Properties

Label 961.2.d.i.628.1
Level $961$
Weight $2$
Character 961.628
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 628.1
Root \(1.14412 - 0.831254i\) of defining polynomial
Character \(\chi\) \(=\) 961.628
Dual form 961.2.d.i.531.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.746033 + 2.29605i) q^{2} +(0.746033 + 2.29605i) q^{3} +(-3.09726 - 2.25029i) q^{4} +1.00000 q^{5} -5.82843 q^{6} +(-1.95314 - 1.41904i) q^{7} +(3.57117 - 2.59461i) q^{8} +(-2.28825 + 1.66251i) q^{9} +(-0.746033 + 2.29605i) q^{10} +(-4.24139 - 3.08155i) q^{11} +(2.85613 - 8.79027i) q^{12} +(-0.565015 - 1.73894i) q^{13} +(4.71530 - 3.42586i) q^{14} +(0.746033 + 2.29605i) q^{15} +(0.927051 + 2.85317i) q^{16} +(-0.138805 + 0.100848i) q^{17} +(-2.11010 - 6.49422i) q^{18} +(0.490035 - 1.50817i) q^{19} +(-3.09726 - 2.25029i) q^{20} +(1.80108 - 5.54316i) q^{21} +(10.2396 - 7.43951i) q^{22} +(-3.23607 + 2.35114i) q^{23} +(8.62158 + 6.26394i) q^{24} -4.00000 q^{25} +4.41421 q^{26} +(0.335106 + 0.243469i) q^{27} +(2.85613 + 8.79027i) q^{28} +(0.362036 - 1.11423i) q^{29} -5.82843 q^{30} +1.58579 q^{32} +(3.91118 - 12.0374i) q^{33} +(-0.127999 - 0.393941i) q^{34} +(-1.95314 - 1.41904i) q^{35} +10.8284 q^{36} -1.00000 q^{37} +(3.09726 + 2.25029i) q^{38} +(3.57117 - 2.59461i) q^{39} +(3.57117 - 2.59461i) q^{40} +(2.93111 - 9.02104i) q^{41} +(11.3837 + 8.27077i) q^{42} +(-2.75010 + 8.46392i) q^{43} +(6.20230 + 19.0887i) q^{44} +(-2.28825 + 1.66251i) q^{45} +(-2.98413 - 9.18421i) q^{46} +(-0.511996 - 1.57576i) q^{47} +(-5.85942 + 4.25712i) q^{48} +(-0.362036 - 1.11423i) q^{49} +(2.98413 - 9.18421i) q^{50} +(-0.335106 - 0.243469i) q^{51} +(-2.16312 + 6.65740i) q^{52} +(0.138805 - 0.100848i) q^{53} +(-0.809017 + 0.587785i) q^{54} +(-4.24139 - 3.08155i) q^{55} -10.6569 q^{56} +3.82843 q^{57} +(2.28825 + 1.66251i) q^{58} +(-3.11213 - 9.57815i) q^{59} +(2.85613 - 8.79027i) q^{60} -2.82843 q^{61} +6.82843 q^{63} +(-3.03715 + 9.34739i) q^{64} +(-0.565015 - 1.73894i) q^{65} +(24.7206 + 17.9606i) q^{66} -5.24264 q^{67} +0.656854 q^{68} +(-7.81256 - 5.67616i) q^{69} +(4.71530 - 3.42586i) q^{70} +(11.3837 - 8.27077i) q^{71} +(-3.85816 + 11.8742i) q^{72} +(3.09726 + 2.25029i) q^{73} +(0.746033 - 2.29605i) q^{74} +(-2.98413 - 9.18421i) q^{75} +(-4.91160 + 3.56848i) q^{76} +(3.91118 + 12.0374i) q^{77} +(3.29315 + 10.1353i) q^{78} +(-12.3316 + 8.95940i) q^{79} +(0.927051 + 2.85317i) q^{80} +(-2.93111 + 9.02104i) q^{81} +(18.5261 + 13.4600i) q^{82} +(-1.25803 + 3.87182i) q^{83} +(-18.0522 + 13.1157i) q^{84} +(-0.138805 + 0.100848i) q^{85} +(-17.3820 - 12.6287i) q^{86} +2.82843 q^{87} -23.1421 q^{88} +(-10.1008 - 7.33866i) q^{89} +(-2.11010 - 6.49422i) q^{90} +(-1.36407 + 4.19817i) q^{91} +15.3137 q^{92} +4.00000 q^{94} +(0.490035 - 1.50817i) q^{95} +(1.18305 + 3.64105i) q^{96} +(-8.76038 - 6.36479i) q^{97} +2.82843 q^{98} +14.8284 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 8 q^{5} - 24 q^{6} - 2 q^{7} + 6 q^{8} + 2 q^{10} - 2 q^{11} - 10 q^{12} - 2 q^{13} + 6 q^{14} - 2 q^{15} - 6 q^{16} - 6 q^{17} + 8 q^{18} - 6 q^{19} - 2 q^{20} - 6 q^{21}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.746033 + 2.29605i −0.527525 + 1.62356i 0.231743 + 0.972777i \(0.425557\pi\)
−0.759268 + 0.650778i \(0.774443\pi\)
\(3\) 0.746033 + 2.29605i 0.430722 + 1.32563i 0.897407 + 0.441203i \(0.145448\pi\)
−0.466685 + 0.884424i \(0.654552\pi\)
\(4\) −3.09726 2.25029i −1.54863 1.12515i
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) −5.82843 −2.37945
\(7\) −1.95314 1.41904i −0.738217 0.536346i 0.153935 0.988081i \(-0.450805\pi\)
−0.892152 + 0.451735i \(0.850805\pi\)
\(8\) 3.57117 2.59461i 1.26260 0.917333i
\(9\) −2.28825 + 1.66251i −0.762749 + 0.554169i
\(10\) −0.746033 + 2.29605i −0.235916 + 0.726076i
\(11\) −4.24139 3.08155i −1.27883 0.929121i −0.279309 0.960201i \(-0.590105\pi\)
−0.999517 + 0.0310800i \(0.990105\pi\)
\(12\) 2.85613 8.79027i 0.824495 2.53753i
\(13\) −0.565015 1.73894i −0.156707 0.482294i 0.841623 0.540066i \(-0.181601\pi\)
−0.998330 + 0.0577712i \(0.981601\pi\)
\(14\) 4.71530 3.42586i 1.26022 0.915601i
\(15\) 0.746033 + 2.29605i 0.192625 + 0.592838i
\(16\) 0.927051 + 2.85317i 0.231763 + 0.713292i
\(17\) −0.138805 + 0.100848i −0.0336652 + 0.0244592i −0.604491 0.796612i \(-0.706623\pi\)
0.570825 + 0.821071i \(0.306623\pi\)
\(18\) −2.11010 6.49422i −0.497355 1.53070i
\(19\) 0.490035 1.50817i 0.112422 0.345999i −0.878979 0.476861i \(-0.841775\pi\)
0.991401 + 0.130862i \(0.0417746\pi\)
\(20\) −3.09726 2.25029i −0.692569 0.503181i
\(21\) 1.80108 5.54316i 0.393029 1.20962i
\(22\) 10.2396 7.43951i 2.18309 1.58611i
\(23\) −3.23607 + 2.35114i −0.674767 + 0.490247i −0.871617 0.490187i \(-0.836929\pi\)
0.196851 + 0.980433i \(0.436929\pi\)
\(24\) 8.62158 + 6.26394i 1.75987 + 1.27862i
\(25\) −4.00000 −0.800000
\(26\) 4.41421 0.865699
\(27\) 0.335106 + 0.243469i 0.0644911 + 0.0468556i
\(28\) 2.85613 + 8.79027i 0.539758 + 1.66121i
\(29\) 0.362036 1.11423i 0.0672284 0.206908i −0.911799 0.410637i \(-0.865306\pi\)
0.979027 + 0.203729i \(0.0653063\pi\)
\(30\) −5.82843 −1.06412
\(31\) 0 0
\(32\) 1.58579 0.280330
\(33\) 3.91118 12.0374i 0.680850 2.09544i
\(34\) −0.127999 0.393941i −0.0219517 0.0675602i
\(35\) −1.95314 1.41904i −0.330141 0.239861i
\(36\) 10.8284 1.80474
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 3.09726 + 2.25029i 0.502442 + 0.365046i
\(39\) 3.57117 2.59461i 0.571845 0.415470i
\(40\) 3.57117 2.59461i 0.564652 0.410244i
\(41\) 2.93111 9.02104i 0.457763 1.40885i −0.410098 0.912042i \(-0.634505\pi\)
0.867861 0.496808i \(-0.165495\pi\)
\(42\) 11.3837 + 8.27077i 1.75655 + 1.27621i
\(43\) −2.75010 + 8.46392i −0.419386 + 1.29074i 0.488883 + 0.872349i \(0.337404\pi\)
−0.908269 + 0.418387i \(0.862596\pi\)
\(44\) 6.20230 + 19.0887i 0.935032 + 2.87773i
\(45\) −2.28825 + 1.66251i −0.341112 + 0.247832i
\(46\) −2.98413 9.18421i −0.439986 1.35414i
\(47\) −0.511996 1.57576i −0.0746823 0.229849i 0.906746 0.421677i \(-0.138558\pi\)
−0.981428 + 0.191828i \(0.938558\pi\)
\(48\) −5.85942 + 4.25712i −0.845734 + 0.614462i
\(49\) −0.362036 1.11423i −0.0517194 0.159176i
\(50\) 2.98413 9.18421i 0.422020 1.29884i
\(51\) −0.335106 0.243469i −0.0469242 0.0340924i
\(52\) −2.16312 + 6.65740i −0.299971 + 0.923215i
\(53\) 0.138805 0.100848i 0.0190664 0.0138525i −0.578211 0.815887i \(-0.696249\pi\)
0.597278 + 0.802035i \(0.296249\pi\)
\(54\) −0.809017 + 0.587785i −0.110093 + 0.0799874i
\(55\) −4.24139 3.08155i −0.571908 0.415516i
\(56\) −10.6569 −1.42408
\(57\) 3.82843 0.507088
\(58\) 2.28825 + 1.66251i 0.300461 + 0.218298i
\(59\) −3.11213 9.57815i −0.405165 1.24697i −0.920757 0.390136i \(-0.872428\pi\)
0.515592 0.856834i \(-0.327572\pi\)
\(60\) 2.85613 8.79027i 0.368725 1.13482i
\(61\) −2.82843 −0.362143 −0.181071 0.983470i \(-0.557957\pi\)
−0.181071 + 0.983470i \(0.557957\pi\)
\(62\) 0 0
\(63\) 6.82843 0.860301
\(64\) −3.03715 + 9.34739i −0.379644 + 1.16842i
\(65\) −0.565015 1.73894i −0.0700815 0.215689i
\(66\) 24.7206 + 17.9606i 3.04290 + 2.21079i
\(67\) −5.24264 −0.640490 −0.320245 0.947335i \(-0.603765\pi\)
−0.320245 + 0.947335i \(0.603765\pi\)
\(68\) 0.656854 0.0796553
\(69\) −7.81256 5.67616i −0.940522 0.683329i
\(70\) 4.71530 3.42586i 0.563586 0.409469i
\(71\) 11.3837 8.27077i 1.35100 0.981559i 0.352040 0.935985i \(-0.385488\pi\)
0.998961 0.0455742i \(-0.0145118\pi\)
\(72\) −3.85816 + 11.8742i −0.454689 + 1.39939i
\(73\) 3.09726 + 2.25029i 0.362507 + 0.263377i 0.754097 0.656763i \(-0.228075\pi\)
−0.391590 + 0.920140i \(0.628075\pi\)
