Properties

Label 961.2.g.r.846.1
Level $961$
Weight $2$
Character 961.846
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,2,-4,-8,24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.26873856000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 8x^{10} - 16x^{8} + 32x^{6} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 846.1
Root \(1.29195 - 0.575212i\) of defining polynomial
Character \(\chi\) \(=\) 961.846
Dual form 961.2.g.r.844.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.746033 + 2.29605i) q^{2} +(-2.36146 - 0.501943i) q^{3} +(-3.09726 - 2.25029i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(2.91421 - 5.04757i) q^{6} +(2.20549 - 0.981949i) q^{7} +(3.57117 - 2.59461i) q^{8} +(2.58390 + 1.15042i) q^{9} +(2.36146 - 0.501943i) q^{10} +(-0.548005 + 5.21392i) q^{11} +(6.18453 + 6.86862i) q^{12} +(-1.22346 + 1.35879i) q^{13} +(0.609237 + 5.79650i) q^{14} +(0.746033 + 2.29605i) q^{15} +(0.927051 + 2.85317i) q^{16} +(-0.0179342 - 0.170633i) q^{17} +(-4.56911 + 5.07451i) q^{18} +(1.06110 + 1.17847i) q^{19} +(-0.400180 + 3.80745i) q^{20} +(-5.70106 + 1.21180i) q^{21} +(-11.5626 - 5.14801i) q^{22} +(-3.23607 + 2.35114i) q^{23} +(-9.73552 + 4.33453i) q^{24} +(2.00000 - 3.46410i) q^{25} +(-2.20711 - 3.82282i) q^{26} +(0.335106 + 0.243469i) q^{27} +(-9.04067 - 1.92165i) q^{28} +(0.362036 - 1.11423i) q^{29} -5.82843 q^{30} +1.58579 q^{32} +(3.91118 - 12.0374i) q^{33} +(0.405162 + 0.0861198i) q^{34} +(-1.95314 - 1.41904i) q^{35} +(-5.41421 - 9.37769i) q^{36} +(0.500000 - 0.866025i) q^{37} +(-3.49744 + 1.55716i) q^{38} +(3.57117 - 2.59461i) q^{39} +(-4.03258 - 1.79542i) q^{40} +(-9.27801 + 1.97210i) q^{41} +(1.47083 - 13.9940i) q^{42} +(-5.95492 - 6.61361i) q^{43} +(13.4302 - 14.9157i) q^{44} +(-0.295651 - 2.81293i) q^{45} +(-2.98413 - 9.18421i) q^{46} +(-0.511996 - 1.57576i) q^{47} +(-0.757062 - 7.20296i) q^{48} +(-0.783935 + 0.870648i) q^{49} +(6.46170 + 7.17644i) q^{50} +(-0.0432971 + 0.411944i) q^{51} +(6.84703 - 1.45538i) q^{52} +(-0.156740 - 0.0697850i) q^{53} +(-0.809017 + 0.587785i) q^{54} +(4.78939 - 2.13237i) q^{55} +(5.32843 - 9.22911i) q^{56} +(-1.91421 - 3.31552i) q^{57} +(2.28825 + 1.66251i) q^{58} +(9.85099 + 2.09389i) q^{59} +(2.85613 - 8.79027i) q^{60} -2.82843 q^{61} +6.82843 q^{63} +(-3.03715 + 9.34739i) q^{64} +(1.78847 + 0.380151i) q^{65} +(24.7206 + 17.9606i) q^{66} +(2.62132 + 4.54026i) q^{67} +(-0.328427 + 0.568852i) q^{68} +(8.82198 - 3.92780i) q^{69} +(4.71530 - 3.42586i) q^{70} +(-12.8546 - 5.72322i) q^{71} +(12.2124 - 2.59584i) q^{72} +(0.400180 - 3.80745i) q^{73} +(1.61542 + 1.79411i) q^{74} +(-6.46170 + 7.17644i) q^{75} +(-0.634599 - 6.03781i) q^{76} +(3.91118 + 12.0374i) q^{77} +(3.29315 + 10.1353i) q^{78} +(-1.59329 - 15.1591i) q^{79} +(2.00739 - 2.22943i) q^{80} +(-6.34689 - 7.04894i) q^{81} +(2.39365 - 22.7740i) q^{82} +(3.98211 - 0.846423i) q^{83} +(20.3846 + 9.07580i) q^{84} +(-0.138805 + 0.100848i) q^{85} +(19.6278 - 8.73885i) q^{86} +(-1.41421 + 2.44949i) q^{87} +(11.5711 + 20.0417i) q^{88} +(-10.1008 - 7.33866i) q^{89} +(6.67921 + 1.41971i) q^{90} +(-1.36407 + 4.19817i) q^{91} +15.3137 q^{92} +4.00000 q^{94} +(0.490035 - 1.50817i) q^{95} +(-3.74477 - 0.795975i) q^{96} +(-8.76038 - 6.36479i) q^{97} +(-1.41421 - 2.44949i) q^{98} +(-7.41421 + 12.8418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 2 q^{3} - 4 q^{4} - 8 q^{5} + 24 q^{6} + 2 q^{7} + 12 q^{8} - 2 q^{10} + 2 q^{11} + 10 q^{12} + 2 q^{13} - 6 q^{14} - 4 q^{15} - 12 q^{16} + 6 q^{17} - 8 q^{18} + 6 q^{19} + 2 q^{20} + 6 q^{21}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.746033 + 2.29605i −0.527525 + 1.62356i 0.231743 + 0.972777i \(0.425557\pi\)
−0.759268 + 0.650778i \(0.774443\pi\)
\(3\) −2.36146 0.501943i −1.36339 0.289797i −0.532591 0.846373i \(-0.678782\pi\)
−0.830797 + 0.556576i \(0.812115\pi\)
\(4\) −3.09726 2.25029i −1.54863 1.12515i
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 2.91421 5.04757i 1.18972 2.06066i
\(7\) 2.20549 0.981949i 0.833598 0.371142i 0.0548625 0.998494i \(-0.482528\pi\)
0.778736 + 0.627352i \(0.215861\pi\)
\(8\) 3.57117 2.59461i 1.26260 0.917333i
\(9\) 2.58390 + 1.15042i 0.861299 + 0.383475i
\(10\) 2.36146 0.501943i 0.746758 0.158728i
\(11\) −0.548005 + 5.21392i −0.165230 + 1.57206i 0.526674 + 0.850067i \(0.323439\pi\)
−0.691904 + 0.721989i \(0.743228\pi\)
\(12\) 6.18453 + 6.86862i 1.78532 + 1.98280i
\(13\) −1.22346 + 1.35879i −0.339326 + 0.376859i −0.888522 0.458834i \(-0.848267\pi\)
0.549196 + 0.835693i \(0.314934\pi\)
\(14\) 0.609237 + 5.79650i 0.162825 + 1.54918i
\(15\) 0.746033 + 2.29605i 0.192625 + 0.592838i
\(16\) 0.927051 + 2.85317i 0.231763 + 0.713292i
\(17\) −0.0179342 0.170633i −0.00434969 0.0413846i 0.992132 0.125198i \(-0.0399567\pi\)
−0.996481 + 0.0838135i \(0.973290\pi\)
\(18\) −4.56911 + 5.07451i −1.07695 + 1.19607i
\(19\) 1.06110 + 1.17847i 0.243433 + 0.270359i 0.852463 0.522788i \(-0.175108\pi\)
−0.609030 + 0.793147i \(0.708441\pi\)
\(20\) −0.400180 + 3.80745i −0.0894829 + 0.851373i
\(21\) −5.70106 + 1.21180i −1.24407 + 0.264436i
\(22\) −11.5626 5.14801i −2.46516 1.09756i
\(23\) −3.23607 + 2.35114i −0.674767 + 0.490247i −0.871617 0.490187i \(-0.836929\pi\)
0.196851 + 0.980433i \(0.436929\pi\)
\(24\) −9.73552 + 4.33453i −1.98725 + 0.884783i
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) −2.20711 3.82282i −0.432849 0.749717i
