.3948 56.6135i −0.684111 2.10548i
\(724\) 31.9443 23.2089i 1.18720 0.862551i
\(725\) 1.44814 + 4.45693i 0.0537827 + 0.165526i
\(726\) 29.6914 91.3806i 1.10195 3.39145i
\(727\) 37.8949 + 27.5322i 1.40544 + 1.02111i 0.993965 + 0.109694i \(0.0349870\pi\)
0.411477 + 0.911420i \(0.365013\pi\)
\(728\) −6.02128 + 18.5316i −0.223164 + 0.686827i
\(729\) −7.36339 + 22.6622i −0.272718 + 0.839340i
\(730\) 7.47745 + 5.43269i 0.276753 + 0.201073i
\(731\) −0.471842 + 1.45218i −0.0174517 + 0.0537108i
\(732\) −8.07836 24.8626i −0.298585 0.918950i
\(733\) 23.9691 17.4146i 0.885318 0.643221i −0.0493348 0.998782i \(-0.515710\pi\)
0.934653 + 0.355561i \(0.115710\pi\)
\(734\) −13.5877 41.8185i −0.501529 1.54355i
\(735\) −2.28825 1.66251i −0.0844032 0.0613225i
\(736\) 5.13171 + 3.72841i 0.189157 + 0.137431i
\(737\) −22.2361 + 16.1554i −0.819076 + 0.595093i
\(738\) −64.7696 −2.38420
\(739\) −7.87006 −0.289505 −0.144752 0.989468i \(-0.546239\pi\)
−0.144752 + 0.989468i \(0.546239\pi\)
\(740\) −3.09726 + 2.25029i −0.113858 + 0.0827224i
\(741\) −2.16312 + 6.65740i −0.0794642 + 0.244566i
\(742\) −0.309017 0.951057i −0.0113444 0.0349144i
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) −7.46033 22.9605i −0.273142 0.840645i
\(747\) 3.55824 10.9511i 0.130189 0.400682i
\(748\) −2.78597 + 2.02413i −0.101865 + 0.0740094i
\(749\) 23.1421 0.845595
\(750\) −52.4558 −1.91542
\(751\) 1.00532 0.730406i 0.0366846 0.0266529i −0.569292 0.822135i \(-0.692783\pi\)
0.605976 + 0.795483i \(0.292783\pi\)
\(752\) 4.02127 + 2.92162i 0.146641 + 0.106541i
\(753\) 7.00354 + 5.08837i 0.255223 + 0.185431i
\(754\) 1.59810 + 4.91846i 0.0581995 + 0.179120i
\(755\) 14.0071 10.1767i 0.509770 0.370370i
\(756\) 1.18305 + 3.64105i 0.0430271 + 0.132424i
\(757\) 10.7096 32.9606i 0.389245 1.19797i −0.544108 0.839015i \(-0.683132\pi\)
0.933353 0.358959i \(-0.116868\pi\)
\(758\) −57.3926 41.6981i −2.08459 1.51454i
\(759\) −15.6447 + 48.1495i −0.567868 + 1.74772i
\(760\) −2.16312 + 6.65740i −0.0784646 + 0.241489i
\(761\) 16.5491 + 12.0236i 0.599905 + 0.435857i 0.845845 0.533428i \(-0.179097\pi\)
−0.245940 + 0.969285i \(0.579097\pi\)
\(762\) −19.6309 + 60.4177i −0.711152 + 2.18870i
\(763\) −3.85816 11.8742i −0.139675 0.429875i
\(764\) 3.40855 2.47646i 0.123317 0.0895951i
\(765\) −0.149960 0.461530i −0.00542182 0.0166867i
\(766\) 48.6322 + 35.3334i 1.75715 + 1.27665i
\(767\) 14.8974 + 10.8236i 0.537914 + 0.390818i
\(768\) −58.5367 + 42.5294i −2.11226 + 1.53465i