\(74\) 0.746033 2.29605i 0.0867246 0.266911i
\(75\) −2.98413 9.18421i −0.344578 1.06050i
\(76\) −4.91160 + 3.56848i −0.563399 + 0.409333i
\(77\) 3.91118 + 12.0374i 0.445721 + 1.37179i
\(78\) 3.29315 + 10.1353i 0.372876 + 1.14759i
\(79\) −12.3316 + 8.95940i −1.38741 + 1.00801i −0.391264 + 0.920278i \(0.627962\pi\)
−0.996144 + 0.0877328i \(0.972038\pi\)
\(80\) 0.927051 + 2.85317i 0.103647 + 0.318994i
\(81\) −2.93111 + 9.02104i −0.325679 + 1.00234i
\(82\) 18.5261 + 13.4600i 2.04586 + 1.48641i
\(83\) −1.25803 + 3.87182i −0.138087 + 0.424987i −0.996057 0.0887116i \(-0.971725\pi\)
0.857971 + 0.513699i \(0.171725\pi\)
\(84\) −18.0522 + 13.1157i −1.96965 + 1.43104i
\(85\) −0.138805 + 0.100848i −0.0150556 + 0.0109385i
\(86\) −17.3820 12.6287i −1.87434 1.36179i
\(87\) 2.82843 0.303239
\(88\) −23.1421 −2.46696
\(89\) −10.1008 7.33866i −1.07068 0.777897i −0.0946482 0.995511i \(-0.530173\pi\)
−0.976035 + 0.217614i \(0.930173\pi\)
\(90\) −2.11010 6.49422i −0.222424 0.684551i
\(91\) −1.36407 + 4.19817i −0.142993 + 0.440087i
\(92\) 15.3137 1.59656
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0.490035 1.50817i 0.0502765 0.154735i
\(96\) 1.18305 + 3.64105i 0.120744 + 0.371613i
\(97\) −8.76038 6.36479i −0.889482 0.646246i 0.0462609 0.998929i \(-0.485269\pi\)
−0.935743 + 0.352683i \(0.885269\pi\)
\(98\) 2.82843 0.285714
\(99\) 14.8284 1.49031
\(100\) 12.3891 + 9.00117i 1.23891 + 0.900117i
\(101\) −6.86474 + 4.98752i −0.683067 + 0.496277i −0.874374 0.485253i \(-0.838727\pi\)
0.191307 + 0.981530i \(0.438727\pi\)
\(102\) 0.809017 0.587785i 0.0801046 0.0581994i
\(103\) −3.73017 + 11.4803i −0.367544 + 1.13118i 0.580828 + 0.814026i \(0.302729\pi\)
−0.948373 + 0.317158i \(0.897271\pi\)
\(104\) −6.52963 4.74405i −0.640283 0.465193i
\(105\) 1.80108 5.54316i 0.175768 0.540957i
\(106\) 0.127999 + 0.393941i 0.0124324 + 0.0382629i
\(107\) −7.75506 + 5.63438i −0.749710 + 0.544696i −0.895737 0.444584i \(-0.853351\pi\)
0.146027 + 0.989281i \(0.453351\pi\)
\(108\) −0.490035 1.50817i −0.0471536 0.145124i
\(109\) −1.59810 4.91846i −0.153071 0.471103i 0.844890 0.534941i \(-0.179666\pi\)
−0.997960 + 0.0638377i \(0.979666\pi\)
\(110\) 10.2396 7.43951i 0.976309 0.709330i
\(111\) −0.746033 2.29605i −0.0708103 0.217932i
\(112\) 2.23810 6.88816i 0.211480 0.650870i
\(113\) −4.32270 3.14062i −0.406645 0.295445i 0.365597 0.930773i \(-0.380865\pi\)
−0.772242 + 0.635328i \(0.780865\pi\)
\(114\) −2.85613 + 8.79027i −0.267501 + 0.823285i
\(115\) −3.23607 + 2.35114i −0.301765 + 0.219245i
\(116\) −3.62867 + 2.63638i −0.336913 + 0.244782i
\(117\) 4.18389 + 3.03977i 0.386801 + 0.281027i
\(118\) 24.3137 2.23826
\(119\) 0.414214 0.0379709
\(120\) 8.62158 + 6.26394i 0.787039 + 0.571817i
\(121\) 5.09423 + 15.6784i 0.463112 + 1.42531i
\(122\) 2.11010 6.49422i 0.191039 0.587959i
\(123\) 22.8995 2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −5.09423 + 15.6784i −0.453830 + 1.39675i
\(127\) 3.36813 + 10.3660i 0.298873 + 0.919837i 0.981893 + 0.189437i \(0.0606663\pi\)
−0.683020 + 0.730400i \(0.739334\pi\)
\(128\) −16.6304 12.0827i −1.46994 1.06797i
\(129\) −21.4853 −1.89167
\(130\) 4.41421 0.387152
\(131\) 3.84878 + 2.79631i 0.336270 + 0.244314i 0.743086 0.669196i \(-0.233361\pi\)
−0.406816 + 0.913510i \(0.633361\pi\)
\(132\) −39.2016 + 28.4816i −3.41206 + 2.47901i
\(133\) −3.09726 + 2.25029i −0.268567 + 0.195125i
\(134\) 3.91118 12.0374i 0.337875 1.03987i
\(135\) 0.335106 + 0.243469i 0.0288413 + 0.0209544i
\(136\) −0.234037 + 0.720292i −0.0200685 + 0.0617645i
\(137\) 2.31308 + 7.11893i 0.197620 + 0.608211i 0.999936 + 0.0113118i \(0.00360073\pi\)
−0.802316 + 0.596899i \(0.796399\pi\)
\(138\) 18.8612 13.7035i 1.60557 1.16652i
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 2.85613 + 8.79027i 0.241387 + 0.742914i
\(141\) 3.23607 2.35114i 0.272526 0.198002i
\(142\) 10.4975 + 32.3079i 0.880929 + 2.71122i
\(143\) −2.96217 + 9.11662i −0.247709 + 0.762370i
\(144\) −6.86474 4.98752i −0.572061 0.415627i
\(145\) 0.362036 1.11423i 0.0300654 0.0925319i
\(146\) −7.47745 + 5.43269i −0.618838 + 0.449612i
\(147\) 2.28825 1.66251i 0.188731 0.137121i
\(148\) 3.09726 + 2.25029i 0.254593 + 0.184973i
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 23.3137 1.90356
\(151\) −14.0071 10.1767i −1.13988 0.828172i −0.152778 0.988261i \(-0.548822\pi\)
−0.987103 + 0.160089i \(0.948822\pi\)
\(152\) −2.16312 6.65740i −0.175452 0.539986i
\(153\) 0.149960 0.461530i 0.0121236 0.0373125i
\(154\) −30.5563 −2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 4.58224 14.1027i 0.365702 1.12552i −0.583838 0.811870i \(-0.698450\pi\)
0.949540 0.313646i \(-0.101550\pi\)
\(158\) −11.3715 34.9979i −0.904669 2.78428i
\(159\) 0.335106 + 0.243469i 0.0265756 + 0.0193083i
\(160\) 1.58579 0.125367
\(161\) 9.65685 0.761067
\(162\) −18.5261 13.4600i −1.45555 1.05752i
\(163\) 10.4934 7.62391i 0.821907 0.597150i −0.0953511 0.995444i \(-0.530397\pi\)
0.917258 + 0.398293i \(0.130397\pi\)
\(164\) −29.3784 + 21.3447i −2.29407 + 1.66674i
\(165\) 3.91118 12.0374i 0.304485 0.937109i
\(166\) −7.95136 5.77700i −0.617146 0.448383i
\(167\) 2.64406 8.13757i 0.204603 0.629704i −0.795126 0.606444i \(-0.792595\pi\)
0.999729 0.0232601i \(-0.00740460\pi\)
\(168\) −7.95037 24.4687i −0.613384 1.88780i
\(169\) 7.81256 5.67616i 0.600966 0.436627i
\(170\) −0.127999 0.393941i −0.00981708 0.0302139i
\(171\) 1.38603 + 4.26576i 0.105992 + 0.326211i
\(172\) 27.5641 20.0265i 2.10174 1.52700i
\(173\) −4.42318 13.6131i −0.336288 1.03499i −0.966084 0.258228i \(-0.916862\pi\)
0.629796 0.776761i \(-0.283138\pi\)
\(174\) −2.11010 + 6.49422i −0.159966 + 0.492326i
\(175\) 7.81256 + 5.67616i 0.590574 + 0.429077i
\(176\) 4.86020 14.9581i 0.366351 1.12751i
\(177\) 19.6702 14.2912i 1.47850 1.07420i
\(178\) 24.3855 17.7171i 1.82777 1.32795i
\(179\) −5.46682 3.97188i −0.408609 0.296872i 0.364429 0.931231i \(-0.381264\pi\)
−0.773039 + 0.634359i \(0.781264\pi\)
\(180\) 10.8284 0.807103
\(181\) 10.3137 0.766612 0.383306 0.923621i \(-0.374785\pi\)
0.383306 + 0.923621i \(0.374785\pi\)
\(182\) −8.62158 6.26394i −0.639074 0.464314i
\(183\) −2.11010 6.49422i −0.155983 0.480067i
\(184\) −5.45627 + 16.7927i −0.402241 + 1.23797i
\(185\) −1.00000 −0.0735215
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) −1.96014 + 6.03269i −0.142958 + 0.439979i
\(189\) −0.309017 0.951057i −0.0224777 0.0691792i
\(190\) 3.09726 + 2.25029i 0.224699 + 0.163253i
\(191\) −1.10051 −0.0796298 −0.0398149 0.999207i \(-0.512677\pi\)
−0.0398149 + 0.999207i \(0.512677\pi\)
\(192\) −23.7279 −1.71242
\(193\) 17.1043 + 12.4270i 1.23120 + 0.894518i 0.996979 0.0776664i \(-0.0247469\pi\)
0.234218 + 0.972184i \(0.424747\pi\)
\(194\) 21.1494 15.3660i 1.51844 1.10321i
\(195\) 3.57117 2.59461i 0.255737 0.185804i
\(196\) −1.38603 + 4.26576i −0.0990020 + 0.304697i
\(197\) 2.81965 + 2.04860i 0.200892 + 0.145956i 0.683683 0.729779i \(-0.260377\pi\)
−0.482791 + 0.875735i \(0.660377\pi\)
\(198\) −11.0625 + 34.0469i −0.786177 + 2.41961i
\(199\) −4.81627 14.8230i −0.341417 1.05077i −0.963474 0.267801i \(-0.913703\pi\)
0.622058 0.782971i \(-0.286297\pi\)
\(200\) −14.2847 + 10.3784i −1.01008 + 0.733866i
\(201\) −3.91118 12.0374i −0.275874 0.849052i
\(202\) −6.33030 19.4827i −0.445398 1.37080i
\(203\) −2.28825 + 1.66251i −0.160603 + 0.116685i
\(204\) 0.490035 + 1.50817i 0.0343093 + 0.105593i
\(205\) 2.93111 9.02104i 0.204718 0.630057i
\(206\) −23.5765 17.1293i −1.64265 1.19346i
\(207\) 3.49613 10.7600i 0.242998 0.747870i
\(208\) 4.43769 3.22417i 0.307698 0.223556i