\(27\) 0.335106 + 0.243469i 0.0644911 + 0.0468556i
\(28\) −9.04067 1.92165i −1.70853 0.363158i
\(29\) 0.362036 1.11423i 0.0672284 0.206908i −0.911799 0.410637i \(-0.865306\pi\)
0.979027 + 0.203729i \(0.0653063\pi\)
\(30\) −5.82843 −1.06412
\(31\) 0 0
\(32\) 1.58579 0.280330
\(33\) 3.91118 12.0374i 0.680850 2.09544i
\(34\) 0.405162 + 0.0861198i 0.0694847 + 0.0147694i
\(35\) −1.95314 1.41904i −0.330141 0.239861i
\(36\) −5.41421 9.37769i −0.902369 1.56295i
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) −3.49744 + 1.55716i −0.567360 + 0.252605i
\(39\) 3.57117 2.59461i 0.571845 0.415470i
\(40\) −4.03258 1.79542i −0.637608 0.283881i
\(41\) −9.27801 + 1.97210i −1.44898 + 0.307990i −0.864179 0.503185i \(-0.832161\pi\)
−0.584802 + 0.811176i \(0.698828\pi\)
\(42\) 1.47083 13.9940i 0.226954 2.15932i
\(43\) −5.95492 6.61361i −0.908117 1.00857i −0.999918 0.0127892i \(-0.995929\pi\)
0.0918008 0.995777i \(-0.470738\pi\)
\(44\) 13.4302 14.9157i 2.02467 2.24863i
\(45\) −0.295651 2.81293i −0.0440731 0.419327i
\(46\) −2.98413 9.18421i −0.439986 1.35414i
\(47\) −0.511996 1.57576i −0.0746823 0.229849i 0.906746 0.421677i \(-0.138558\pi\)
−0.981428 + 0.191828i \(0.938558\pi\)
\(48\) −0.757062 7.20296i −0.109273 1.03966i
\(49\) −0.783935 + 0.870648i −0.111991 + 0.124378i
\(50\) 6.46170 + 7.17644i 0.913822 + 1.01490i
\(51\) −0.0432971 + 0.411944i −0.00606281 + 0.0576838i
\(52\) 6.84703 1.45538i 0.949513 0.201825i
\(53\) −0.156740 0.0697850i −0.0215298 0.00958570i 0.395943 0.918275i \(-0.370418\pi\)
−0.417473 + 0.908689i \(0.637084\pi\)
\(54\) −0.809017 + 0.587785i −0.110093 + 0.0799874i
\(55\) 4.78939 2.13237i 0.645801 0.287529i
\(56\) 5.32843 9.22911i 0.712041 1.23329i
\(57\) −1.91421 3.31552i −0.253544 0.439151i
\(58\) 2.28825 + 1.66251i 0.300461 + 0.218298i
\(59\) 9.85099 + 2.09389i 1.28249 + 0.272602i 0.798246 0.602332i \(-0.205761\pi\)
0.484244 + 0.874933i \(0.339095\pi\)
\(60\) 2.85613 8.79027i 0.368725 1.13482i
\(61\) −2.82843 −0.362143 −0.181071 0.983470i \(-0.557957\pi\)
−0.181071 + 0.983470i \(0.557957\pi\)
\(62\) 0 0
\(63\) 6.82843 0.860301
\(64\) −3.03715 + 9.34739i −0.379644 + 1.16842i
\(65\) 1.78847 + 0.380151i 0.221833 + 0.0471520i
\(66\) 24.7206 + 17.9606i 3.04290 + 2.21079i
\(67\) 2.62132 + 4.54026i 0.320245 + 0.554681i 0.980539 0.196327i \(-0.0629013\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(68\) −0.328427 + 0.568852i −0.0398276 + 0.0689835i
\(69\) 8.82198 3.92780i 1.06204 0.472851i
\(70\) 4.71530 3.42586i 0.563586 0.409469i
\(71\) −12.8546 5.72322i −1.52556 0.679221i −0.538949 0.842338i \(-0.681178\pi\)
−0.986607 + 0.163117i \(0.947845\pi\)
\(72\) 12.2124 2.59584i 1.43925 0.305922i
\(73\) 0.400180 3.80745i 0.0468375 0.445629i −0.945822 0.324686i \(-0.894741\pi\)
0.992659 0.120943i \(-0.0385919\pi\)
\(74\) 1.61542 + 1.79411i 0.187789 + 0.208561i
\(75\) −6.46170 + 7.17644i −0.746132 + 0.828664i
\(76\) −0.634599 6.03781i −0.0727935 0.692584i
\(77\) 3.91118 + 12.0374i 0.445721 + 1.37179i
\(78\) 3.29315 + 10.1353i 0.372876 + 1.14759i
\(79\) −1.59329 15.1591i −0.179259 1.70554i −0.601352 0.798984i \(-0.705371\pi\)
0.422093 0.906552i \(-0.361296\pi\)
\(80\) 2.00739 2.22943i 0.224433 0.249258i
\(81\) −6.34689 7.04894i −0.705210 0.783215i
\(82\) 2.39365 22.7740i 0.264334 2.51497i
\(83\) 3.98211 0.846423i 0.437093 0.0929069i 0.0158907 0.999874i \(-0.494942\pi\)
0.421202 + 0.906967i \(0.361608\pi\)
\(84\) 20.3846 + 9.07580i 2.22414 + 0.990251i
\(85\) −0.138805 + 0.100848i −0.0150556 + 0.0109385i
\(86\) 19.6278 8.73885i 2.11652 0.942335i
\(87\) −1.41421 + 2.44949i −0.151620 + 0.262613i
\(88\) 11.5711 + 20.0417i 1.23348 + 2.13645i
\(89\) −10.1008 7.33866i −1.07068 0.777897i −0.0946482 0.995511i \(-0.530173\pi\)
−0.976035 + 0.217614i \(0.930173\pi\)
\(90\) 6.67921 + 1.41971i 0.704051 + 0.149651i
\(91\) −1.36407 + 4.19817i −0.142993 + 0.440087i
\(92\) 15.3137 1.59656
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0.490035 1.50817i 0.0502765 0.154735i
\(96\) −3.74477 0.795975i −0.382199 0.0812388i
\(97\) −8.76038 6.36479i −0.889482 0.646246i 0.0462609 0.998929i \(-0.485269\pi\)
−0.935743 + 0.352683i \(0.885269\pi\)
\(98\) −1.41421 2.44949i −0.142857 0.247436i
\(99\) −7.41421 + 12.8418i −0.745157 + 1.29065i
\(100\) −13.9898 + 6.22865i −1.39898 + 0.622865i
\(101\) −6.86474 + 4.98752i −0.683067 + 0.496277i −0.874374 0.485253i \(-0.838727\pi\)
0.191307 + 0.981530i \(0.438727\pi\)
\(102\) −0.913545 0.406737i −0.0904545 0.0402729i
\(103\) 11.8073 2.50972i 1.16341 0.247290i 0.414553 0.910025i \(-0.363938\pi\)
0.748854 + 0.662736i \(0.230605\pi\)
\(104\) −0.843656 + 8.02685i −0.0827273 + 0.787098i
\(105\) 3.89998 + 4.33137i 0.380599 + 0.422698i
\(106\) 0.277163 0.307821i 0.0269204 0.0298982i
\(107\) −1.00199 9.53327i −0.0968658 0.921616i −0.929756 0.368177i \(-0.879982\pi\)
0.832890 0.553439i \(-0.186685\pi\)
\(108\) −0.490035 1.50817i −0.0471536 0.145124i
\(109\) −1.59810 4.91846i −0.153071 0.471103i 0.844890 0.534941i \(-0.179666\pi\)
−0.997960 + 0.0638377i \(0.979666\pi\)
\(110\) 1.32300 + 12.5875i 0.126143 + 1.20017i
\(111\) −1.61542 + 1.79411i −0.153329 + 0.170289i
\(112\) 4.84627 + 5.38233i 0.457930 + 0.508582i
\(113\) −0.558511 + 5.31388i −0.0525403 + 0.499887i 0.936332 + 0.351117i \(0.114198\pi\)
−0.988872 + 0.148770i \(0.952469\pi\)
\(114\) 9.04067 1.92165i 0.846736 0.179979i
\(115\) 3.65418 + 1.62695i 0.340754 + 0.151714i