\(769\) −26.1127 −0.941648 −0.470824 0.882227i \(-0.656043\pi\)
−0.470824 + 0.882227i \(0.656043\pi\)
\(770\) 30.5563 1.10117
\(771\) −0.612717 + 0.445165i −0.0220664 + 0.0160322i
\(772\) −25.0122 + 76.9796i −0.900208 + 2.77056i
\(773\) 5.56231 + 17.1190i 0.200062 + 0.615728i 0.999880 + 0.0154855i \(0.00492938\pi\)
−0.799818 + 0.600243i \(0.795071\pi\)
\(774\) −60.7696 −2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) −1.80108 5.54316i −0.0646135 0.198860i
\(778\) −12.7886 + 39.3593i −0.458493 + 1.41110i
\(779\) −12.1689 + 8.84125i −0.435997 + 0.316771i
\(780\) −16.8995 −0.605099
\(781\) 73.7696 2.63968
\(782\) 1.34042 0.973874i 0.0479334 0.0348257i
\(783\) 0.392601 + 0.285241i 0.0140304 + 0.0101937i
\(784\) 2.84347 + 2.06590i 0.101552 + 0.0737821i
\(785\) 4.58224 + 14.1027i 0.163547 + 0.503346i
\(786\) 22.4324 16.2981i 0.800136 0.581333i
\(787\) 12.2327 + 37.6483i 0.436048 + 1.34202i 0.892009 + 0.452018i \(0.149296\pi\)
−0.455961 + 0.890000i \(0.650704\pi\)
\(788\) 4.12326 12.6901i 0.146885 0.452066i
\(789\) −1.34042 0.973874i −0.0477203 0.0346709i
\(790\) 11.3715 34.9979i 0.404580 1.24517i
\(791\) 3.98616 12.2681i 0.141732 0.436205i
\(792\) −52.9549 38.4740i −1.88167 1.36711i
\(793\) 1.59810 4.91846i 0.0567503 0.174660i
\(794\) 12.3205 + 37.9187i 0.437239 + 1.34568i
\(795\) 0.335106 0.243469i 0.0118850 0.00863494i
\(796\) 18.4387 + 56.7486i 0.653544 + 2.01140i
\(797\) 18.1672 + 13.1992i 0.643514 + 0.467540i 0.861056 0.508511i \(-0.169804\pi\)
−0.217542 + 0.976051i \(0.569804\pi\)
\(798\) −18.0522 13.1157i −0.639040 0.464290i
\(799\) −0.229980 + 0.167090i −0.00813612 + 0.00591124i
\(800\) −6.34315 −0.224264
\(801\) −35.3137 −1.24775
\(802\) −41.3510 + 30.0433i −1.46016 + 1.06087i
\(803\) −6.20230 + 19.0887i −0.218874 + 0.673626i
\(804\) 14.9737 + 46.0842i 0.528081 + 1.62527i
\(805\) −9.65685 −0.340359
\(806\) 0 0
\(807\) 76.8406 2.70492
\(808\) −11.5745 35.6226i −0.407189 1.25320i
\(809\) −14.2057 + 43.7206i −0.499445 + 1.53713i 0.310467 + 0.950584i \(0.399514\pi\)
−0.809913 + 0.586551i \(0.800486\pi\)
\(810\) −18.5261 + 13.4600i −0.650940 + 0.472936i
\(811\) 11.7279 0.411823 0.205912 0.978571i \(-0.433984\pi\)
0.205912 + 0.978571i \(0.433984\pi\)
\(812\) −10.8284 −0.380003
\(813\) −45.5349 + 33.0831i −1.59698 + 1.16027i
\(814\) −10.2396 7.43951i −0.358898 0.260755i
\(815\) 10.4934 + 7.62391i 0.367568 + 0.267054i
\(816\) 0.383997 + 1.18182i 0.0134426 + 0.0413720i
\(817\) −11.4174 + 8.29524i −0.399445 + 0.290214i