\(209\) −6.72593 + 4.88668i −0.465242 + 0.338018i
\(210\) 11.3837 + 8.27077i 0.785552 + 0.570737i
\(211\) 7.58579 0.522227 0.261114 0.965308i \(-0.415910\pi\)
0.261114 + 0.965308i \(0.415910\pi\)
\(212\) −0.656854 −0.0451129
\(213\) 27.4828 + 19.9674i 1.88309 + 1.36814i
\(214\) −7.15131 22.0095i −0.488854 1.50454i
\(215\) −2.75010 + 8.46392i −0.187555 + 0.577235i
\(216\) 1.82843 0.124409
\(217\) 0 0
\(218\) 12.4853 0.845610
\(219\) −2.85613 + 8.79027i −0.193000 + 0.593992i
\(220\) 6.20230 + 19.0887i 0.418159 + 1.28696i
\(221\) 0.253796 + 0.184393i 0.0170721 + 0.0124036i
\(222\) 5.82843 0.391178
\(223\) −1.72792 −0.115710 −0.0578551 0.998325i \(-0.518426\pi\)
−0.0578551 + 0.998325i \(0.518426\pi\)
\(224\) −3.09726 2.25029i −0.206945 0.150354i
\(225\) 9.15298 6.65003i 0.610199 0.443335i
\(226\) 10.4359 7.58213i 0.694186 0.504356i
\(227\) −4.81627 + 14.8230i −0.319667 + 0.983835i 0.654123 + 0.756388i \(0.273038\pi\)
−0.973791 + 0.227447i \(0.926962\pi\)
\(228\) −11.8576 8.61508i −0.785292 0.570548i
\(229\) −3.54915 + 10.9232i −0.234534 + 0.721822i 0.762649 + 0.646813i \(0.223899\pi\)
−0.997183 + 0.0750091i \(0.976101\pi\)
\(230\) −2.98413 9.18421i −0.196768 0.605589i
\(231\) −24.7206 + 17.9606i −1.62650 + 1.18172i
\(232\) −1.59810 4.91846i −0.104921 0.322913i
\(233\) −4.58224 14.1027i −0.300192 0.923897i −0.981428 0.191832i \(-0.938557\pi\)
0.681235 0.732064i \(-0.261443\pi\)
\(234\) −10.1008 + 7.33866i −0.660310 + 0.479743i
\(235\) −0.511996 1.57576i −0.0333989 0.102791i
\(236\) −11.9146 + 36.6693i −0.775572 + 2.38697i
\(237\) −29.7710 21.6299i −1.93383 1.40501i
\(238\) −0.309017 + 0.951057i −0.0200306 + 0.0616478i
\(239\) −10.3209 + 7.49859i −0.667605 + 0.485043i −0.869223 0.494421i \(-0.835380\pi\)
0.201618 + 0.979464i \(0.435380\pi\)
\(240\) −5.85942 + 4.25712i −0.378224 + 0.274796i
\(241\) 19.9478 + 14.4929i 1.28495 + 0.933572i 0.999690 0.0248778i \(-0.00791967\pi\)
0.285261 + 0.958450i \(0.407920\pi\)
\(242\) −39.7990 −2.55838
\(243\) −21.6569 −1.38929
\(244\) 8.76038 + 6.36479i 0.560826 + 0.407464i
\(245\) −0.362036 1.11423i −0.0231296 0.0711857i
\(246\) −17.0838 + 52.5785i −1.08922 + 3.35228i
\(247\) −2.89949 −0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 6.71430 20.6645i 0.424649 1.30694i
\(251\) −1.10807 3.41029i −0.0699407 0.215255i 0.909977 0.414660i \(-0.136099\pi\)
−0.979917 + 0.199404i \(0.936099\pi\)
\(252\) −21.1494 15.3660i −1.33229 0.967965i
\(253\) 20.9706 1.31841
\(254\) −26.3137 −1.65107
\(255\) −0.335106 0.243469i −0.0209851 0.0152466i
\(256\) 24.2467 17.6163i 1.51542 1.10102i
\(257\) 0.253796 0.184393i 0.0158313 0.0115021i −0.579841 0.814729i \(-0.696886\pi\)
0.595673 + 0.803227i \(0.296886\pi\)
\(258\) 16.0287 49.3314i 0.997905 3.07124i
\(259\) 1.95314 + 1.41904i 0.121362 + 0.0881748i
\(260\) −2.16312 + 6.65740i −0.134151 + 0.412874i
\(261\) 1.02399 + 3.15152i 0.0633835 + 0.195074i
\(262\) −9.29179 + 6.75088i −0.574049 + 0.417071i
\(263\) 0.212076 + 0.652702i 0.0130772 + 0.0402473i 0.957382 0.288824i \(-0.0932643\pi\)
−0.944305 + 0.329071i \(0.893264\pi\)
\(264\) −17.2648 53.1356i −1.06257 3.27027i
\(265\) 0.138805 0.100848i 0.00852675 0.00619504i
\(266\) −2.85613 8.79027i −0.175121 0.538966i
\(267\) 9.31443 28.6669i 0.570034 1.75438i
\(268\) 16.2378 + 11.7975i 0.991884 + 0.720646i
\(269\) 9.83552 30.2706i 0.599683 1.84563i 0.0698018 0.997561i \(-0.477763\pi\)
0.529881 0.848072i \(-0.322237\pi\)
\(270\) −0.809017 + 0.587785i −0.0492352 + 0.0357715i
\(271\) −18.8612 + 13.7035i −1.14574 + 0.832426i −0.987908 0.155041i \(-0.950449\pi\)
−0.157827 + 0.987467i \(0.550449\pi\)
\(272\) −0.416416 0.302544i −0.0252489 0.0183444i
\(273\) −10.6569 −0.644982
\(274\) −18.0711 −1.09171
\(275\) 16.9655 + 12.3262i 1.02306 + 0.743297i
\(276\) 11.4245 + 35.1611i 0.687676 + 2.11645i
\(277\) 4.37016 13.4500i 0.262577 0.808130i −0.729664 0.683806i \(-0.760324\pi\)
0.992242 0.124325i \(-0.0396764\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.6569 −0.636869
\(281\) 0.618034 1.90211i 0.0368688 0.113471i −0.930928 0.365202i \(-0.881000\pi\)
0.967797 + 0.251731i \(0.0809999\pi\)
\(282\) 2.98413 + 9.18421i 0.177702 + 0.546912i
\(283\) 1.89564 + 1.37727i 0.112684 + 0.0818700i 0.642700 0.766118i \(-0.277814\pi\)
−0.530016 + 0.847988i \(0.677814\pi\)
\(284\) −53.8701 −3.19660
\(285\) 3.82843 0.226776
\(286\) −18.7224 13.6026i −1.10708 0.804339i
\(287\) −18.5261 + 13.4600i −1.09356 + 0.794518i
\(288\) −3.62867 + 2.63638i −0.213821 + 0.155350i
\(289\) −5.24419 + 16.1400i −0.308482 + 0.949410i
\(290\) 2.28825 + 1.66251i 0.134370 + 0.0976258i
\(291\) 8.07836 24.8626i 0.473562 1.45747i
\(292\) −4.52922 13.9395i −0.265052 0.815747i
\(293\) 20.0628 14.5765i 1.17208 0.851567i 0.180825 0.983515i \(-0.442123\pi\)
0.991257 + 0.131948i \(0.0421233\pi\)
\(294\) 2.11010 + 6.49422i 0.123064 + 0.378751i
\(295\) −3.11213 9.57815i −0.181195 0.557662i
\(296\) −3.57117 + 2.59461i −0.207570 + 0.150809i
\(297\) −0.671053 2.06529i −0.0389384 0.119840i
\(298\) −0.746033 + 2.29605i −0.0432165 + 0.133007i
\(299\) 5.91691 + 4.29889i 0.342184 + 0.248611i
\(300\) −11.4245 + 35.1611i −0.659596 + 2.03003i
\(301\) 17.3820 12.6287i 1.00188 0.727908i
\(302\) 33.8161 24.5688i 1.94590 1.41378i
\(303\) −16.5729 12.0409i −0.952091 0.691734i
\(304\) 4.75736 0.272853
\(305\) −2.82843 −0.161955
\(306\) 0.947822 + 0.688633i 0.0541834 + 0.0393665i
\(307\) −0.852071 2.62240i −0.0486303 0.149669i 0.923793 0.382893i \(-0.125072\pi\)
−0.972423 + 0.233225i \(0.925072\pi\)
\(308\) 14.9737 46.0842i 0.853205 2.62589i
\(309\) −29.1421 −1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 6.02128 18.5316i 0.340888 1.04915i
\(313\) −1.18305 3.64105i −0.0668699 0.205804i 0.912038 0.410105i \(-0.134508\pi\)
−0.978908 + 0.204301i \(0.934508\pi\)
\(314\) 28.9620 + 21.0421i 1.63442 + 1.18748i
\(315\) 6.82843 0.384738
\(316\) 58.3553 3.28274
\(317\) 1.75684 + 1.27642i 0.0986739 + 0.0716908i 0.636028 0.771666i \(-0.280576\pi\)
−0.537354 + 0.843357i \(0.680576\pi\)
\(318\) −0.809017 + 0.587785i −0.0453674 + 0.0329614i
\(319\) −4.96909 + 3.61026i −0.278216 + 0.202136i
\(320\) −3.03715 + 9.34739i −0.169782 + 0.522535i
\(321\) −18.7224 13.6026i −1.04498 0.759223i
\(322\) −7.20433 + 22.1727i −0.401482 + 1.23563i
\(323\) 0.0840767 + 0.258761i 0.00467815 + 0.0143979i
\(324\) 29.3784 21.3447i 1.63213 1.18581i
\(325\) 2.26006 + 6.95575i 0.125366 + 0.385836i
\(326\) 9.67647 + 29.7811i 0.535930 + 1.64942i
\(327\) 10.1008 7.33866i 0.558576 0.405829i
\(328\) −12.9386 39.8208i −0.714412 2.19874i
\(329\) −1.23607 + 3.80423i −0.0681466 + 0.209734i
\(330\) 24.7206 + 17.9606i 1.36082 + 0.988697i
\(331\) −0.234037 + 0.720292i −0.0128638 + 0.0395908i −0.957282 0.289155i \(-0.906626\pi\)
0.944419 + 0.328745i \(0.106626\pi\)
\(332\) 12.6092 9.16110i 0.692018 0.502780i
\(333\) 2.28825 1.66251i 0.125395 0.0911049i
\(334\) 16.7117 + 12.1418i 0.914426 + 0.664369i
\(335\) −5.24264 −0.286436
\(336\) 17.4853 0.953900
\(337\) −10.7710 7.82560i −0.586735 0.426288i 0.254411 0.967096i \(-0.418118\pi\)
−0.841146 + 0.540808i \(0.818118\pi\)
\(338\) 7.20433 + 22.1727i 0.391864 + 1.20603i
\(339\) 3.98616 12.2681i 0.216499 0.666314i
\(340\) 0.656854 0.0356229
\(341\) 0 0
\(342\) −10.8284 −0.585534
\(343\) −6.09626 + 18.7624i −0.329167 + 1.01307i
\(344\) 12.1395 + 37.3616i 0.654518 + 2.01440i
\(345\) −7.81256 5.67616i −0.420614 0.305594i
\(346\) 34.5563 1.85776
\(347\) −22.5563 −1.21089 −0.605444 0.795888i \(-0.707004\pi\)
−0.605444 + 0.795888i \(0.707004\pi\)
\(348\) −8.76038 6.36479i −0.469606 0.341189i