\(116\) −3.62867 + 2.63638i −0.336913 + 0.244782i
\(117\) −4.72447 + 2.10347i −0.436777 + 0.194466i
\(118\) −12.1569 + 21.0563i −1.11913 + 1.93839i
\(119\) −0.207107 0.358719i −0.0189854 0.0328838i
\(120\) 8.62158 + 6.26394i 0.787039 + 0.571817i
\(121\) −16.1250 3.42748i −1.46591 0.311589i
\(122\) 2.11010 6.49422i 0.191039 0.587959i
\(123\) 22.8995 2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −5.09423 + 15.6784i −0.453830 + 1.39675i
\(127\) −10.6613 2.26613i −0.946039 0.201087i −0.291035 0.956712i \(-0.594000\pi\)
−0.655004 + 0.755626i \(0.727333\pi\)
\(128\) −16.6304 12.0827i −1.46994 1.06797i
\(129\) 10.7426 + 18.6068i 0.945837 + 1.63824i
\(130\) −2.20711 + 3.82282i −0.193576 + 0.335284i
\(131\) −4.34606 + 1.93499i −0.379717 + 0.169061i −0.587715 0.809068i \(-0.699972\pi\)
0.207997 + 0.978129i \(0.433306\pi\)
\(132\) −39.2016 + 28.4816i −3.41206 + 2.47901i
\(133\) 3.49744 + 1.55716i 0.303267 + 0.135023i
\(134\) −12.3803 + 2.63151i −1.06949 + 0.227328i
\(135\) 0.0432971 0.411944i 0.00372642 0.0354545i
\(136\) −0.506772 0.562828i −0.0434554 0.0482621i
\(137\) 5.00863 5.56265i 0.427916 0.475249i −0.490172 0.871626i \(-0.663066\pi\)
0.918088 + 0.396377i \(0.129733\pi\)
\(138\) 2.43695 + 23.1860i 0.207447 + 1.97372i
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 2.85613 + 8.79027i 0.241387 + 0.742914i
\(141\) 0.418114 + 3.97809i 0.0352115 + 0.335015i
\(142\) 22.7307 25.2450i 1.90752 2.11852i
\(143\) −6.41414 7.12363i −0.536378 0.595708i
\(144\) −0.886953 + 8.43880i −0.0739128 + 0.703233i
\(145\) −1.14597 + 0.243584i −0.0951677 + 0.0202285i
\(146\) 8.44357 + 3.75932i 0.698795 + 0.311124i
\(147\) 2.28825 1.66251i 0.188731 0.137121i
\(148\) −3.49744 + 1.55716i −0.287488 + 0.127998i
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) −11.6569 20.1903i −0.951778 1.64853i
\(151\) −14.0071 10.1767i −1.13988 0.828172i −0.152778 0.988261i \(-0.548822\pi\)
−0.987103 + 0.160089i \(0.948822\pi\)
\(152\) 6.84703 + 1.45538i 0.555368 + 0.118047i
\(153\) 0.149960 0.461530i 0.0121236 0.0373125i
\(154\) −30.5563 −2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 4.58224 14.1027i 0.365702 1.12552i −0.583838 0.811870i \(-0.698450\pi\)
0.949540 0.313646i \(-0.101550\pi\)
\(158\) 35.9948 + 7.65094i 2.86360 + 0.608676i
\(159\) 0.335106 + 0.243469i 0.0265756 + 0.0193083i
\(160\) −0.792893 1.37333i −0.0626837 0.108571i
\(161\) −4.82843 + 8.36308i −0.380533 + 0.659103i
\(162\) 20.9197 9.31406i 1.64361 0.731782i
\(163\) 10.4934 7.62391i 0.821907 0.597150i −0.0953511 0.995444i \(-0.530397\pi\)
0.917258 + 0.398293i \(0.130397\pi\)
\(164\) 33.1742 + 14.7701i 2.59047 + 1.15335i
\(165\) −12.3803 + 2.63151i −0.963803 + 0.204863i
\(166\) −1.02735 + 9.77459i −0.0797379 + 0.758655i
\(167\) 5.72532 + 6.35861i 0.443038 + 0.492044i 0.922759 0.385377i \(-0.125929\pi\)
−0.479721 + 0.877421i \(0.659262\pi\)
\(168\) −17.2153 + 19.1196i −1.32819 + 1.47511i
\(169\) 1.00942 + 9.60395i 0.0776474 + 0.738766i
\(170\) −0.127999 0.393941i −0.00981708 0.0302139i
\(171\) 1.38603 + 4.26576i 0.105992 + 0.326211i
\(172\) 3.56140 + 33.8844i 0.271554 + 2.58366i
\(173\) −9.57774 + 10.6372i −0.728182 + 0.808728i −0.987592 0.157039i \(-0.949805\pi\)
0.259410 + 0.965767i \(0.416472\pi\)
\(174\) −4.56911 5.07451i −0.346383 0.384698i
\(175\) 1.00942 9.60395i 0.0763047 0.725991i
\(176\) −15.3842 + 3.27002i −1.15963 + 0.246487i
\(177\) −22.2117 9.88928i −1.66953 0.743324i
\(178\) 24.3855 17.7171i 1.82777 1.32795i
\(179\) 6.17315 2.74847i 0.461403 0.205430i −0.162852 0.986651i \(-0.552069\pi\)
0.624255 + 0.781221i \(0.285403\pi\)
\(180\) −5.41421 + 9.37769i −0.403552 + 0.698972i
\(181\) −5.15685 8.93193i −0.383306 0.663905i 0.608227 0.793763i \(-0.291881\pi\)
−0.991533 + 0.129858i \(0.958548\pi\)
\(182\) −8.62158 6.26394i −0.639074 0.464314i
\(183\) 6.67921 + 1.41971i 0.493741 + 0.104948i
\(184\) −5.45627 + 16.7927i −0.402241 + 1.23797i
\(185\) −1.00000 −0.0735215
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) −1.96014 + 6.03269i −0.142958 + 0.439979i
\(189\) 0.978148 + 0.207912i 0.0711498 + 0.0151234i
\(190\) 3.09726 + 2.25029i 0.224699 + 0.163253i
\(191\) 0.550253 + 0.953065i 0.0398149 + 0.0689614i 0.885246 0.465123i \(-0.153990\pi\)
−0.845431 + 0.534084i \(0.820657\pi\)
\(192\) 11.8640 20.5490i 0.856208 1.48300i
\(193\) −19.3143 + 8.59928i −1.39027 + 0.618990i −0.959045 0.283253i \(-0.908586\pi\)
−0.431229 + 0.902243i \(0.641920\pi\)
\(194\) 21.1494 15.3660i 1.51844 1.10321i
\(195\) −4.03258 1.79542i −0.288779 0.128573i
\(196\) 4.38727 0.932542i 0.313376 0.0666102i
\(197\) 0.364311 3.46619i 0.0259561 0.246956i −0.973849 0.227198i \(-0.927044\pi\)
0.999805 0.0197582i \(-0.00628964\pi\)
\(198\) −23.9542 26.6038i −1.70235 1.89065i
\(199\) −10.4289 + 11.5825i −0.739287 + 0.821061i −0.989102 0.147232i \(-0.952964\pi\)
0.249815 + 0.968294i \(0.419630\pi\)
\(200\) −1.84564 17.5601i −0.130507 1.24169i
\(201\) −3.91118 12.0374i −0.275874 0.849052i
\(202\) −6.33030 19.4827i −0.445398 1.37080i
\(203\) −0.295651 2.81293i −0.0207506 0.197429i
\(204\) 1.06110 1.17847i 0.0742917 0.0825093i
\(205\) 6.34689 + 7.04894i 0.443286 + 0.492319i
\(206\) −3.04618 + 28.9825i −0.212238 + 2.01931i
\(207\) −11.0665 + 2.35225i −0.769173 + 0.163493i
\(208\) −5.01105 2.23106i −0.347454 0.154697i
\(209\) −6.72593 + 4.88668i −0.465242 + 0.338018i
\(210\) −12.8546 + 5.72322i −0.887049 + 0.394940i