\(818\) −6.97030 21.4524i −0.243711 0.750064i
\(819\) 3.85816 11.8742i 0.134815 0.414918i
\(820\) −29.3784 21.3447i −1.02594 0.745388i
\(821\) −2.62210 + 8.06998i −0.0915118 + 0.281644i −0.986329 0.164789i \(-0.947306\pi\)
0.894817 + 0.446433i \(0.147306\pi\)
\(822\) −13.4816 + 41.4921i −0.470225 + 1.44720i
\(823\) 5.02659 + 3.65203i 0.175216 + 0.127302i 0.671937 0.740609i \(-0.265463\pi\)
−0.496721 + 0.867910i \(0.665463\pi\)
\(824\) 16.4657 50.6764i 0.573611 1.76539i
\(825\) −15.6447 48.1495i −0.544680 1.67635i
\(826\) −47.4881 + 34.5021i −1.65232 + 1.20048i
\(827\) 5.28435 + 16.2635i 0.183755 + 0.565539i 0.999925 0.0122730i \(-0.00390671\pi\)
−0.816170 + 0.577812i \(0.803907\pi\)
\(828\) 35.0415 + 25.4592i 1.21778 + 0.884767i
\(829\) 37.5598 + 27.2888i 1.30450 + 0.947778i 0.999989 0.00472973i \(-0.00150553\pi\)
0.304515 + 0.952507i \(0.401506\pi\)
\(830\) 7.95136 5.77700i 0.275996 0.200523i
\(831\) 34.1421 1.18438
\(832\) −17.9706 −0.623017
\(833\) −0.162621 + 0.118151i −0.00563447 + 0.00409368i
\(834\) 0 0
\(835\) −2.64406 8.13757i −0.0915014 0.281612i
\(836\) −31.8284 −1.10081
\(837\) 0 0
\(838\) −67.5980 −2.33513
\(839\) 9.46439 + 29.1284i 0.326747 + 1.00562i 0.970646 + 0.240513i \(0.0773158\pi\)
−0.643899 + 0.765111i \(0.722684\pi\)
\(840\) 7.95037 24.4687i 0.274314 0.844251i
\(841\) 22.3510 16.2390i 0.770726 0.559965i
\(842\) 6.89949 0.237772
\(843\) −4.82843 −0.166300
\(844\) −23.4952 + 17.0702i −0.808737 + 0.587582i
\(845\) 7.81256 + 5.67616i 0.268760 + 0.195266i
\(846\) −9.15298 6.65003i −0.314686 0.228633i
\(847\) 12.2986 + 37.8511i 0.422584 + 1.30058i
\(848\) −0.416416 + 0.302544i −0.0142998 + 0.0103894i
\(849\) 1.74806 + 5.37999i 0.0599934 + 0.184641i
\(850\) −0.511996 + 1.57576i −0.0175613 + 0.0540482i
\(851\) 3.23607 + 2.35114i 0.110931 + 0.0805961i
\(852\) 40.1888 123.689i 1.37685 4.23750i
\(853\) −10.0385 + 30.8953i −0.343712 + 1.05784i 0.618558 + 0.785739i \(0.287717\pi\)
−0.962270 + 0.272097i \(0.912283\pi\)
\(854\) 13.3369 + 9.68981i 0.456378 + 0.331578i
\(855\) 1.38603 4.26576i 0.0474012 0.145886i
\(856\) −13.0757 40.2427i −0.446917 1.37547i
\(857\) 2.03445 1.47811i 0.0694955 0.0504914i −0.552495 0.833516i \(-0.686324\pi\)
0.621991 + 0.783025i \(0.286324\pi\)
\(858\) −17.2648 53.1356i −0.589410 1.81402i
\(859\) 10.2059 + 7.41504i 0.348222 + 0.252998i 0.748123 0.663560i \(-0.230955\pi\)
−0.399901 + 0.916558i \(0.630955\pi\)
\(860\) −27.5641 20.0265i −0.939927 0.682897i
\(861\) 44.7259 32.4953i 1.52426 1.10744i