\(349\) −28.4068 + 20.6387i −1.52058 + 1.10477i −0.559380 + 0.828911i \(0.688961\pi\)
−0.961199 + 0.275854i \(0.911039\pi\)
\(350\) −18.8612 + 13.7035i −1.00817 + 0.732480i
\(351\) 0.234037 0.720292i 0.0124920 0.0384463i
\(352\) −6.72593 4.88668i −0.358493 0.260461i
\(353\) −0.927051 + 2.85317i −0.0493419 + 0.151859i −0.972692 0.232101i \(-0.925440\pi\)
0.923350 + 0.383960i \(0.125440\pi\)
\(354\) 18.1388 + 55.8256i 0.964068 + 2.96710i
\(355\) 11.3837 8.27077i 0.604186 0.438967i
\(356\) 14.7707 + 45.4595i 0.782846 + 2.40935i
\(357\) 0.309017 + 0.951057i 0.0163549 + 0.0503352i
\(358\) 13.1981 9.58896i 0.697540 0.506792i
\(359\) 8.31240 + 25.5829i 0.438712 + 1.35022i 0.889235 + 0.457451i \(0.151238\pi\)
−0.450523 + 0.892765i \(0.648762\pi\)
\(360\) −3.85816 + 11.8742i −0.203343 + 0.625826i
\(361\) 13.3369 + 9.68981i 0.701941 + 0.509990i
\(362\) −7.69437 + 23.6808i −0.404407 + 1.24464i
\(363\) −32.1981 + 23.3933i −1.68996 + 1.22783i
\(364\) 13.6720 9.93327i 0.716606 0.520645i
\(365\) 3.09726 + 2.25029i 0.162118 + 0.117786i
\(366\) 16.4853 0.861699
\(367\) −18.2132 −0.950721 −0.475361 0.879791i \(-0.657682\pi\)
−0.475361 + 0.879791i \(0.657682\pi\)
\(368\) −9.70820 7.05342i −0.506075 0.367685i
\(369\) 8.29044 + 25.5154i 0.431583 + 1.32828i
\(370\) 0.746033 2.29605i 0.0387844 0.119366i
\(371\) −0.414214 −0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −0.671053 + 2.06529i −0.0346993 + 0.106794i
\(375\) −6.71430 20.6645i −0.346725 1.06711i
\(376\) −5.91691 4.29889i −0.305142 0.221698i
\(377\) −2.14214 −0.110326
\(378\) 2.41421 0.124174
\(379\) 23.7728 + 17.2719i 1.22113 + 0.887200i 0.996193 0.0871744i \(-0.0277837\pi\)
0.224933 + 0.974374i \(0.427784\pi\)
\(380\) −4.91160 + 3.56848i −0.251960 + 0.183059i
\(381\) −21.2882 + 15.4668i −1.09063 + 0.792389i
\(382\) 0.821013 2.52682i 0.0420067 0.129283i
\(383\) 20.1441 + 14.6356i 1.02932 + 0.747842i 0.968172 0.250287i \(-0.0805250\pi\)
0.0611445 + 0.998129i \(0.480525\pi\)
\(384\) 15.3357 47.1985i 0.782597 2.40859i
\(385\) 3.91118 + 12.0374i 0.199332 + 0.613482i
\(386\) −41.2935 + 30.0015i −2.10179 + 1.52704i
\(387\) −7.77844 23.9396i −0.395401 1.21692i
\(388\) 12.8106 + 39.4269i 0.650358 + 2.00160i
\(389\) 13.8683 10.0759i 0.703150 0.510868i −0.177807 0.984065i \(-0.556900\pi\)
0.880956 + 0.473197i \(0.156900\pi\)
\(390\) 3.29315 + 10.1353i 0.166755 + 0.513219i
\(391\) 0.212076 0.652702i 0.0107251 0.0330086i
\(392\) −4.18389 3.03977i −0.211318 0.153532i
\(393\) −3.54915 + 10.9232i −0.179031 + 0.551000i
\(394\) −6.80724 + 4.94575i −0.342944 + 0.249163i
\(395\) −12.3316 + 8.95940i −0.620468 + 0.450796i
\(396\) −45.9275 33.3683i −2.30795 1.67682i
\(397\) −16.5147 −0.828850 −0.414425 0.910083i \(-0.636017\pi\)
−0.414425 + 0.910083i \(0.636017\pi\)
\(398\) 37.6274 1.88609
\(399\) −7.47745 5.43269i −0.374341 0.271975i
\(400\) −3.70820 11.4127i −0.185410 0.570634i
\(401\) 6.54238 20.1354i 0.326711 1.00551i −0.643952 0.765066i \(-0.722706\pi\)
0.970663 0.240446i \(-0.0772937\pi\)
\(402\) 30.5563 1.52401
\(403\) 0 0
\(404\) 32.4853 1.61620
\(405\) −2.93111 + 9.02104i −0.145648 + 0.448259i
\(406\) −2.11010 6.49422i −0.104723 0.322303i
\(407\) 4.24139 + 3.08155i 0.210238 + 0.152747i
\(408\) −1.82843 −0.0905206
\(409\) −9.34315 −0.461989 −0.230994 0.972955i \(-0.574198\pi\)
−0.230994 + 0.972955i \(0.574198\pi\)
\(410\) 18.5261 + 13.4600i 0.914938 + 0.664741i
\(411\) −14.6198 + 10.6219i −0.721142 + 0.523940i
\(412\) 37.3873 27.1634i 1.84194 1.33825i
\(413\) −7.51335 + 23.1237i −0.369708 + 1.13784i
\(414\) 22.0973 + 16.0546i 1.08602 + 0.789040i
\(415\) −1.25803 + 3.87182i −0.0617542 + 0.190060i
\(416\) −0.895993 2.75758i −0.0439297 0.135202i
\(417\) 0 0
\(418\) −6.20230 19.0887i −0.303364 0.933660i
\(419\) 8.65248 + 26.6296i 0.422701 + 1.30094i 0.905178 + 0.425032i \(0.139737\pi\)
−0.482477 + 0.875908i \(0.660263\pi\)
\(420\) −18.0522 + 13.1157i −0.880856 + 0.639979i
\(421\) −0.883129 2.71799i −0.0430411 0.132467i 0.927227 0.374500i \(-0.122186\pi\)
−0.970268 + 0.242033i \(0.922186\pi\)
\(422\) −5.65925 + 17.4174i −0.275488 + 0.847864i
\(423\) 3.79129 + 2.75453i 0.184339 + 0.133930i
\(424\) 0.234037 0.720292i 0.0113658 0.0349804i
\(425\) 0.555221 0.403392i 0.0269322 0.0195674i
\(426\) −66.3493 + 48.2056i −3.21463 + 2.33557i
\(427\) 5.52431 + 4.01365i 0.267340 + 0.194234i
\(428\) 36.6985 1.77389
\(429\) −23.1421 −1.11731
\(430\) −17.3820 12.6287i −0.838232 0.609012i
\(431\) −7.80040 24.0072i −0.375732 1.15639i −0.942983 0.332840i \(-0.891993\pi\)
0.567251 0.823545i \(-0.308007\pi\)
\(432\) −0.383997 + 1.18182i −0.0184751 + 0.0568604i
\(433\) 35.1127 1.68741 0.843704 0.536808i \(-0.180370\pi\)
0.843704 + 0.536808i \(0.180370\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) −6.11822 + 18.8300i −0.293010 + 0.901791i
\(437\) 1.96014 + 6.03269i 0.0937662 + 0.288583i
\(438\) −18.0522 13.1157i −0.862566 0.626691i
\(439\) −12.0711 −0.576121 −0.288060 0.957612i \(-0.593010\pi\)
−0.288060 + 0.957612i \(0.593010\pi\)
\(440\) −23.1421 −1.10326
\(441\) 2.68085 + 1.94775i 0.127659 + 0.0927500i
\(442\) −0.612717 + 0.445165i −0.0291440 + 0.0211743i
\(443\) 10.7135 7.78383i 0.509015 0.369821i −0.303435 0.952852i \(-0.598134\pi\)
0.812450 + 0.583031i \(0.198134\pi\)
\(444\) −2.85613 + 8.79027i −0.135546 + 0.417168i
\(445\) −10.1008 7.33866i −0.478824 0.347886i
\(446\) 1.28909 3.96740i 0.0610400 0.187862i
\(447\) 0.746033 + 2.29605i 0.0352862 + 0.108600i
\(448\) 19.1963 13.9469i 0.906940 0.658930i
\(449\) −1.42995 4.40094i −0.0674835 0.207693i 0.911628 0.411016i \(-0.134826\pi\)
−0.979112 + 0.203323i \(0.934826\pi\)
\(450\) 8.44040 + 25.9769i 0.397884 + 1.22456i
\(451\) −40.2307 + 29.2293i −1.89439 + 1.37636i
\(452\) 6.32120 + 19.4547i 0.297324 + 0.915070i
\(453\) 12.9166 39.7532i 0.606875 1.86777i
\(454\) −30.4412 22.1168i −1.42868 1.03799i
\(455\) −1.36407 + 4.19817i −0.0639484 + 0.196813i
\(456\) 13.6720 9.93327i 0.640249 0.465168i
\(457\) 25.1707 18.2876i 1.17744 0.855457i 0.185556 0.982634i \(-0.440591\pi\)
0.991880 + 0.127177i \(0.0405915\pi\)
\(458\) −22.4324 16.2981i −1.04820 0.761559i
\(459\) −0.0710678 −0.00331716
\(460\) 15.3137 0.714005
\(461\) 21.1494 + 15.3660i 0.985027 + 0.715664i 0.958826 0.283993i \(-0.0916591\pi\)
0.0262008 + 0.999657i \(0.491659\pi\)
\(462\) −22.7960 70.1590i −1.06057 3.26409i
\(463\) −7.71633 + 23.7484i −0.358608 + 1.10368i 0.595279 + 0.803519i \(0.297041\pi\)
−0.953888 + 0.300164i \(0.902959\pi\)
\(464\) 3.51472 0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) −2.47214 + 7.60845i −0.114397 + 0.352077i −0.991821 0.127639i \(-0.959260\pi\)
0.877424 + 0.479716i \(0.159260\pi\)
\(468\) −6.11822 18.8300i −0.282815 0.870415i
\(469\) 10.2396 + 7.43951i 0.472821 + 0.343525i
\(470\) 4.00000 0.184506
\(471\) 35.7990 1.64953
\(472\) −35.9655 26.1305i −1.65545 1.20275i
\(473\) 37.7462 27.4242i 1.73557 1.26097i
\(474\) 71.8736 52.2192i 3.30126 2.39851i
\(475\) −1.96014 + 6.03269i −0.0899374 + 0.276799i
\(476\) −1.28293 0.932102i −0.0588029 0.0427228i
\(477\) −0.149960 + 0.461530i −0.00686621 + 0.0211320i
\(478\) −9.51741 29.2916i −0.435316 1.33977i
\(479\) −7.87005 + 5.71793i −0.359592 + 0.261259i −0.752882 0.658156i \(-0.771337\pi\)
0.393290 + 0.919415i \(0.371337\pi\)
\(480\) 1.18305 + 3.64105i 0.0539986 + 0.166190i
\(481\) 0.565015 + 1.73894i 0.0257625 + 0.0792887i
\(482\) −48.1583 + 34.9890i −2.19355 + 1.59371i
\(483\) 7.20433 + 22.1727i 0.327808 + 1.00889i
\(484\) 19.5029 60.0237i 0.886495 2.72835i
\(485\) −8.76038 6.36479i −0.397788 0.289010i