\(211\) −3.79289 + 6.56948i −0.261114 + 0.452262i −0.966538 0.256523i \(-0.917423\pi\)
0.705425 + 0.708785i \(0.250756\pi\)
\(212\) 0.328427 + 0.568852i 0.0225565 + 0.0390689i
\(213\) 27.4828 + 19.9674i 1.88309 + 1.36814i
\(214\) 22.6364 + 4.81152i 1.54739 + 0.328909i
\(215\) −2.75010 + 8.46392i −0.187555 + 0.577235i
\(216\) 1.82843 0.124409
\(217\) 0 0
\(218\) 12.4853 0.845610
\(219\) −2.85613 + 8.79027i −0.193000 + 0.593992i
\(220\) −19.6325 4.17301i −1.32362 0.281344i
\(221\) 0.253796 + 0.184393i 0.0170721 + 0.0124036i
\(222\) −2.91421 5.04757i −0.195589 0.338770i
\(223\) 0.863961 1.49642i 0.0578551 0.100208i −0.835647 0.549266i \(-0.814907\pi\)
0.893502 + 0.449059i \(0.148241\pi\)
\(224\) 3.49744 1.55716i 0.233683 0.104042i
\(225\) 9.15298 6.65003i 0.610199 0.443335i
\(226\) −11.7843 5.24670i −0.783878 0.349005i
\(227\) 15.2452 3.24047i 1.01186 0.215077i 0.327990 0.944681i \(-0.393629\pi\)
0.683870 + 0.729604i \(0.260296\pi\)
\(228\) −1.53206 + 14.5766i −0.101463 + 0.965356i
\(229\) −7.68515 8.53523i −0.507849 0.564024i 0.433632 0.901090i \(-0.357232\pi\)
−0.941481 + 0.337067i \(0.890565\pi\)
\(230\) −6.46170 + 7.17644i −0.426072 + 0.473201i
\(231\) −3.19401 30.3890i −0.210150 1.99945i
\(232\) −1.59810 4.91846i −0.104921 0.322913i
\(233\) −4.58224 14.1027i −0.300192 0.923897i −0.981428 0.191832i \(-0.938557\pi\)
0.681235 0.732064i \(-0.261443\pi\)
\(234\) −1.30507 12.4169i −0.0853149 0.811717i
\(235\) −1.10865 + 1.23128i −0.0723205 + 0.0803200i
\(236\) −25.7992 28.6530i −1.67939 1.86515i
\(237\) −3.84654 + 36.5974i −0.249860 + 2.37726i
\(238\) 0.978148 0.207912i 0.0634039 0.0134769i
\(239\) 11.6544 + 5.18889i 0.753862 + 0.335641i 0.747432 0.664338i \(-0.231287\pi\)
0.00643017 + 0.999979i \(0.497953\pi\)
\(240\) −5.85942 + 4.25712i −0.378224 + 0.274796i
\(241\) −22.5252 + 10.0288i −1.45097 + 0.646015i −0.972672 0.232181i \(-0.925414\pi\)
−0.478300 + 0.878196i \(0.658747\pi\)
\(242\) 19.8995 34.4669i 1.27919 2.21562i
\(243\) 10.8284 + 18.7554i 0.694644 + 1.20316i
\(244\) 8.76038 + 6.36479i 0.560826 + 0.407464i
\(245\) 1.14597 + 0.243584i 0.0732134 + 0.0155620i
\(246\) −17.0838 + 52.5785i −1.08922 + 3.35228i
\(247\) −2.89949 −0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 6.71430 20.6645i 0.424649 1.30694i
\(251\) 3.50743 + 0.745527i 0.221387 + 0.0470572i 0.317270 0.948335i \(-0.397234\pi\)
−0.0958826 + 0.995393i \(0.530567\pi\)
\(252\) −21.1494 15.3660i −1.33229 0.967965i
\(253\) −10.4853 18.1610i −0.659204 1.14177i
\(254\) 13.1569 22.7883i 0.825534 1.42987i
\(255\) 0.378403 0.168476i 0.0236965 0.0105504i
\(256\) 24.2467 17.6163i 1.51542 1.10102i
\(257\) −0.286587 0.127597i −0.0178768 0.00795927i 0.397779 0.917481i \(-0.369781\pi\)
−0.415656 + 0.909522i \(0.636448\pi\)
\(258\) −50.7366 + 10.7844i −3.15872 + 0.671407i
\(259\) 0.252354 2.40099i 0.0156805 0.149190i
\(260\) −4.68391 5.20201i −0.290484 0.322615i
\(261\) 2.21730 2.46257i 0.137248 0.152429i
\(262\) −1.20054 11.4224i −0.0741695 0.705676i
\(263\) 0.212076 + 0.652702i 0.0130772 + 0.0402473i 0.957382 0.288824i \(-0.0932643\pi\)
−0.944305 + 0.329071i \(0.893264\pi\)
\(264\) −17.2648 53.1356i −1.06257 3.27027i
\(265\) 0.0179342 + 0.170633i 0.00110169 + 0.0104819i
\(266\) −6.18453 + 6.86862i −0.379198 + 0.421142i
\(267\) 20.1690 + 22.4000i 1.23432 + 1.37086i
\(268\) 2.09800 19.9611i 0.128156 1.21932i
\(269\) −31.1329 + 6.61750i −1.89821 + 0.403476i −0.999392 0.0348541i \(-0.988903\pi\)
−0.898814 + 0.438330i \(0.855570\pi\)
\(270\) 0.913545 + 0.406737i 0.0555966 + 0.0247532i
\(271\) −18.8612 + 13.7035i −1.14574 + 0.832426i −0.987908 0.155041i \(-0.950449\pi\)
−0.157827 + 0.987467i \(0.550449\pi\)
\(272\) 0.470219 0.209355i 0.0285112 0.0126940i
\(273\) 5.32843 9.22911i 0.322491 0.558571i
\(274\) 9.03553 + 15.6500i 0.545857 + 0.945451i
\(275\) 16.9655 + 12.3262i 1.02306 + 0.743297i
\(276\) −36.1627 7.68661i −2.17674 0.462680i
\(277\) 4.37016 13.4500i 0.262577 0.808130i −0.729664 0.683806i \(-0.760324\pi\)
0.992242 0.124325i \(-0.0396764\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.6569 −0.636869
\(281\) 0.618034 1.90211i 0.0368688 0.113471i −0.930928 0.365202i \(-0.881000\pi\)
0.967797 + 0.251731i \(0.0809999\pi\)
\(282\) −9.44583 2.00777i −0.562491 0.119561i
\(283\) 1.89564 + 1.37727i 0.112684 + 0.0818700i 0.642700 0.766118i \(-0.277814\pi\)
−0.530016 + 0.847988i \(0.677814\pi\)
\(284\) 26.9350 + 46.6528i 1.59830 + 2.76834i
\(285\) −1.91421 + 3.31552i −0.113388 + 0.196394i
\(286\) 21.1414 9.41275i 1.25012 0.556588i
\(287\) −18.5261 + 13.4600i −1.09356 + 0.794518i
\(288\) 4.09751 + 1.82433i 0.241448 + 0.107500i
\(289\) 16.5997 3.52838i 0.976454 0.207552i
\(290\) 0.295651 2.81293i 0.0173612 0.165181i
\(291\) 17.4925 + 19.4274i 1.02543 + 1.13885i
\(292\) −9.80735 + 10.8922i −0.573932 + 0.637416i
\(293\) 2.59220 + 24.6631i 0.151438 + 1.44084i 0.761337 + 0.648357i \(0.224543\pi\)
−0.609899 + 0.792479i \(0.708790\pi\)
\(294\) 2.11010 + 6.49422i 0.123064 + 0.378751i
\(295\) −3.11213 9.57815i −0.181195 0.557662i
\(296\) −0.461411 4.39003i −0.0268190 0.255165i
\(297\) −1.45307 + 1.61379i −0.0843154 + 0.0936418i
\(298\) −1.61542 1.79411i −0.0935790 0.103930i
\(299\) 0.764491 7.27364i 0.0442116 0.420646i
\(300\) 36.1627 7.68661i 2.08785 0.443787i
\(301\) −19.6278 8.73885i −1.13133 0.503699i
\(302\) 33.8161 24.5688i 1.94590 1.41378i