\(862\) 60.9411 2.07566
\(863\) −39.3848 −1.34067 −0.670337 0.742057i \(-0.733850\pi\)
−0.670337 + 0.742057i \(0.733850\pi\)
\(864\) −0.531406 + 0.386089i −0.0180788 + 0.0131350i
\(865\) −4.42318 + 13.6131i −0.150393 + 0.462861i
\(866\) 26.1952 + 80.6206i 0.890150 + 2.73960i
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) −2.11010 6.49422i −0.0715391 0.220175i
\(871\) −2.96217 + 9.11662i −0.100369 + 0.308905i
\(872\) −18.4686 + 13.4182i −0.625425 + 0.454398i
\(873\) 30.6274 1.03658
\(874\) 15.3137 0.517994
\(875\) 17.5783 12.7714i 0.594254 0.431751i
\(876\) 28.6269 + 20.7986i 0.967213 + 0.702721i
\(877\) −38.9716 28.3145i −1.31598 0.956114i −0.999973 0.00735663i \(-0.997658\pi\)
−0.316005 0.948757i \(-0.602342\pi\)
\(878\) 9.00542 + 27.7158i 0.303918 + 0.935364i
\(879\) −48.4359 + 35.1907i −1.63370 + 1.18695i
\(880\) −4.86020 14.9581i −0.163837 0.504239i
\(881\) 10.6035 32.6343i 0.357242 1.09948i −0.597457 0.801901i \(-0.703822\pi\)
0.954698 0.297575i \(-0.0961780\pi\)
\(882\) −6.47214 4.70228i −0.217928 0.158334i
\(883\) 8.12229 24.9978i 0.273337 0.841244i −0.716318 0.697774i \(-0.754174\pi\)
0.989655 0.143470i \(-0.0458260\pi\)
\(884\) −0.371133 + 1.14223i −0.0124825 + 0.0384173i
\(885\) −19.6702 14.2912i −0.661207 0.480395i
\(886\) 9.87945 30.4058i 0.331907 1.02150i
\(887\) 16.4786 + 50.7159i 0.553298 + 1.70287i 0.700397 + 0.713753i \(0.253006\pi\)
−0.147100 + 0.989122i \(0.546994\pi\)
\(888\) −8.62158 + 6.26394i −0.289321 + 0.210204i
\(889\) −8.13138 25.0258i −0.272718 0.839339i
\(890\) −24.3855 17.7171i −0.817404 0.593879i
\(891\) −40.2307 29.2293i −1.34778 0.979220i
\(892\) −5.35183 + 3.88833i −0.179192 + 0.130191i
\(893\) −2.62742 −0.0879232
\(894\) 5.82843 0.194932
\(895\) 5.46682 3.97188i 0.182736 0.132765i
\(896\) 15.3357 47.1985i 0.512330 1.57679i
\(897\) 5.45627 + 16.7927i 0.182179 + 0.560691i
\(898\) −11.1716 −0.372800
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) −0.00909661 0.0279965i −0.000303052 0.000932698i
\(902\) 37.0987 114.178i 1.23525 3.80171i
\(903\) 41.9638 30.4885i 1.39647 1.01459i
\(904\) −23.5858 −0.784452
\(905\) −10.3137 −0.342839
\(906\) 81.6393 59.3144i 2.71228 1.97059i
\(907\) −44.7497 32.5126i −1.48589 1.07956i −0.975599 0.219561i \(-0.929537\pi\)
−0.510292 0.860001i \(-0.670463\pi\)
\(908\) 48.2733 + 35.0726i 1.60200 + 1.16392i
\(909\) 7.41641 + 22.8254i 0.245987 + 0.757069i
\(910\) 8.62158 6.26394i 0.285802 0.207648i