\(486\) 16.1567 49.7253i 0.732884 2.25559i
\(487\) −14.0646 + 10.2185i −0.637327 + 0.463045i −0.858931 0.512092i \(-0.828871\pi\)
0.221604 + 0.975137i \(0.428871\pi\)
\(488\) −10.1008 + 7.33866i −0.457242 + 0.332206i
\(489\) 25.3333 + 18.4057i 1.14561 + 0.832336i
\(490\) 2.82843 0.127775
\(491\) −4.41421 −0.199211 −0.0996053 0.995027i \(-0.531758\pi\)
−0.0996053 + 0.995027i \(0.531758\pi\)
\(492\) −70.9257 51.5306i −3.19758 2.32318i
\(493\) 0.0621155 + 0.191172i 0.00279754 + 0.00860995i
\(494\) 2.16312 6.65740i 0.0973233 0.299530i
\(495\) 14.8284 0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 7.33233 22.5666i 0.328570 1.01123i
\(499\) −12.4266 38.2450i −0.556289 1.71208i −0.692514 0.721405i \(-0.743497\pi\)
0.136224 0.990678i \(-0.456503\pi\)
\(500\) 27.8754 + 20.2526i 1.24662 + 0.905725i
\(501\) 20.6569 0.922880
\(502\) 8.65685 0.386374
\(503\) −18.9187 13.7452i −0.843542 0.612869i 0.0798156 0.996810i \(-0.474567\pi\)
−0.923358 + 0.383940i \(0.874567\pi\)
\(504\) 24.3855 17.7171i 1.08622 0.789182i
\(505\) −6.86474 + 4.98752i −0.305477 + 0.221942i
\(506\) −15.6447 + 48.1495i −0.695493 + 2.14051i
\(507\) 18.8612 + 13.7035i 0.837655 + 0.608592i
\(508\) 12.8946 39.6856i 0.572107 1.76076i
\(509\) −2.10100 6.46622i −0.0931253 0.286610i 0.893635 0.448794i \(-0.148146\pi\)
−0.986761 + 0.162184i \(0.948146\pi\)
\(510\) 0.809017 0.587785i 0.0358239 0.0260276i
\(511\) −2.85613 8.79027i −0.126348 0.388859i
\(512\) 9.65451 + 29.7135i 0.426673 + 1.31316i
\(513\) 0.531406 0.386089i 0.0234622 0.0170463i
\(514\) 0.234037 + 0.720292i 0.0103229 + 0.0317707i
\(515\) −3.73017 + 11.4803i −0.164371 + 0.505881i
\(516\) 66.5456 + 48.3482i 2.92950 + 2.12841i
\(517\) −2.68421 + 8.26115i −0.118051 + 0.363325i
\(518\) −4.71530 + 3.42586i −0.207178 + 0.150524i
\(519\) 27.9567 20.3117i 1.22716 0.891585i
\(520\) −6.52963 4.74405i −0.286343 0.208041i
\(521\) 30.4558 1.33429 0.667147 0.744926i \(-0.267515\pi\)
0.667147 + 0.744926i \(0.267515\pi\)
\(522\) −8.00000 −0.350150
\(523\) −6.47214 4.70228i −0.283007 0.205616i 0.437221 0.899354i \(-0.355963\pi\)
−0.720228 + 0.693738i \(0.755963\pi\)
\(524\) −5.62819 17.3218i −0.245869 0.756706i
\(525\) −7.20433 + 22.1727i −0.314423 + 0.967694i
\(526\) −1.65685 −0.0722423
\(527\) 0 0
\(528\) 37.9706 1.65246
\(529\) −2.16312 + 6.65740i −0.0940487 + 0.289452i
\(530\) 0.127999 + 0.393941i 0.00555992 + 0.0171117i
\(531\) 23.0451 + 16.7432i 1.00007 + 0.726594i
\(532\) 14.6569 0.635455
\(533\) −17.3431 −0.751215
\(534\) 58.8718 + 42.7729i 2.54763 + 1.85096i
\(535\) −7.75506 + 5.63438i −0.335281 + 0.243596i
\(536\) −18.7224 + 13.6026i −0.808684 + 0.587543i
\(537\) 5.04121 15.5153i 0.217544 0.669533i
\(538\) 62.1654 + 45.1658i 2.68014 + 1.94724i
\(539\) −1.89802 + 5.84152i −0.0817537 + 0.251612i
\(540\) −0.490035 1.50817i −0.0210877 0.0649014i
\(541\) −20.4554 + 14.8617i −0.879447 + 0.638955i −0.933105 0.359604i \(-0.882912\pi\)
0.0536584 + 0.998559i \(0.482912\pi\)
\(542\) −17.3928 53.5295i −0.747085 2.29929i
\(543\) 7.69437 + 23.6808i 0.330197 + 1.01624i
\(544\) −0.220116 + 0.159923i −0.00943738 + 0.00685666i
\(545\) −1.59810 4.91846i −0.0684553 0.210684i
\(546\) 7.95037 24.4687i 0.340244 1.04716i
\(547\) −4.63399 3.36679i −0.198135 0.143953i 0.484294 0.874905i \(-0.339076\pi\)
−0.682429 + 0.730952i \(0.739076\pi\)
\(548\) 8.85545 27.2543i 0.378286 1.16425i
\(549\) 6.47214 4.70228i 0.276224 0.200689i
\(550\) −40.9584 + 29.7580i −1.74647 + 1.26889i
\(551\) −1.50304 1.09203i −0.0640318 0.0465218i
\(552\) −42.6274 −1.81434
\(553\) 36.7990 1.56485
\(554\) 27.6216 + 20.0682i 1.17353 + 0.852618i
\(555\) −0.746033 2.29605i −0.0316673 0.0974620i
\(556\) 0 0
\(557\) −44.4853 −1.88490 −0.942451 0.334344i \(-0.891485\pi\)
−0.942451 + 0.334344i \(0.891485\pi\)
\(558\) 0 0
\(559\) 16.2721 0.688236
\(560\) 2.23810 6.88816i 0.0945769 0.291078i
\(561\) 0.671053 + 2.06529i 0.0283319 + 0.0871966i
\(562\) 3.90628 + 2.83808i 0.164776 + 0.119717i
\(563\) 4.75736 0.200499 0.100249 0.994962i \(-0.468036\pi\)
0.100249 + 0.994962i \(0.468036\pi\)
\(564\) −15.3137 −0.644823
\(565\) −4.32270 3.14062i −0.181857 0.132127i
\(566\) −4.57649 + 3.32502i −0.192364 + 0.139761i
\(567\) 18.5261 13.4600i 0.778022 0.565266i
\(568\) 19.1939 59.0727i 0.805357 2.47863i
\(569\) 12.2502 + 8.90032i 0.513557 + 0.373121i 0.814171 0.580625i \(-0.197192\pi\)
−0.300614 + 0.953746i \(0.597192\pi\)
\(570\) −2.85613 + 8.79027i −0.119630 + 0.368184i
\(571\) 12.6386 + 38.8977i 0.528911 + 1.62782i 0.756451 + 0.654051i \(0.226932\pi\)
−0.227540 + 0.973769i \(0.573068\pi\)
\(572\) 29.6897 21.5708i 1.24139 0.901922i
\(573\) −0.821013 2.52682i −0.0342983 0.105559i
\(574\) −17.0838 52.5785i −0.713063 2.19458i
\(575\) 12.9443 9.40456i 0.539813 0.392197i
\(576\) −8.59036 26.4384i −0.357932 1.10160i
\(577\) −10.4975 + 32.3079i −0.437016 + 1.34500i 0.453991 + 0.891006i \(0.350000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(578\) −33.1459 24.0819i −1.37869 1.00167i
\(579\) −15.7727 + 48.5435i −0.655492 + 2.01740i
\(580\) −3.62867 + 2.63638i −0.150672 + 0.109470i
\(581\) 7.95136 5.77700i 0.329878 0.239671i
\(582\) 51.0592 + 37.0967i 2.11647 + 1.53771i
\(583\) −0.899495 −0.0372533
\(584\) 16.8995 0.699306
\(585\) 4.18389 + 3.03977i 0.172983 + 0.125679i
\(586\) 18.5009 + 56.9398i 0.764264 + 2.35216i
\(587\) 6.28638 19.3475i 0.259467 0.798556i −0.733450 0.679743i \(-0.762091\pi\)
0.992917 0.118813i \(-0.0379088\pi\)
\(588\) −10.8284 −0.446557
\(589\) 0 0
\(590\) 24.3137 1.00098
\(591\) −2.60013 + 8.00239i −0.106955 + 0.329174i
\(592\) −0.927051 2.85317i −0.0381016 0.117265i
\(593\) −17.2432 12.5279i −0.708091 0.514459i 0.174466 0.984663i \(-0.444180\pi\)
−0.882557 + 0.470205i \(0.844180\pi\)
\(594\) 5.24264 0.215108
\(595\) 0.414214 0.0169811
\(596\) −3.09726 2.25029i −0.126869 0.0921756i
\(597\) 30.4412 22.1168i 1.24588 0.905182i
\(598\) −14.2847 + 10.3784i −0.584145 + 0.424406i
\(599\) 10.7845 33.1914i 0.440644 1.35616i −0.446546 0.894760i \(-0.647346\pi\)
0.887191 0.461403i \(-0.152654\pi\)
\(600\) −34.4863 25.0558i −1.40790 1.02290i
\(601\) 7.25735 22.3358i 0.296034 0.911098i −0.686839 0.726810i \(-0.741002\pi\)
0.982872 0.184288i \(-0.0589978\pi\)
\(602\) 16.0287 + 49.3314i 0.653282 + 2.01060i
\(603\) 11.9964 8.71593i 0.488533 0.354940i
\(604\) 20.4830 + 63.0401i 0.833440 + 2.56506i
\(605\) 5.09423 + 15.6784i 0.207110 + 0.637419i
\(606\) 40.0106 29.0694i 1.62532 1.18086i
\(607\) −1.36407 4.19817i −0.0553658 0.170398i 0.919550 0.392974i \(-0.128554\pi\)
−0.974915 + 0.222575i \(0.928554\pi\)
\(608\) 0.777091 2.39164i 0.0315152 0.0969938i
\(609\) −5.52431 4.01365i −0.223856 0.162641i
\(610\) 2.11010 6.49422i 0.0854355 0.262943i
\(611\) −2.45087 + 1.78066i −0.0991514 + 0.0720377i
\(612\) −1.50304 + 1.09203i −0.0607569 + 0.0441425i
\(613\) −8.34397 6.06225i −0.337010 0.244852i 0.406389 0.913700i \(-0.366788\pi\)
−0.743399 + 0.668848i \(0.766788\pi\)
\(614\) 6.65685 0.268649
\(615\) 22.8995 0.923397
\(616\) 45.1998 + 32.8396i 1.82115 + 1.32315i
\(617\) 7.19524 + 22.1447i 0.289669 + 0.891510i 0.984960 + 0.172782i \(0.0552756\pi\)
−0.695291 + 0.718728i \(0.744724\pi\)
\(618\) 21.7410 66.9119i 0.874551 2.69159i
\(619\) 31.6569 1.27240 0.636198 0.771526i \(-0.280506\pi\)
0.636198 + 0.771526i \(0.280506\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 8.44040 25.9769i 0.338429 1.04158i
\(623\) 9.31443 + 28.6669i 0.373175 + 1.14851i
\(624\) 10.7135 + 7.78383i 0.428884 + 0.311603i
\(625\) 11.0000 0.440000
\(626\) 9.24264 0.369410