\(303\) 18.7142 8.33211i 1.07510 0.478667i
\(304\) −2.37868 + 4.11999i −0.136427 + 0.236298i
\(305\) 1.41421 + 2.44949i 0.0809776 + 0.140257i
\(306\) 0.947822 + 0.688633i 0.0541834 + 0.0393665i
\(307\) 2.69710 + 0.573287i 0.153932 + 0.0327192i 0.284233 0.958755i \(-0.408261\pi\)
−0.130301 + 0.991474i \(0.541594\pi\)
\(308\) 14.9737 46.0842i 0.853205 2.62589i
\(309\) −29.1421 −1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 6.02128 18.5316i 0.340888 1.04915i
\(313\) 3.74477 + 0.795975i 0.211667 + 0.0449912i 0.312524 0.949910i \(-0.398825\pi\)
−0.100858 + 0.994901i \(0.532159\pi\)
\(314\) 28.9620 + 21.0421i 1.63442 + 1.18748i
\(315\) −3.41421 5.91359i −0.192369 0.333193i
\(316\) −29.1777 + 50.5372i −1.64137 + 2.84294i
\(317\) −1.98383 + 0.883258i −0.111423 + 0.0496087i −0.461691 0.887041i \(-0.652757\pi\)
0.350268 + 0.936649i \(0.386090\pi\)
\(318\) −0.809017 + 0.587785i −0.0453674 + 0.0329614i
\(319\) 5.61112 + 2.49823i 0.314162 + 0.139874i
\(320\) 9.61365 2.04344i 0.537420 0.114232i
\(321\) −2.41901 + 23.0154i −0.135016 + 1.28459i
\(322\) −15.5999 17.3255i −0.869349 0.965510i
\(323\) 0.182056 0.202193i 0.0101298 0.0112503i
\(324\) 3.79582 + 36.1148i 0.210879 + 2.00638i
\(325\) 2.26006 + 6.95575i 0.125366 + 0.385836i
\(326\) 9.67647 + 29.7811i 0.535930 + 1.64942i
\(327\) 1.30507 + 12.4169i 0.0721704 + 0.686655i
\(328\) −28.0165 + 31.1155i −1.54695 + 1.71807i
\(329\) −2.67652 2.97258i −0.147561 0.163884i
\(330\) 3.19401 30.3890i 0.175824 1.67286i
\(331\) 0.740809 0.157464i 0.0407186 0.00865500i −0.187507 0.982263i \(-0.560041\pi\)
0.228226 + 0.973608i \(0.426708\pi\)
\(332\) −14.2383 6.33931i −0.781430 0.347915i
\(333\) 2.28825 1.66251i 0.125395 0.0911049i
\(334\) −18.8710 + 8.40190i −1.03257 + 0.459731i
\(335\) 2.62132 4.54026i 0.143218 0.248061i
\(336\) −8.74264 15.1427i −0.476950 0.826102i
\(337\) −10.7710 7.82560i −0.586735 0.426288i 0.254411 0.967096i \(-0.418118\pi\)
−0.841146 + 0.540808i \(0.818118\pi\)
\(338\) −22.8042 4.84719i −1.24039 0.263653i
\(339\) 3.98616 12.2681i 0.216499 0.666314i
\(340\) 0.656854 0.0356229
\(341\) 0 0
\(342\) −10.8284 −0.585534
\(343\) −6.09626 + 18.7624i −0.329167 + 1.01307i
\(344\) −38.4258 8.16766i −2.07178 0.440371i
\(345\) −7.81256 5.67616i −0.420614 0.305594i
\(346\) −17.2782 29.9267i −0.928880 1.60887i
\(347\) 11.2782 19.5344i 0.605444 1.04866i −0.386537 0.922274i \(-0.626329\pi\)
0.991981 0.126386i \(-0.0403378\pi\)
\(348\) 9.89226 4.40432i 0.530281 0.236096i
\(349\) −28.4068 + 20.6387i −1.52058 + 1.10477i −0.559380 + 0.828911i \(0.688961\pi\)
−0.961199 + 0.275854i \(0.911039\pi\)
\(350\) 21.2981 + 9.48254i 1.13843 + 0.506863i
\(351\) −0.740809 + 0.157464i −0.0395415 + 0.00840480i
\(352\) −0.869019 + 8.26817i −0.0463189 + 0.440695i
\(353\) −2.00739 2.22943i −0.106843 0.118661i 0.687351 0.726325i \(-0.258773\pi\)
−0.794194 + 0.607664i \(0.792107\pi\)
\(354\) 39.2770 43.6215i 2.08755 2.31846i
\(355\) 1.47083 + 13.9940i 0.0780634 + 0.742724i
\(356\) 14.7707 + 45.4595i 0.782846 + 2.40935i
\(357\) 0.309017 + 0.951057i 0.0163549 + 0.0503352i
\(358\) 1.70525 + 16.2243i 0.0901251 + 0.857483i
\(359\) 17.9993 19.9902i 0.949965 1.05504i −0.0484531 0.998825i \(-0.515429\pi\)
0.998419 0.0562180i \(-0.0179042\pi\)
\(360\) −8.35428 9.27837i −0.440309 0.489013i
\(361\) 1.72318 16.3950i 0.0906937 0.862893i
\(362\) 24.3554 5.17690i 1.28009 0.272092i
\(363\) 36.3582 + 16.1877i 1.90831 + 0.849634i
\(364\) 13.6720 9.93327i 0.716606 0.520645i
\(365\) −3.49744 + 1.55716i −0.183064 + 0.0815056i
\(366\) −8.24264 + 14.2767i −0.430850 + 0.746254i
\(367\) 9.10660 + 15.7731i 0.475361 + 0.823349i 0.999602 0.0282210i \(-0.00898422\pi\)
−0.524241 + 0.851570i \(0.675651\pi\)
\(368\) −9.70820 7.05342i −0.506075 0.367685i
\(369\) −26.2422 5.57794i −1.36611 0.290376i
\(370\) 0.746033 2.29605i 0.0387844 0.119366i
\(371\) −0.414214 −0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −0.671053 + 2.06529i −0.0346993 + 0.106794i
\(375\) 21.2531 + 4.51749i 1.09751 + 0.233282i
\(376\) −5.91691 4.29889i −0.305142 0.221698i
\(377\) 1.07107 + 1.85514i 0.0551628 + 0.0955448i
\(378\) −1.20711 + 2.09077i −0.0620869 + 0.107538i
\(379\) −26.8443 + 11.9519i −1.37890 + 0.613926i −0.956299 0.292390i \(-0.905550\pi\)
−0.422601 + 0.906316i \(0.638883\pi\)
\(380\) −4.91160 + 3.56848i −0.251960 + 0.183059i
\(381\) 24.0388 + 10.7027i 1.23154 + 0.548318i
\(382\) −2.59880 + 0.552391i −0.132966 + 0.0282628i
\(383\) 2.60271 24.7631i 0.132992 1.26533i −0.700841 0.713318i \(-0.747192\pi\)
0.833833 0.552017i \(-0.186142\pi\)
\(384\) 33.2072 + 36.8804i 1.69460 + 1.88204i
\(385\) 8.46909 9.40588i 0.431625 0.479368i
\(386\) −5.33530 50.7620i −0.271560 2.58372i
\(387\) −7.77844 23.9396i −0.395401 1.21692i
\(388\) 12.8106 + 39.4269i 0.650358 + 2.00160i
\(389\) 1.79184 + 17.0482i 0.0908499 + 0.864380i 0.941129 + 0.338047i \(0.109766\pi\)
−0.850279 + 0.526332i \(0.823567\pi\)
\(390\) 7.13083 7.91959i 0.361083 0.401024i
\(391\) 0.459219 + 0.510014i 0.0232237 + 0.0257925i
\(392\) −0.540577 + 5.14324i −0.0273032 + 0.259773i
\(393\) 11.2343 2.38792i 0.566695 0.120455i
\(394\) 7.68677 + 3.42237i 0.387254 + 0.172416i
\(395\) −12.3316 + 8.95940i −0.620468 + 0.450796i
\(396\) 51.8616 23.0903i 2.60614 1.16033i
\(397\) 8.25736 14.3022i 0.414425 0.717805i −0.580943 0.813944i \(-0.697316\pi\)
0.995368 + 0.0961392i \(0.0306494\pi\)
\(398\) −18.8137 32.5863i −0.943046 1.63340i