\(911\) 15.1547 + 46.6414i 0.502098 + 1.54530i 0.805596 + 0.592465i \(0.201845\pi\)
−0.303498 + 0.952832i \(0.598155\pi\)
\(912\) −3.54915 + 10.9232i −0.117524 + 0.361702i
\(913\) 17.2670 + 12.5452i 0.571453 + 0.415185i
\(914\) −23.2111 + 71.4364i −0.767755 + 2.36291i
\(915\) −2.11010 + 6.49422i −0.0697578 + 0.214692i
\(916\) −35.5729 25.8452i −1.17536 0.853951i
\(917\) −3.54915 + 10.9232i −0.117203 + 0.360714i
\(918\) 0.0530189 + 0.163176i 0.00174989 + 0.00538559i
\(919\) 12.2166 8.87585i 0.402987 0.292787i −0.367769 0.929917i \(-0.619878\pi\)
0.770757 + 0.637130i \(0.219878\pi\)
\(920\) 5.45627 + 16.7927i 0.179888 + 0.553638i
\(921\) −5.38551 3.91280i −0.177459 0.128931i
\(922\) 51.0592 + 37.0967i 1.68155 + 1.22172i
\(923\) 20.8143 15.1225i 0.685112 0.497763i
\(924\) 116.983 3.84845
\(925\) −4.00000 −0.131519
\(926\) 48.7710 35.4342i 1.60271 1.16444i
\(927\) −10.5505 + 32.4711i −0.346524 + 1.06649i
\(928\) −0.574112 1.76693i −0.0188461 0.0580025i
\(929\) 24.4853 0.803336 0.401668 0.915785i \(-0.368431\pi\)
0.401668 + 0.915785i \(0.368431\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) −17.5428 53.9911i −0.574632 1.76854i
\(933\) 8.44040 25.9769i 0.276326 0.850445i
\(934\) −15.6251 + 11.3523i −0.511269 + 0.371459i
\(935\) 0.899495 0.0294166
\(936\) −22.8284 −0.746170
\(937\) −30.9964 + 22.5202i −1.01261 + 0.735704i −0.964755 0.263150i \(-0.915238\pi\)
−0.0478548 + 0.998854i \(0.515238\pi\)
\(938\) −24.7206 17.9606i −0.807156 0.586433i
\(939\) 7.47745 + 5.43269i 0.244017 + 0.177289i
\(940\) −1.96014 6.03269i −0.0639327 0.196765i
\(941\) 28.3156 20.5725i 0.923062 0.670644i −0.0212223 0.999775i \(-0.506756\pi\)
0.944284 + 0.329131i \(0.106756\pi\)
\(942\) 26.7072 + 82.1964i 0.870169 + 2.67810i
\(943\) −11.7245 + 36.0842i −0.381801 + 1.17506i
\(944\) 24.4430 + 17.7589i 0.795552 + 0.578002i
\(945\) 0.309017 0.951057i 0.0100523 0.0309379i
\(946\) 34.8076 107.127i 1.13169 3.48299i
\(947\) −31.4704 22.8645i −1.02265 0.742998i −0.0558248 0.998441i \(-0.517779\pi\)
−0.966824 + 0.255443i \(0.917779\pi\)
\(948\) 43.5350 133.987i 1.41395 4.35169i
\(949\) 2.16312 + 6.65740i 0.0702178 + 0.216108i
\(950\) −12.3891 + 9.00117i −0.401954 + 0.292037i
\(951\) 1.62007 + 4.98605i 0.0525342 + 0.161684i
\(952\) −1.47923 1.07472i −0.0479421 0.0348320i
\(953\) −16.5729 12.0409i −0.536850 0.390045i 0.286064 0.958211i \(-0.407653\pi\)
−0.822914 + 0.568166i \(0.807653\pi\)
\(954\) 0.947822 0.688633i 0.0306869 0.0222953i
\(955\) −1.10051 −0.0356115
\(956\) −48.8406 −1.57962