\(627\) −16.2378 11.7975i −0.648477 0.471146i
\(628\) −45.9275 + 33.3683i −1.83271 + 1.33154i
\(629\) 0.138805 0.100848i 0.00553453 0.00402107i
\(630\) −5.09423 + 15.6784i −0.202959 + 0.624644i
\(631\) −25.8984 18.8163i −1.03100 0.749065i −0.0624909 0.998046i \(-0.519904\pi\)
−0.968508 + 0.248981i \(0.919904\pi\)
\(632\) −20.7920 + 63.9911i −0.827061 + 2.54543i
\(633\) 5.65925 + 17.4174i 0.224935 + 0.692278i
\(634\) −4.24139 + 3.08155i −0.168447 + 0.122384i
\(635\) 3.36813 + 10.3660i 0.133660 + 0.411364i
\(636\) −0.490035 1.50817i −0.0194312 0.0598029i
\(637\) −1.73302 + 1.25912i −0.0686649 + 0.0498880i
\(638\) −4.58224 14.1027i −0.181412 0.558330i
\(639\) −12.2986 + 37.8511i −0.486524 + 1.49737i
\(640\) −16.6304 12.0827i −0.657376 0.477611i
\(641\) −6.17124 + 18.9931i −0.243749 + 0.750184i 0.752090 + 0.659060i \(0.229046\pi\)
−0.995840 + 0.0911234i \(0.970954\pi\)
\(642\) 45.1998 32.8396i 1.78389 1.29608i
\(643\) 10.2634 7.45682i 0.404750 0.294068i −0.366723 0.930330i \(-0.619520\pi\)
0.771473 + 0.636262i \(0.219520\pi\)
\(644\) −29.9098 21.7308i −1.17861 0.856312i
\(645\) −21.4853 −0.845982
\(646\) −0.656854 −0.0258436
\(647\) −18.3536 13.3347i −0.721554 0.524240i 0.165326 0.986239i \(-0.447132\pi\)
−0.886880 + 0.461999i \(0.847132\pi\)
\(648\) 12.9386 + 39.8208i 0.508275 + 1.56431i
\(649\) −16.3158 + 50.2148i −0.640451 + 1.97110i
\(650\) −17.6569 −0.692559
\(651\) 0 0
\(652\) −49.6569 −1.94471
\(653\) 6.84230 21.0584i 0.267760 0.824080i −0.723285 0.690550i \(-0.757369\pi\)
0.991045 0.133530i \(-0.0426313\pi\)
\(654\) 9.31443 + 28.6669i 0.364223 + 1.12096i
\(655\) 3.84878 + 2.79631i 0.150384 + 0.109261i
\(656\) 28.4558 1.11101
\(657\) −10.8284 −0.422457
\(658\) −7.81256 5.67616i −0.304565 0.221280i
\(659\) −7.81256 + 5.67616i −0.304334 + 0.221112i −0.729462 0.684022i \(-0.760229\pi\)
0.425127 + 0.905134i \(0.360229\pi\)
\(660\) −39.2016 + 28.4816i −1.52592 + 1.10865i
\(661\) 10.2415 31.5200i 0.398348 1.22599i −0.527976 0.849259i \(-0.677049\pi\)
0.926324 0.376728i \(-0.122951\pi\)
\(662\) −1.47923 1.07472i −0.0574919 0.0417703i
\(663\) −0.234037 + 0.720292i −0.00908924 + 0.0279738i
\(664\) 5.55321 + 17.0910i 0.215506 + 0.663260i
\(665\) −3.09726 + 2.25029i −0.120107 + 0.0872626i
\(666\) 2.11010 + 6.49422i 0.0817647 + 0.251646i
\(667\) 1.44814 + 4.45693i 0.0560723 + 0.172573i
\(668\) −26.5013 + 19.2543i −1.02536 + 0.744971i
\(669\) −1.28909 3.96740i −0.0498390 0.153389i
\(670\) 3.91118 12.0374i 0.151102 0.465045i
\(671\) 11.9964 + 8.71593i 0.463118 + 0.336475i
\(672\) 2.85613 8.79027i 0.110178 0.339092i
\(673\) 16.7117 12.1418i 0.644190 0.468032i −0.217097 0.976150i \(-0.569659\pi\)
0.861287 + 0.508118i \(0.169659\pi\)
\(674\) 26.0035 18.8927i 1.00162 0.727719i
\(675\) −1.34042 0.973874i −0.0515929 0.0374844i
\(676\) −36.9706 −1.42194
\(677\) −40.5980 −1.56031 −0.780154 0.625588i \(-0.784859\pi\)
−0.780154 + 0.625588i \(0.784859\pi\)
\(678\) 25.1945 + 18.3049i 0.967590 + 0.702995i
\(679\) 8.07836 + 24.8626i 0.310019 + 0.954141i
\(680\) −0.234037 + 0.720292i −0.00897491 + 0.0276219i
\(681\) −37.6274 −1.44189
\(682\) 0 0
\(683\) −46.6274 −1.78415 −0.892074 0.451889i \(-0.850750\pi\)
−0.892074 + 0.451889i \(0.850750\pi\)
\(684\) 5.30631 16.3311i 0.202892 0.624437i
\(685\) 2.31308 + 7.11893i 0.0883782 + 0.272000i
\(686\) −38.5314 27.9947i −1.47114 1.06884i
\(687\) −27.7279 −1.05789
\(688\) −26.6985 −1.01787
\(689\) −0.253796 0.184393i −0.00966884 0.00702482i
\(690\) 18.8612 13.7035i 0.718033 0.521682i
\(691\) −11.3837 + 8.27077i −0.433058 + 0.314635i −0.782870 0.622185i \(-0.786245\pi\)
0.349813 + 0.936820i \(0.386245\pi\)
\(692\) −16.9338 + 52.1169i −0.643727 + 1.98119i
\(693\) −28.9620 21.0421i −1.10018 0.799324i
\(694\) 16.8278 51.7906i 0.638774 1.96594i
\(695\) 0 0
\(696\) 10.1008 7.33866i 0.382870 0.278171i
\(697\) 0.502900 + 1.54777i 0.0190487 + 0.0586258i
\(698\) −26.1952 80.6206i −0.991504 3.05154i
\(699\) 28.9620 21.0421i 1.09544 0.795886i
\(700\) −11.4245 35.1611i −0.431807 1.32896i
\(701\) 1.07701 3.31470i 0.0406782 0.125194i −0.928655 0.370944i \(-0.879034\pi\)
0.969333 + 0.245750i \(0.0790341\pi\)
\(702\) 1.47923 + 1.07472i 0.0558299 + 0.0405628i
\(703\) −0.490035 + 1.50817i −0.0184820 + 0.0568818i
\(704\) 41.6861 30.2868i 1.57111 1.14148i
\(705\) 3.23607 2.35114i 0.121877 0.0885491i
\(706\) −5.85942 4.25712i −0.220522 0.160219i
\(707\) 20.4853 0.770428
\(708\) −93.0833 −3.49828
\(709\) −4.29888 3.12332i −0.161448 0.117299i 0.504128 0.863629i \(-0.331814\pi\)
−0.665576 + 0.746330i \(0.731814\pi\)
\(710\) 10.4975 + 32.3079i 0.393963 + 1.21249i
\(711\) 13.3226 41.0026i 0.499635 1.53772i
\(712\) −55.1127 −2.06544
\(713\) 0 0
\(714\) −2.41421 −0.0903497
\(715\) −2.96217 + 9.11662i −0.110779 + 0.340942i
\(716\) 7.99429 + 24.6039i 0.298761 + 0.919490i
\(717\) −24.9169 18.1032i −0.930539 0.676076i
\(718\) −64.9411 −2.42358
\(719\) −6.07107 −0.226413 −0.113206 0.993572i \(-0.536112\pi\)
−0.113206 + 0.993572i \(0.536112\pi\)
\(720\) −6.86474 4.98752i −0.255834 0.185874i
\(721\) 23.5765 17.1293i 0.878034 0.637929i
\(722\) −32.1981 + 23.3933i −1.19829 + 0.870607i
\(723\) −18.3948 + 56.6135i −0.684111 + 2.10548i
\(724\) −31.9443 23.2089i −1.18720 0.862551i
\(725\) −1.44814 + 4.45693i −0.0537827 + 0.165526i
\(726\) −29.6914 91.3806i −1.10195 3.39145i
\(727\) 37.8949 27.5322i 1.40544 1.02111i 0.411477 0.911420i \(-0.365013\pi\)
0.993965 0.109694i \(-0.0349870\pi\)
\(728\) 6.02128 + 18.5316i 0.223164 + 0.686827i
\(729\) −7.36339 22.6622i −0.272718 0.839340i
\(730\) −7.47745 + 5.43269i −0.276753 + 0.201073i
\(731\) −0.471842 1.45218i −0.0174517 0.0537108i
\(732\) −8.07836 + 24.8626i −0.298585 + 0.918950i
\(733\) 23.9691 + 17.4146i 0.885318 + 0.643221i 0.934653 0.355561i \(-0.115710\pi\)
−0.0493348 + 0.998782i \(0.515710\pi\)
\(734\) 13.5877 41.8185i 0.501529 1.54355i
\(735\) 2.28825 1.66251i 0.0844032 0.0613225i
\(736\) −5.13171 + 3.72841i −0.189157 + 0.137431i
\(737\) 22.2361 + 16.1554i 0.819076 + 0.595093i
\(738\) −64.7696 −2.38420
\(739\) 7.87006 0.289505 0.144752 0.989468i \(-0.453761\pi\)
0.144752 + 0.989468i \(0.453761\pi\)
\(740\) 3.09726 + 2.25029i 0.113858 + 0.0827224i
\(741\) −2.16312 6.65740i −0.0794642 0.244566i
\(742\) 0.309017 0.951057i 0.0113444 0.0349144i
\(743\) 5.65685 0.207530 0.103765 0.994602i \(-0.466911\pi\)
0.103765 + 0.994602i \(0.466911\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) −7.46033 + 22.9605i −0.273142 + 0.840645i
\(747\) −3.55824 10.9511i −0.130189 0.400682i
\(748\) −2.78597 2.02413i −0.101865 0.0740094i
\(749\) 23.1421 0.845595
\(750\) 52.4558 1.91542
\(751\) 1.00532 + 0.730406i 0.0366846 + 0.0266529i 0.605976 0.795483i \(-0.292783\pi\)
−0.569292 + 0.822135i \(0.692783\pi\)
\(752\) 4.02127 2.92162i 0.146641 0.106541i
\(753\) 7.00354 5.08837i 0.255223 0.185431i
\(754\) 1.59810 4.91846i 0.0581995 0.179120i
\(755\) −14.0071 10.1767i −0.509770 0.370370i
\(756\) −1.18305 + 3.64105i −0.0430271 + 0.132424i
\(757\) −10.7096 32.9606i −0.389245 1.19797i −0.933353 0.358959i \(-0.883132\pi\)
0.544108 0.839015i \(-0.316868\pi\)
\(758\) −57.3926 + 41.6981i −2.08459 + 1.51454i
\(759\) 15.6447 + 48.1495i 0.567868 + 1.74772i
\(760\) −2.16312 6.65740i −0.0784646 0.241489i
\(761\) −16.5491 + 12.0236i −0.599905 + 0.435857i −0.845845 0.533428i \(-0.820903\pi\)
0.245940 + 0.969285i \(0.420903\pi\)
\(762\) −19.6309 60.4177i −0.711152 2.18870i
\(763\) −3.85816 + 11.8742i −0.139675 + 0.429875i
\(764\) 3.40855 + 2.47646i 0.123317 + 0.0895951i
\(765\) 0.149960 0.461530i 0.00542182 0.0166867i