\(399\) −7.47745 5.43269i −0.374341 0.271975i
\(400\) 11.7378 + 2.49494i 0.586889 + 0.124747i
\(401\) 6.54238 20.1354i 0.326711 1.00551i −0.643952 0.765066i \(-0.722706\pi\)
0.970663 0.240446i \(-0.0772937\pi\)
\(402\) 30.5563 1.52401
\(403\) 0 0
\(404\) 32.4853 1.61620
\(405\) −2.93111 + 9.02104i −0.145648 + 0.448259i
\(406\) 6.67921 + 1.41971i 0.331484 + 0.0704590i
\(407\) 4.24139 + 3.08155i 0.210238 + 0.152747i
\(408\) 0.914214 + 1.58346i 0.0452603 + 0.0783932i
\(409\) 4.67157 8.09140i 0.230994 0.400094i −0.727107 0.686525i \(-0.759135\pi\)
0.958101 + 0.286431i \(0.0924688\pi\)
\(410\) −20.9197 + 9.31406i −1.03315 + 0.459989i
\(411\) −14.6198 + 10.6219i −0.721142 + 0.523940i
\(412\) −42.2179 18.7966i −2.07992 0.926042i
\(413\) 23.7824 5.05510i 1.17026 0.248745i
\(414\) 2.85506 27.1641i 0.140319 1.33504i
\(415\) −2.72408 3.02539i −0.133720 0.148511i
\(416\) −1.94014 + 2.15474i −0.0951232 + 0.105645i
\(417\) 0 0
\(418\) −6.20230 19.0887i −0.303364 0.933660i
\(419\) 8.65248 + 26.6296i 0.422701 + 1.30094i 0.905178 + 0.425032i \(0.139737\pi\)
−0.482477 + 0.875908i \(0.660263\pi\)
\(420\) −2.33242 22.1915i −0.113810 1.08283i
\(421\) −1.91228 + 2.12381i −0.0931990 + 0.103508i −0.787940 0.615752i \(-0.788852\pi\)
0.694741 + 0.719260i \(0.255519\pi\)
\(422\) −12.2543 13.6097i −0.596528 0.662512i
\(423\) 0.489851 4.66062i 0.0238174 0.226607i
\(424\) −0.740809 + 0.157464i −0.0359769 + 0.00764712i
\(425\) −0.626958 0.279140i −0.0304120 0.0135403i
\(426\) −66.3493 + 48.2056i −3.21463 + 2.33557i
\(427\) −6.23808 + 2.77737i −0.301882 + 0.134406i
\(428\) −18.3492 + 31.7818i −0.886944 + 1.53623i
\(429\) 11.5711 + 20.0417i 0.558656 + 0.967621i
\(430\) −17.3820 12.6287i −0.838232 0.609012i
\(431\) 24.6910 + 5.24824i 1.18932 + 0.252799i 0.759740 0.650227i \(-0.225326\pi\)
0.429585 + 0.903026i \(0.358660\pi\)
\(432\) −0.383997 + 1.18182i −0.0184751 + 0.0568604i
\(433\) 35.1127 1.68741 0.843704 0.536808i \(-0.180370\pi\)
0.843704 + 0.536808i \(0.180370\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) −6.11822 + 18.8300i −0.293010 + 0.901791i
\(437\) −6.20453 1.31881i −0.296803 0.0630874i
\(438\) −18.0522 13.1157i −0.862566 0.626691i
\(439\) 6.03553 + 10.4539i 0.288060 + 0.498935i 0.973347 0.229339i \(-0.0736563\pi\)
−0.685286 + 0.728274i \(0.740323\pi\)
\(440\) 11.5711 20.0417i 0.551629 0.955449i
\(441\) −3.02722 + 1.34781i −0.144153 + 0.0641813i
\(442\) −0.612717 + 0.445165i −0.0291440 + 0.0211743i
\(443\) −12.0978 5.38627i −0.574782 0.255909i 0.0986951 0.995118i \(-0.468533\pi\)
−0.673477 + 0.739208i \(0.735200\pi\)
\(444\) 9.04067 1.92165i 0.429051 0.0911976i
\(445\) −1.30507 + 12.4169i −0.0618661 + 0.588617i
\(446\) 2.79133 + 3.10008i 0.132173 + 0.146793i
\(447\) 1.61542 1.79411i 0.0764069 0.0848585i
\(448\) 2.48024 + 23.5979i 0.117180 + 1.11490i
\(449\) −1.42995 4.40094i −0.0674835 0.207693i 0.911628 0.411016i \(-0.134826\pi\)
−0.979112 + 0.203323i \(0.934826\pi\)
\(450\) 8.44040 + 25.9769i 0.397884 + 1.22456i
\(451\) −5.19798 49.4555i −0.244763 2.32877i
\(452\) 13.6876 15.2017i 0.643812 0.715026i
\(453\) 27.9690 + 31.0627i 1.31410 + 1.45945i
\(454\) −3.93314 + 37.4213i −0.184591 + 1.75627i
\(455\) 4.31775 0.917767i 0.202419 0.0430256i
\(456\) −15.4385 6.87364i −0.722972 0.321888i
\(457\) 25.1707 18.2876i 1.17744 0.855457i 0.185556 0.982634i \(-0.440591\pi\)
0.991880 + 0.127177i \(0.0405915\pi\)
\(458\) 25.3307 11.2780i 1.18363 0.526985i
\(459\) 0.0355339 0.0615465i 0.00165858 0.00287275i
\(460\) −7.65685 13.2621i −0.357003 0.618347i
\(461\) 21.1494 + 15.3660i 0.985027 + 0.715664i 0.958826 0.283993i \(-0.0916591\pi\)
0.0262008 + 0.999657i \(0.491659\pi\)
\(462\) 72.1575 + 15.3376i 3.35707 + 0.713568i
\(463\) −7.71633 + 23.7484i −0.358608 + 1.10368i 0.595279 + 0.803519i \(0.297041\pi\)
−0.953888 + 0.300164i \(0.902959\pi\)
\(464\) 3.51472 0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) −2.47214 + 7.60845i −0.114397 + 0.352077i −0.991821 0.127639i \(-0.959260\pi\)
0.877424 + 0.479716i \(0.159260\pi\)
\(468\) 19.3663 + 4.11644i 0.895209 + 0.190283i
\(469\) 10.2396 + 7.43951i 0.472821 + 0.343525i
\(470\) −2.00000 3.46410i −0.0922531 0.159787i
\(471\) −17.8995 + 31.0028i −0.824765 + 1.42854i
\(472\) 40.6124 18.0818i 1.86934 0.832283i
\(473\) 37.7462 27.4242i 1.73557 1.26097i
\(474\) −81.1599 36.1347i −3.72780 1.65972i
\(475\) 6.20453 1.31881i 0.284683 0.0605113i
\(476\) −0.165760 + 1.57710i −0.00759759 + 0.0722862i
\(477\) −0.324717 0.360634i −0.0148678 0.0165123i
\(478\) −20.6085 + 22.8881i −0.942613 + 1.04688i
\(479\) −1.01684 9.67463i −0.0464608 0.442045i −0.992881 0.119108i \(-0.961996\pi\)
0.946420 0.322937i \(-0.104670\pi\)
\(480\) 1.18305 + 3.64105i 0.0539986 + 0.166190i
\(481\) 0.565015 + 1.73894i 0.0257625 + 0.0792887i
\(482\) −6.22226 59.2008i −0.283416 2.69652i
\(483\) 15.5999 17.3255i 0.709821 0.788336i
\(484\) 42.2306 + 46.9019i 1.91957 + 2.13190i
\(485\) −1.13188 + 10.7691i −0.0513960 + 0.489000i
\(486\) −51.1417 + 10.8705i −2.31984 + 0.493096i
\(487\) 15.8818 + 7.07103i 0.719672 + 0.320419i 0.733691 0.679483i \(-0.237796\pi\)
−0.0140190 + 0.999902i \(0.504463\pi\)
\(488\) −10.1008 + 7.33866i −0.457242 + 0.332206i
\(489\) −28.6065 + 12.7364i −1.29363 + 0.575961i
\(490\) −1.41421 + 2.44949i −0.0638877 + 0.110657i
\(491\) 2.20711 + 3.82282i 0.0996053 + 0.172522i 0.911521 0.411253i \(-0.134909\pi\)