\(957\) 11.9964 8.71593i 0.387790 0.281746i
\(958\) −7.25735 + 22.3358i −0.234474 + 0.721638i
\(959\) −5.58427 17.1866i −0.180325 0.554984i
\(960\) 23.7279 0.765815
\(961\) 0 0
\(962\) −4.41421 −0.142320
\(963\) 8.37828 + 25.7857i 0.269986 + 0.830933i
\(964\) 29.1703 89.7769i 0.939511 2.89152i
\(965\) 17.1043 12.4270i 0.550608 0.400040i
\(966\) −56.2843 −1.81092
\(967\) −46.5563 −1.49715 −0.748576 0.663049i \(-0.769262\pi\)
−0.748576 + 0.663049i \(0.769262\pi\)
\(968\) 58.8718 42.7729i 1.89221 1.37477i
\(969\) −0.531406 0.386089i −0.0170712 0.0124030i
\(970\) 21.1494 + 15.3660i 0.679067 + 0.493371i
\(971\) 18.1388 + 55.8256i 0.582103 + 1.79153i 0.610606 + 0.791934i \(0.290926\pi\)
−0.0285036 + 0.999594i \(0.509074\pi\)
\(972\) −67.0770 + 48.7343i −2.15149 + 1.56315i
\(973\) 0 0
\(974\) 12.9696 39.9164i 0.415573 1.27900i
\(975\) −14.2847 10.3784i −0.457476 0.332376i
\(976\) 2.62210 8.06998i 0.0839313 0.258314i
\(977\) 5.09423 15.6784i 0.162979 0.501598i −0.835903 0.548878i \(-0.815055\pi\)
0.998882 + 0.0472800i \(0.0150553\pi\)
\(978\) 61.1601 + 44.4354i 1.95568 + 1.42089i
\(979\) 20.2270 62.2522i 0.646457 1.98959i
\(980\) −1.38603 4.26576i −0.0442750 0.136265i
\(981\) 11.8338 8.59778i 0.377825 0.274506i
\(982\) −3.29315 10.1353i −0.105089 0.323429i
\(983\) −39.5129 28.7078i −1.26027 0.915637i −0.261495 0.965205i \(-0.584215\pi\)
−0.998771 + 0.0495684i \(0.984215\pi\)
\(984\) −81.7781 59.4153i −2.60699 1.89409i
\(985\) −2.81965 + 2.04860i −0.0898416 + 0.0652737i
\(986\) −0.485281 −0.0154545
\(987\) 9.65685 0.307381
\(988\) −8.98050 + 6.52471i −0.285708 + 0.207579i
\(989\) −11.0004 + 33.8557i −0.349792 + 1.07655i
\(990\) 11.0625 + 34.0469i 0.351589 + 1.08208i
\(991\) −19.9411 −0.633451 −0.316725 0.948517i \(-0.602583\pi\)
−0.316725 + 0.948517i \(0.602583\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 25.3432 + 77.9982i 0.803836 + 2.47395i
\(995\) 4.81627 14.8230i 0.152686 0.469920i
\(996\) 30.4412 22.1168i 0.964567 0.700799i
\(997\) −46.5980 −1.47577 −0.737886 0.674925i \(-0.764176\pi\)
−0.737886 + 0.674925i \(0.764176\pi\)
\(998\) −97.0833 −3.07312
\(999\) −0.335106 + 0.243469i −0.0106023 + 0.00770301i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.l.531.1 8
31.2 even 5 inner 961.2.d.l.388.2 8
31.3 odd 30 961.2.c.a.439.1 4
31.4 even 5 inner 961.2.d.l.374.2 8
31.5 even 3 961.2.g.o.844.1 16
31.6 odd 6 961.2.g.r.547.1 16
31.7 even 15 961.2.g.o.816.2 16
31.8 even 5 inner 961.2.d.l.628.1 8