\(766\) −48.6322 + 35.3334i −1.75715 + 1.27665i
\(767\) −14.8974 + 10.8236i −0.537914 + 0.390818i
\(768\) 58.5367 + 42.5294i 2.11226 + 1.53465i
\(769\) −26.1127 −0.941648 −0.470824 0.882227i \(-0.656043\pi\)
−0.470824 + 0.882227i \(0.656043\pi\)
\(770\) −30.5563 −1.10117
\(771\) 0.612717 + 0.445165i 0.0220664 + 0.0160322i
\(772\) −25.0122 76.9796i −0.900208 2.77056i
\(773\) −5.56231 + 17.1190i −0.200062 + 0.615728i 0.799818 + 0.600243i \(0.204929\pi\)
−0.999880 + 0.0154855i \(0.995071\pi\)
\(774\) 60.7696 2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) −1.80108 + 5.54316i −0.0646135 + 0.198860i
\(778\) 12.7886 + 39.3593i 0.458493 + 1.41110i
\(779\) −12.1689 8.84125i −0.435997 0.316771i
\(780\) −16.8995 −0.605099
\(781\) −73.7696 −2.63968
\(782\) 1.34042 + 0.973874i 0.0479334 + 0.0348257i
\(783\) 0.392601 0.285241i 0.0140304 0.0101937i
\(784\) 2.84347 2.06590i 0.101552 0.0737821i
\(785\) 4.58224 14.1027i 0.163547 0.503346i
\(786\) −22.4324 16.2981i −0.800136 0.581333i
\(787\) −12.2327 + 37.6483i −0.436048 + 1.34202i 0.455961 + 0.890000i \(0.349296\pi\)
−0.892009 + 0.452018i \(0.850704\pi\)
\(788\) −4.12326 12.6901i −0.146885 0.452066i
\(789\) −1.34042 + 0.973874i −0.0477203 + 0.0346709i
\(790\) −11.3715 34.9979i −0.404580 1.24517i
\(791\) 3.98616 + 12.2681i 0.141732 + 0.436205i
\(792\) 52.9549 38.4740i 1.88167 1.36711i
\(793\) 1.59810 + 4.91846i 0.0567503 + 0.174660i
\(794\) 12.3205 37.9187i 0.437239 1.34568i
\(795\) 0.335106 + 0.243469i 0.0118850 + 0.00863494i
\(796\) −18.4387 + 56.7486i −0.653544 + 2.01140i
\(797\) −18.1672 + 13.1992i −0.643514 + 0.467540i −0.861056 0.508511i \(-0.830196\pi\)
0.217542 + 0.976051i \(0.430196\pi\)
\(798\) 18.0522 13.1157i 0.639040 0.464290i
\(799\) 0.229980 + 0.167090i 0.00813612 + 0.00591124i
\(800\) −6.34315 −0.224264
\(801\) 35.3137 1.24775
\(802\) 41.3510 + 30.0433i 1.46016 + 1.06087i
\(803\) −6.20230 19.0887i −0.218874 0.673626i
\(804\) −14.9737 + 46.0842i −0.528081 + 1.62527i
\(805\) 9.65685 0.340359
\(806\) 0 0
\(807\) 76.8406 2.70492
\(808\) −11.5745 + 35.6226i −0.407189 + 1.25320i
\(809\) 14.2057 + 43.7206i 0.499445 + 1.53713i 0.809913 + 0.586551i \(0.199514\pi\)
−0.310467 + 0.950584i \(0.600486\pi\)
\(810\) −18.5261 13.4600i −0.650940 0.472936i
\(811\) 11.7279 0.411823 0.205912 0.978571i \(-0.433984\pi\)
0.205912 + 0.978571i \(0.433984\pi\)
\(812\) 10.8284 0.380003
\(813\) −45.5349 33.0831i −1.59698 1.16027i
\(814\) −10.2396 + 7.43951i −0.358898 + 0.260755i
\(815\) 10.4934 7.62391i 0.367568 0.267054i
\(816\) 0.383997 1.18182i 0.0134426 0.0413720i
\(817\) 11.4174 + 8.29524i 0.399445 + 0.290214i
\(818\) 6.97030 21.4524i 0.243711 0.750064i
\(819\) −3.85816 11.8742i −0.134815 0.414918i
\(820\) −29.3784 + 21.3447i −1.02594 + 0.745388i
\(821\) 2.62210 + 8.06998i 0.0915118 + 0.281644i 0.986329 0.164789i \(-0.0526942\pi\)
−0.894817 + 0.446433i \(0.852694\pi\)
\(822\) −13.4816 41.4921i −0.470225 1.44720i
\(823\) −5.02659 + 3.65203i −0.175216 + 0.127302i −0.671937 0.740609i \(-0.734537\pi\)
0.496721 + 0.867910i \(0.334537\pi\)
\(824\) 16.4657 + 50.6764i 0.573611 + 1.76539i
\(825\) −15.6447 + 48.1495i −0.544680 + 1.67635i
\(826\) −47.4881 34.5021i −1.65232 1.20048i
\(827\) −5.28435 + 16.2635i −0.183755 + 0.565539i −0.999925 0.0122730i \(-0.996093\pi\)
0.816170 + 0.577812i \(0.196093\pi\)
\(828\) −35.0415 + 25.4592i −1.21778 + 0.884767i
\(829\) −37.5598 + 27.2888i −1.30450 + 0.947778i −0.999989 0.00472973i \(-0.998494\pi\)
−0.304515 + 0.952507i \(0.598494\pi\)
\(830\) −7.95136 5.77700i −0.275996 0.200523i
\(831\) 34.1421 1.18438
\(832\) 17.9706 0.623017
\(833\) 0.162621 + 0.118151i 0.00563447 + 0.00409368i
\(834\) 0 0
\(835\) 2.64406 8.13757i 0.0915014 0.281612i
\(836\) 31.8284 1.10081
\(837\) 0 0
\(838\) −67.5980 −2.33513
\(839\) 9.46439 29.1284i 0.326747 1.00562i −0.643899 0.765111i \(-0.722684\pi\)
0.970646 0.240513i \(-0.0773158\pi\)
\(840\) −7.95037 24.4687i −0.274314 0.844251i
\(841\) 22.3510 + 16.2390i 0.770726 + 0.559965i
\(842\) 6.89949 0.237772
\(843\) 4.82843 0.166300
\(844\) −23.4952 17.0702i −0.808737 0.587582i
\(845\) 7.81256 5.67616i 0.268760 0.195266i
\(846\) −9.15298 + 6.65003i −0.314686 + 0.228633i
\(847\) 12.2986 37.8511i 0.422584 1.30058i
\(848\) 0.416416 + 0.302544i 0.0142998 + 0.0103894i
\(849\) −1.74806 + 5.37999i −0.0599934 + 0.184641i
\(850\) 0.511996 + 1.57576i 0.0175613 + 0.0540482i
\(851\) 3.23607 2.35114i 0.110931 0.0805961i
\(852\) −40.1888 123.689i −1.37685 4.23750i
\(853\) −10.0385 30.8953i −0.343712 1.05784i −0.962270 0.272097i \(-0.912283\pi\)
0.618558 0.785739i \(-0.287717\pi\)
\(854\) −13.3369 + 9.68981i −0.456378 + 0.331578i
\(855\) 1.38603 + 4.26576i 0.0474012 + 0.145886i
\(856\) −13.0757 + 40.2427i −0.446917 + 1.37547i
\(857\) 2.03445 + 1.47811i 0.0694955 + 0.0504914i 0.621991 0.783025i \(-0.286324\pi\)
−0.552495 + 0.833516i \(0.686324\pi\)
\(858\) 17.2648 53.1356i 0.589410 1.81402i
\(859\) −10.2059 + 7.41504i −0.348222 + 0.252998i −0.748123 0.663560i \(-0.769045\pi\)
0.399901 + 0.916558i \(0.369045\pi\)
\(860\) 27.5641 20.0265i 0.939927 0.682897i
\(861\) −44.7259 32.4953i −1.52426 1.10744i
\(862\) 60.9411 2.07566
\(863\) 39.3848 1.34067 0.670337 0.742057i \(-0.266150\pi\)
0.670337 + 0.742057i \(0.266150\pi\)
\(864\) 0.531406 + 0.386089i 0.0180788 + 0.0131350i
\(865\) −4.42318 13.6131i −0.150393 0.462861i
\(866\) −26.1952 + 80.6206i −0.890150 + 2.73960i
\(867\) −40.9706 −1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) −2.11010 + 6.49422i −0.0715391 + 0.220175i
\(871\) 2.96217 + 9.11662i 0.100369 + 0.308905i
\(872\) −18.4686 13.4182i −0.625425 0.454398i
\(873\) 30.6274 1.03658
\(874\) −15.3137 −0.517994
\(875\) 17.5783 + 12.7714i 0.594254 + 0.431751i
\(876\) 28.6269 20.7986i 0.967213 0.702721i
\(877\) −38.9716 + 28.3145i −1.31598 + 0.956114i −0.316005 + 0.948757i \(0.602342\pi\)
−0.999973 + 0.00735663i \(0.997658\pi\)
\(878\) 9.00542 27.7158i 0.303918 0.935364i
\(879\) 48.4359 + 35.1907i 1.63370 + 1.18695i
\(880\) 4.86020 14.9581i 0.163837 0.504239i
\(881\) −10.6035 32.6343i −0.357242 1.09948i −0.954698 0.297575i \(-0.903822\pi\)
0.597457 0.801901i \(-0.296178\pi\)
\(882\) −6.47214 + 4.70228i −0.217928 + 0.158334i
\(883\) −8.12229 24.9978i −0.273337 0.841244i −0.989655 0.143470i \(-0.954174\pi\)
0.716318 0.697774i \(-0.245826\pi\)
\(884\) −0.371133 1.14223i −0.0124825 0.0384173i
\(885\) 19.6702 14.2912i 0.661207 0.480395i
\(886\) 9.87945 + 30.4058i 0.331907 + 1.02150i
\(887\) 16.4786 50.7159i 0.553298 1.70287i −0.147100 0.989122i \(-0.546994\pi\)
0.700397 0.713753i \(-0.253006\pi\)
\(888\) −8.62158 6.26394i −0.289321 0.210204i
\(889\) 8.13138 25.0258i 0.272718 0.839339i
\(890\) 24.3855 17.7171i 0.817404 0.593879i
\(891\) 40.2307 29.2293i 1.34778 0.979220i
\(892\) 5.35183 + 3.88833i 0.179192 + 0.130191i
\(893\) −2.62742 −0.0879232
\(894\) −5.82843 −0.194932
\(895\) −5.46682 3.97188i −0.182736 0.132765i
\(896\) 15.3357 + 47.1985i 0.512330 + 1.57679i
\(897\) −5.45627 + 16.7927i −0.182179 + 0.560691i
\(898\) 11.1716 0.372800
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) −0.00909661 + 0.0279965i −0.000303052 + 0.000932698i
\(902\) −37.0987 114.178i −1.23525 3.80171i
\(903\) 41.9638 + 30.4885i 1.39647 + 1.01459i
\(904\) −23.5858 −0.784452
\(905\) 10.3137 0.342839
\(906\) 81.6393 + 59.3144i 2.71228 + 1.97059i
\(907\) −44.7497 + 32.5126i −1.48589 + 1.07956i −0.510292 + 0.860001i \(0.670463\pi\)
−0.975599 + 0.219561i \(0.929537\pi\)
\(908\) 48.2733 35.0726i 1.60200 1.16392i
\(909\) 7.41641 22.8254i 0.245987 0.757069i