−0.811916 + 0.583774i \(0.801575\pi\)
\(492\) −70.9257 51.5306i −3.19758 2.32318i
\(493\) −0.196618 0.0417924i −0.00885521 0.00188223i
\(494\) 2.16312 6.65740i 0.0973233 0.299530i
\(495\) 14.8284 0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 7.33233 22.5666i 0.328570 1.01123i
\(499\) 39.3344 + 8.36080i 1.76085 + 0.374281i 0.971012 0.239032i \(-0.0768302\pi\)
0.789840 + 0.613313i \(0.210163\pi\)
\(500\) 27.8754 + 20.2526i 1.24662 + 0.905725i
\(501\) −10.3284 17.8894i −0.461440 0.799238i
\(502\) −4.32843 + 7.49706i −0.193187 + 0.334610i
\(503\) 21.3631 9.51145i 0.952532 0.424094i 0.129177 0.991622i \(-0.458766\pi\)
0.823355 + 0.567527i \(0.192100\pi\)
\(504\) 24.3855 17.7171i 1.08622 0.789182i
\(505\) 7.75169 + 3.45127i 0.344946 + 0.153580i
\(506\) 49.5211 10.5260i 2.20148 0.467939i
\(507\) 2.43695 23.1860i 0.108229 1.02973i
\(508\) 27.9214 + 31.0099i 1.23881 + 1.37584i
\(509\) −4.54941 + 5.05263i −0.201649 + 0.223954i −0.835485 0.549514i \(-0.814813\pi\)
0.633835 + 0.773468i \(0.281480\pi\)
\(510\) 0.104528 + 0.994522i 0.00462860 + 0.0440382i
\(511\) −2.85613 8.79027i −0.126348 0.388859i
\(512\) 9.65451 + 29.7135i 0.426673 + 1.31316i
\(513\) 0.0686600 + 0.653256i 0.00303141 + 0.0288420i
\(514\) 0.506772 0.562828i 0.0223528 0.0248253i
\(515\) −8.07712 8.97055i −0.355920 0.395290i
\(516\) 8.59797 81.8042i 0.378505 3.60123i
\(517\) 8.49648 1.80598i 0.373675 0.0794270i
\(518\) 5.32453 + 2.37063i 0.233947 + 0.104160i
\(519\) 27.9567 20.3117i 1.22716 0.891585i
\(520\) 7.37329 3.28280i 0.323340 0.143960i
\(521\) −15.2279 + 26.3755i −0.667147 + 1.15553i 0.311551 + 0.950229i \(0.399152\pi\)
−0.978698 + 0.205304i \(0.934182\pi\)
\(522\) 4.00000 + 6.92820i 0.175075 + 0.303239i
\(523\) −6.47214 4.70228i −0.283007 0.205616i 0.437221 0.899354i \(-0.355963\pi\)
−0.720228 + 0.693738i \(0.755963\pi\)
\(524\) 17.8152 + 3.78674i 0.778261 + 0.165424i
\(525\) −7.20433 + 22.1727i −0.314423 + 0.967694i
\(526\) −1.65685 −0.0722423
\(527\) 0 0
\(528\) 37.9706 1.65246
\(529\) −2.16312 + 6.65740i −0.0940487 + 0.289452i
\(530\) −0.405162 0.0861198i −0.0175991 0.00374081i
\(531\) 23.0451 + 16.7432i 1.00007 + 0.726594i
\(532\) −7.32843 12.6932i −0.317728 0.550320i
\(533\) 8.67157 15.0196i 0.375608 0.650571i
\(534\) −66.4783 + 29.5980i −2.87680 + 1.28083i
\(535\) −7.75506 + 5.63438i −0.335281 + 0.243596i
\(536\) 21.1414 + 9.41275i 0.913169 + 0.406569i
\(537\) −15.9572 + 3.39181i −0.688605 + 0.146367i
\(538\) 8.03203 76.4197i 0.346285 3.29469i
\(539\) −4.10989 4.56450i −0.177026 0.196607i
\(540\) −1.06110 + 1.17847i −0.0456624 + 0.0507132i
\(541\) −2.64293 25.1458i −0.113628 1.08110i −0.891607 0.452810i \(-0.850422\pi\)
0.777979 0.628291i \(-0.216245\pi\)
\(542\) −17.3928 53.5295i −0.747085 2.29929i
\(543\) 7.69437 + 23.6808i 0.330197 + 1.01624i
\(544\) −0.0284399 0.270587i −0.00121935 0.0116013i
\(545\) −3.46046 + 3.84323i −0.148230 + 0.164626i
\(546\) 17.2153 + 19.1196i 0.736749 + 0.818242i
\(547\) −0.598731 + 5.69654i −0.0255999 + 0.243567i 0.974237 + 0.225525i \(0.0724098\pi\)
−0.999837 + 0.0180415i \(0.994257\pi\)
\(548\) −28.0306 + 5.95810i −1.19741 + 0.254517i
\(549\) −7.30836 3.25389i −0.311913 0.138873i
\(550\) −40.9584 + 29.7580i −1.74647 + 1.26889i
\(551\) 1.69724 0.755662i 0.0723050 0.0321923i
\(552\) 21.3137 36.9164i 0.907172 1.57127i
\(553\) −18.3995 31.8689i −0.782426 1.35520i
\(554\) 27.6216 + 20.0682i 1.17353 + 0.852618i
\(555\) 2.36146 + 0.501943i 0.100238 + 0.0213063i
\(556\) 0 0
\(557\) −44.4853 −1.88490 −0.942451 0.334344i \(-0.891485\pi\)
−0.942451 + 0.334344i \(0.891485\pi\)
\(558\) 0 0
\(559\) 16.2721 0.688236
\(560\) 2.23810 6.88816i 0.0945769 0.291078i
\(561\) −2.12412 0.451495i −0.0896804 0.0190622i
\(562\) 3.90628 + 2.83808i 0.164776 + 0.119717i
\(563\) −2.37868 4.11999i −0.100249 0.173637i 0.811538 0.584300i \(-0.198631\pi\)
−0.911787 + 0.410663i \(0.865297\pi\)
\(564\) 7.65685 13.2621i 0.322412 0.558433i
\(565\) 4.88121 2.17325i 0.205354 0.0914294i
\(566\) −4.57649 + 3.32502i −0.192364 + 0.139761i
\(567\) −20.9197 9.31406i −0.878546 0.391154i
\(568\) −60.7554 + 12.9140i −2.54924 + 0.541858i
\(569\) 1.58278 15.0592i 0.0663538 0.631314i −0.909921 0.414781i \(-0.863858\pi\)
0.976275 0.216533i \(-0.0694750\pi\)
\(570\) −6.18453 6.86862i −0.259042 0.287695i
\(571\) 27.3671 30.3942i 1.14528 1.27196i 0.188199 0.982131i \(-0.439735\pi\)
0.957079 0.289829i \(-0.0935984\pi\)
\(572\) 3.83604 + 36.4974i 0.160393 + 1.52603i
\(573\) −0.821013 2.52682i −0.0342983 0.105559i
\(574\) −17.0838 52.5785i −0.713063 2.19458i
\(575\) 1.67246 + 15.9124i 0.0697462 + 0.663591i
\(576\) −18.6012 + 20.6587i −0.775048 + 0.860778i
\(577\) −22.7307 25.2450i −0.946293 1.05097i −0.998630 0.0523356i \(-0.983333\pi\)
0.0523363 0.998630i \(-0.483333\pi\)
\(578\) −4.28259 + 40.7461i −0.178132 + 1.69482i
\(579\) 49.9262 10.6122i 2.07486 0.441026i
\(580\) 4.09751 + 1.82433i 0.170140 + 0.0757511i
\(581\) 7.95136 5.77700i 0.329878 0.239671i
\(582\) −57.6563 + 25.6702i −2.38993 + 1.06407i
\(583\) 0.449747 0.778985i 0.0186266 0.0322623i
\(584\) −8.44975 14.6354i −0.349653 0.605617i
\(585\) 4.18389 + 3.03977i 0.172983 + 0.125679i
\(586\) −58.5618 12.4477i −2.41916 0.514209i
\(587\) 6.28638 19.3475i 0.259467 0.798556i −0.733450 0.679743i \(-0.762091\pi\)
0.992917 0.118813i \(-0.0379088\pi\)
\(588\) −10.8284 −0.446557
\(589\) 0 0
\(590\) 24.3137 1.00098