31.9 even 15 961.2.g.o.448.1 16
31.10 even 15 961.2.g.o.338.2 16
31.11 odd 30 961.2.g.r.732.2 16
31.12 odd 30 961.2.g.r.235.2 16
31.13 odd 30 961.2.c.a.521.1 4
31.14 even 15 961.2.g.o.846.1 16
31.15 odd 10 961.2.a.c.1.1 2
31.16 even 5 961.2.a.a.1.1 2
31.17 odd 30 961.2.g.r.846.1 16
31.18 even 15 31.2.c.a.25.1 yes 4
31.19 even 15 961.2.g.o.235.2 16
31.20 even 15 961.2.g.o.732.2 16
31.21 odd 30 961.2.g.r.338.2 16
31.22 odd 30 961.2.g.r.448.1 16
31.23 odd 10 961.2.d.i.628.1 8
31.24 odd 30 961.2.g.r.816.2 16
31.25 even 3 961.2.g.o.547.1 16
31.26 odd 6 961.2.g.r.844.1 16
31.27 odd 10 961.2.d.i.374.2 8
31.28 even 15 31.2.c.a.5.1 4
31.29 odd 10 961.2.d.i.388.2 8
31.30 odd 2 961.2.d.i.531.1 8
93.47 odd 10 8649.2.a.l.1.2 2
93.59 odd 30 279.2.h.c.253.2 4
93.77 even 10 8649.2.a.k.1.2 2
93.80 odd 30 279.2.h.c.118.2 4
124.59 odd 30 496.2.i.h.129.1 4
124.111 odd 30 496.2.i.h.273.1 4
155.18 odd 60 775.2.o.d.149.4 8
155.28 odd 60 775.2.o.d.749.4 8
155.49 even 30 775.2.e.e.676.2 4
155.59 even 30 775.2.e.e.501.2 4
155.142 odd 60 775.2.o.d.149.1 8
155.152 odd 60 775.2.o.d.749.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 31.28 even 15
31.2.c.a.25.1 yes 4 31.18 even 15
279.2.h.c.118.2 4 93.80 odd 30
279.2.h.c.253.2 4 93.59 odd 30
496.2.i.h.129.1 4 124.59 odd 30
496.2.i.h.273.1 4 124.111 odd 30
775.2.e.e.501.2 4 155.59 even 30
775.2.e.e.676.2 4 155.49 even 30
775.2.o.d.149.1 8 155.142 odd 60
775.2.o.d.149.4 8 155.18 odd 60
775.2.o.d.749.1 8 155.152 odd 60
775.2.o.d.749.4 8 155.28 odd 60
961.2.a.a.1.1 2 31.16 even 5
961.2.a.c.1.1 2 31.15 odd 10
961.2.c.a.439.1 4 31.3 odd 30
961.2.c.a.521.1 4 31.13 odd 30
961.2.d.i.374.2 8 31.27 odd 10
961.2.d.i.388.2 8 31.29 odd 10
961.2.d.i.531.1 8 31.30 odd 2
961.2.d.i.628.1 8 31.23 odd 10
961.2.d.l.374.2 8 31.4 even 5 inner
961.2.d.l.388.2 8 31.2 even 5 inner
961.2.d.l.531.1 8 1.1 even 1 trivial
961.2.d.l.628.1 8 31.8 even 5 inner
961.2.g.o.235.2 16 31.19 even 15
961.2.g.o.338.2 16 31.10 even 15
961.2.g.o.448.1 16 31.9 even 15
961.2.g.o.547.1 16 31.25 even 3
961.2.g.o.732.2 16 31.20 even 15
961.2.g.o.816.2 16 31.7 even 15
961.2.g.o.844.1 16 31.5 even 3
961.2.g.o.846.1 16 31.14 even 15
961.2.g.r.235.2 16 31.12 odd 30
961.2.g.r.338.2 16 31.21 odd 30
961.2.g.r.448.1 16 31.22 odd 30
961.2.g.r.547.1 16 31.6 odd 6
961.2.g.r.732.2 16 31.11 odd 30
961.2.g.r.816.2 16 31.24 odd 30
961.2.g.r.844.1 16 31.26 odd 6
961.2.g.r.846.1 16 31.17 odd 30
8649.2.a.k.1.2 2 93.77 even 10
8649.2.a.l.1.2 2 93.47 odd 10