\(910\) −8.62158 6.26394i −0.285802 0.207648i
\(911\) −15.1547 + 46.6414i −0.502098 + 1.54530i 0.303498 + 0.952832i \(0.401845\pi\)
−0.805596 + 0.592465i \(0.798155\pi\)
\(912\) 3.54915 + 10.9232i 0.117524 + 0.361702i
\(913\) 17.2670 12.5452i 0.571453 0.415185i
\(914\) 23.2111 + 71.4364i 0.767755 + 2.36291i
\(915\) −2.11010 6.49422i −0.0697578 0.214692i
\(916\) 35.5729 25.8452i 1.17536 0.853951i
\(917\) −3.54915 10.9232i −0.117203 0.360714i
\(918\) 0.0530189 0.163176i 0.00174989 0.00538559i
\(919\) 12.2166 + 8.87585i 0.402987 + 0.292787i 0.770757 0.637130i \(-0.219878\pi\)
−0.367769 + 0.929917i \(0.619878\pi\)
\(920\) −5.45627 + 16.7927i −0.179888 + 0.553638i
\(921\) 5.38551 3.91280i 0.177459 0.128931i
\(922\) −51.0592 + 37.0967i −1.68155 + 1.22172i
\(923\) −20.8143 15.1225i −0.685112 0.497763i
\(924\) 116.983 3.84845
\(925\) 4.00000 0.131519
\(926\) −48.7710 35.4342i −1.60271 1.16444i
\(927\) −10.5505 32.4711i −0.346524 1.06649i
\(928\) 0.574112 1.76693i 0.0188461 0.0580025i
\(929\) −24.4853 −0.803336 −0.401668 0.915785i \(-0.631569\pi\)
−0.401668 + 0.915785i \(0.631569\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) −17.5428 + 53.9911i −0.574632 + 1.76854i
\(933\) −8.44040 25.9769i −0.276326 0.850445i
\(934\) −15.6251 11.3523i −0.511269 0.371459i
\(935\) 0.899495 0.0294166
\(936\) 22.8284 0.746170
\(937\) −30.9964 22.5202i −1.01261 0.735704i −0.0478548 0.998854i \(-0.515238\pi\)
−0.964755 + 0.263150i \(0.915238\pi\)
\(938\) −24.7206 + 17.9606i −0.807156 + 0.586433i
\(939\) 7.47745 5.43269i 0.244017 0.177289i
\(940\) −1.96014 + 6.03269i −0.0639327 + 0.196765i
\(941\) −28.3156 20.5725i −0.923062 0.670644i 0.0212223 0.999775i \(-0.493244\pi\)
−0.944284 + 0.329131i \(0.893244\pi\)
\(942\) −26.7072 + 82.1964i −0.870169 + 2.67810i
\(943\) 11.7245 + 36.0842i 0.381801 + 1.17506i
\(944\) 24.4430 17.7589i 0.795552 0.578002i
\(945\) −0.309017 0.951057i −0.0100523 0.0309379i
\(946\) 34.8076 + 107.127i 1.13169 + 3.48299i
\(947\) 31.4704 22.8645i 1.02265 0.742998i 0.0558248 0.998441i \(-0.482221\pi\)
0.966824 + 0.255443i \(0.0822212\pi\)
\(948\) 43.5350 + 133.987i 1.41395 + 4.35169i
\(949\) 2.16312 6.65740i 0.0702178 0.216108i
\(950\) −12.3891 9.00117i −0.401954 0.292037i
\(951\) −1.62007 + 4.98605i −0.0525342 + 0.161684i
\(952\) 1.47923 1.07472i 0.0479421 0.0348320i
\(953\) 16.5729 12.0409i 0.536850 0.390045i −0.286064 0.958211i \(-0.592347\pi\)
0.822914 + 0.568166i \(0.192347\pi\)
\(954\) −0.947822 0.688633i −0.0306869 0.0222953i
\(955\) −1.10051 −0.0356115
\(956\) 48.8406 1.57962
\(957\) −11.9964 8.71593i −0.387790 0.281746i
\(958\) −7.25735 22.3358i −0.234474 0.721638i
\(959\) 5.58427 17.1866i 0.180325 0.554984i
\(960\) −23.7279 −0.765815
\(961\) 0 0
\(962\) −4.41421 −0.142320
\(963\) 8.37828 25.7857i 0.269986 0.830933i
\(964\) −29.1703 89.7769i −0.939511 2.89152i
\(965\) 17.1043 + 12.4270i 0.550608 + 0.400040i
\(966\) −56.2843 −1.81092
\(967\) 46.5563 1.49715 0.748576 0.663049i \(-0.230738\pi\)
0.748576 + 0.663049i \(0.230738\pi\)
\(968\) 58.8718 + 42.7729i 1.89221 + 1.37477i
\(969\) −0.531406 + 0.386089i −0.0170712 + 0.0124030i
\(970\) 21.1494 15.3660i 0.679067 0.493371i
\(971\) 18.1388 55.8256i 0.582103 1.79153i −0.0285036 0.999594i \(-0.509074\pi\)
0.610606 0.791934i \(-0.290926\pi\)
\(972\) 67.0770 + 48.7343i 2.15149 + 1.56315i
\(973\) 0 0
\(974\) −12.9696 39.9164i −0.415573 1.27900i
\(975\) −14.2847 + 10.3784i −0.457476 + 0.332376i
\(976\) −2.62210 8.06998i −0.0839313 0.258314i
\(977\) 5.09423 + 15.6784i 0.162979 + 0.501598i 0.998882 0.0472800i \(-0.0150553\pi\)
−0.835903 + 0.548878i \(0.815055\pi\)
\(978\) −61.1601 + 44.4354i −1.95568 + 1.42089i
\(979\) 20.2270 + 62.2522i 0.646457 + 1.98959i
\(980\) −1.38603 + 4.26576i −0.0442750 + 0.136265i
\(981\) 11.8338 + 8.59778i 0.377825 + 0.274506i
\(982\) 3.29315 10.1353i 0.105089 0.323429i
\(983\) 39.5129 28.7078i 1.26027 0.915637i 0.261495 0.965205i \(-0.415785\pi\)
0.998771 + 0.0495684i \(0.0157846\pi\)
\(984\) 81.7781 59.4153i 2.60699 1.89409i
\(985\) 2.81965 + 2.04860i 0.0898416 + 0.0652737i
\(986\) −0.485281 −0.0154545
\(987\) −9.65685 −0.307381
\(988\) 8.98050 + 6.52471i 0.285708 + 0.207579i
\(989\) −11.0004 33.8557i −0.349792 1.07655i
\(990\) −11.0625 + 34.0469i −0.351589 + 1.08208i
\(991\) 19.9411 0.633451 0.316725 0.948517i \(-0.397417\pi\)
0.316725 + 0.948517i \(0.397417\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 25.3432 77.9982i 0.803836 2.47395i
\(995\) −4.81627 14.8230i −0.152686 0.469920i
\(996\) 30.4412 + 22.1168i 0.964567 + 0.700799i
\(997\) −46.5980 −1.47577 −0.737886 0.674925i \(-0.764176\pi\)
−0.737886 + 0.674925i \(0.764176\pi\)
\(998\) 97.0833 3.07312
\(999\) −0.335106 0.243469i −0.0106023 0.00770301i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.i.628.1 8
31.2 even 5 961.2.a.c.1.1 2
31.3 odd 30 961.2.g.o.816.2 16
31.4 even 5 inner 961.2.d.i.531.1 8
31.5 even 3 961.2.g.r.448.1 16
31.6 odd 6 961.2.g.o.846.1 16
31.7 even 15 961.2.g.r.547.1 16
31.8 even 5 inner 961.2.d.i.388.2 8
31.9 even 15 961.2.g.r.338.2 16
31.10 even 15 961.2.c.a.521.1 4
31.11 odd 30 961.2.g.o.844.1 16
31.12 odd 30 31.2.c.a.5.1 4
31.13 odd 30 961.2.g.o.732.2 16
31.14 even 15 961.2.g.r.235.2 16
31.15 odd 10 961.2.d.l.374.2 8
31.16 even 5 inner 961.2.d.i.374.2 8
31.17 odd 30 961.2.g.o.235.2 16
31.18 even 15 961.2.g.r.732.2 16
31.19 even 15 961.2.c.a.439.1 4
31.20 even 15 961.2.g.r.844.1 16
31.21 odd 30 31.2.c.a.25.1 yes 4
31.22 odd 30 961.2.g.o.338.2 16
31.23 odd 10 961.2.d.l.388.2 8
31.24 odd 30 961.2.g.o.547.1 16
31.25 even 3 961.2.g.r.846.1 16
31.26 odd 6 961.2.g.o.448.1 16
31.27 odd 10 961.2.d.l.531.1 8
31.28 even 15 961.2.g.r.816.2 16
31.29 odd 10 961.2.a.a.1.1 2
31.30 odd 2 961.2.d.l.628.1 8
93.2 odd 10 8649.2.a.k.1.2 2
93.29 even 10 8649.2.a.l.1.2 2
93.74 even 30 279.2.h.c.253.2 4
93.83 even 30 279.2.h.c.118.2 4
124.43 even 30 496.2.i.h.129.1 4
124.83 even 30 496.2.i.h.273.1 4
155.12 even 60 775.2.o.d.749.1 8
155.43 even 60 775.2.o.d.749.4 8
155.52 even 60 775.2.o.d.149.1 8
155.74 odd 30 775.2.e.e.501.2 4
155.83 even 60 775.2.o.d.149.4 8
155.114 odd 30 775.2.e.e.676.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 31.12 odd 30
31.2.c.a.25.1 yes 4 31.21 odd 30
279.2.h.c.118.2 4 93.83 even 30
279.2.h.c.253.2 4 93.74 even 30
496.2.i.h.129.1 4 124.43 even 30
496.2.i.h.273.1 4 124.83 even 30
775.2.e.e.501.2 4 155.74 odd 30
775.2.e.e.676.2 4 155.114 odd 30
775.2.o.d.149.1 8 155.52 even 60
775.2.o.d.149.4 8 155.83 even 60
775.2.o.d.749.1 8 155.12 even 60
775.2.o.d.749.4 8 155.43 even 60
961.2.a.a.1.1 2 31.29 odd 10
961.2.a.c.1.1 2 31.2 even 5
961.2.c.a.439.1 4 31.19 even 15
961.2.c.a.521.1 4 31.10 even 15
961.2.d.i.374.2 8 31.16 even 5 inner
961.2.d.i.388.2 8 31.8 even 5 inner
961.2.d.i.531.1 8 31.4 even 5 inner
961.2.d.i.628.1 8 1.1 even 1 trivial
961.2.d.l.374.2 8 31.15 odd 10
961.2.d.l.388.2 8 31.23 odd 10
961.2.d.l.531.1 8 31.27 odd 10
961.2.d.l.628.1 8 31.30 odd 2
961.2.g.o.235.2 16 31.17 odd 30
961.2.g.o.338.2 16 31.22 odd 30
961.2.g.o.448.1 16 31.26 odd 6
961.2.g.o.547.1 16 31.24 odd 30
961.2.g.o.732.2 16 31.13 odd 30
961.2.g.o.816.2 16 31.3 odd 30
961.2.g.o.844.1 16 31.11 odd 30
961.2.g.o.846.1 16 31.6 odd 6
961.2.g.r.235.2 16 31.14 even 15
961.2.g.r.338.2 16 31.9 even 15
961.2.g.r.448.1 16 31.5 even 3
961.2.g.r.547.1 16 31.7 even 15
961.2.g.r.732.2 16 31.18 even 15
961.2.g.r.816.2 16 31.28 even 15
961.2.g.r.844.1 16 31.20 even 15
961.2.g.r.846.1 16 31.25 even 3
8649.2.a.k.1.2 2 93.2 odd 10
8649.2.a.l.1.2 2 93.29 even 10