\(591\) −2.60013 + 8.00239i −0.106955 + 0.329174i
\(592\) 2.93444 + 0.623735i 0.120605 + 0.0256354i
\(593\) −17.2432 12.5279i −0.708091 0.514459i 0.174466 0.984663i \(-0.444180\pi\)
−0.882557 + 0.470205i \(0.844180\pi\)
\(594\) −2.62132 4.54026i −0.107554 0.186289i
\(595\) −0.207107 + 0.358719i −0.00849055 + 0.0147061i
\(596\) 3.49744 1.55716i 0.143261 0.0637838i
\(597\) 30.4412 22.1168i 1.24588 0.905182i
\(598\) 16.1303 + 7.18169i 0.659619 + 0.293681i
\(599\) −34.1369 + 7.25601i −1.39479 + 0.296473i −0.843182 0.537628i \(-0.819320\pi\)
−0.551612 + 0.834101i \(0.685987\pi\)
\(600\) −4.45578 + 42.3939i −0.181906 + 1.73072i
\(601\) 15.7147 + 17.4530i 0.641017 + 0.711921i 0.972855 0.231415i \(-0.0743355\pi\)
−0.331838 + 0.943336i \(0.607669\pi\)
\(602\) 34.7078 38.5470i 1.41459 1.57106i
\(603\) 1.54999 + 14.7472i 0.0631206 + 0.600552i
\(604\) 20.4830 + 63.0401i 0.833440 + 2.56506i
\(605\) 5.09423 + 15.6784i 0.207110 + 0.637419i
\(606\) 5.16954 + 49.1849i 0.209998 + 1.99800i
\(607\) −2.95369 + 3.28040i −0.119886 + 0.133147i −0.800100 0.599867i \(-0.795220\pi\)
0.680214 + 0.733014i \(0.261887\pi\)
\(608\) 1.68268 + 1.86880i 0.0682415 + 0.0757899i
\(609\) −0.713765 + 6.79102i −0.0289232 + 0.275186i
\(610\) −6.67921 + 1.41971i −0.270433 + 0.0574824i
\(611\) 2.76753 + 1.23218i 0.111962 + 0.0498488i
\(612\) −1.50304 + 1.09203i −0.0607569 + 0.0441425i
\(613\) 9.42204 4.19496i 0.380553 0.169433i −0.207540 0.978227i \(-0.566546\pi\)
0.588093 + 0.808794i \(0.299879\pi\)
\(614\) −3.32843 + 5.76500i −0.134324 + 0.232657i
\(615\) −11.4497 19.8315i −0.461698 0.799685i
\(616\) 45.1998 + 32.8396i 1.82115 + 1.32315i
\(617\) −22.7755 4.84107i −0.916905 0.194894i −0.274792 0.961504i \(-0.588609\pi\)
−0.642114 + 0.766610i \(0.721942\pi\)
\(618\) 21.7410 66.9119i 0.874551 2.69159i
\(619\) 31.6569 1.27240 0.636198 0.771526i \(-0.280506\pi\)
0.636198 + 0.771526i \(0.280506\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 8.44040 25.9769i 0.338429 1.04158i
\(623\) −29.4835 6.26690i −1.18123 0.251078i
\(624\) 10.7135 + 7.78383i 0.428884 + 0.311603i
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) −4.62132 + 8.00436i −0.184705 + 0.319919i
\(627\) 18.3358 8.16364i 0.732263 0.326024i
\(628\) −45.9275 + 33.3683i −1.83271 + 1.33154i
\(629\) −0.156740 0.0697850i −0.00624962 0.00278251i
\(630\) 16.1250 3.42748i 0.642437 0.136554i
\(631\) −3.34619 + 31.8368i −0.133210 + 1.26740i 0.699878 + 0.714263i \(0.253238\pi\)
−0.833087 + 0.553141i \(0.813429\pi\)
\(632\) −45.0220 50.0020i −1.79088 1.98897i
\(633\) 12.2543 13.6097i 0.487063 0.540939i
\(634\) −0.548005 5.21392i −0.0217641 0.207071i
\(635\) 3.36813 + 10.3660i 0.133660 + 0.411364i
\(636\) −0.490035 1.50817i −0.0194312 0.0598029i
\(637\) −0.223914 2.13040i −0.00887180 0.0844096i
\(638\) −9.92215 + 11.0197i −0.392822 + 0.436273i
\(639\) −26.6307 29.5764i −1.05350 1.17002i
\(640\) −2.14872 + 20.4437i −0.0849358 + 0.808110i
\(641\) 19.5342 4.15211i 0.771553 0.163999i 0.194718 0.980859i \(-0.437621\pi\)
0.576835 + 0.816861i \(0.304288\pi\)
\(642\) −51.0398 22.7244i −2.01438 0.896861i
\(643\) 10.2634 7.45682i 0.404750 0.294068i −0.366723 0.930330i \(-0.619520\pi\)
0.771473 + 0.636262i \(0.219520\pi\)
\(644\) 33.7743 15.0373i 1.33089 0.592552i
\(645\) 10.7426 18.6068i 0.422991 0.732642i
\(646\) 0.328427 + 0.568852i 0.0129218 + 0.0223812i
\(647\) −18.3536 13.3347i −0.721554 0.524240i 0.165326 0.986239i \(-0.447132\pi\)
−0.886880 + 0.461999i \(0.847132\pi\)
\(648\) −40.9551 8.70527i −1.60887 0.341975i
\(649\) −16.3158 + 50.2148i −0.640451 + 1.97110i
\(650\) −17.6569 −0.692559
\(651\) 0 0
\(652\) −49.6569 −1.94471
\(653\) 6.84230 21.0584i 0.267760 0.824080i −0.723285 0.690550i \(-0.757369\pi\)
0.991045 0.133530i \(-0.0426313\pi\)
\(654\) −29.4835 6.26690i −1.15289 0.245055i
\(655\) 3.84878 + 2.79631i 0.150384 + 0.109261i
\(656\) −14.2279 24.6435i −0.555507 0.962166i
\(657\) 5.41421 9.37769i 0.211229 0.365859i
\(658\) 8.82198 3.92780i 0.343916 0.153121i
\(659\) −7.81256 + 5.67616i −0.304334 + 0.221112i −0.729462 0.684022i \(-0.760229\pi\)
0.425127 + 0.905134i \(0.360229\pi\)
\(660\) 44.2666 + 19.7088i 1.72308 + 0.767163i
\(661\) −32.4179 + 6.89064i −1.26091 + 0.268015i −0.789418 0.613856i \(-0.789618\pi\)
−0.471492 + 0.881870i \(0.656284\pi\)
\(662\) −0.191123 + 1.81841i −0.00742819 + 0.0706745i
\(663\) −0.506772 0.562828i −0.0196814 0.0218584i
\(664\) 12.0247 13.3547i 0.466647 0.518264i
\(665\) −0.400180 3.80745i −0.0155183 0.147647i
\(666\) 2.11010 + 6.49422i 0.0817647 + 0.251646i
\(667\) 1.44814 + 4.45693i 0.0560723 + 0.172573i
\(668\) −3.42408 32.5779i −0.132481 1.26048i
\(669\) −2.79133 + 3.10008i −0.107919 + 0.119856i
\(670\) 8.46909 + 9.40588i 0.327189 + 0.363381i
\(671\) 1.54999 14.7472i 0.0598368 0.569309i
\(672\) −9.04067 + 1.92165i −0.348751 + 0.0741294i
\(673\) −18.8710 8.40190i −0.727423 0.323869i 0.00939971 0.999956i \(-0.497008\pi\)
−0.736822 + 0.676086i \(0.763675\pi\)
\(674\) 26.0035 18.8927i 1.00162 0.727719i
\(675\) 1.51361 0.673903i 0.0582589 0.0259386i
\(676\) 18.4853 32.0174i 0.710972 1.23144i
\(677\) 20.2990 + 35.1589i 0.780154 + 1.35127i 0.931852 + 0.362839i \(0.118192\pi\)
−0.151698 + 0.988427i \(0.548474\pi\)
\(678\) 25.1945 + 18.3049i 0.967590 + 0.702995i
\(679\) −25.5709 5.43526i −0.981320 0.208586i
\(680\) −0.234037 + 0.720292i −0.00897491 + 0.0276219i
\(681\) −37.6274 −1.44189
\(682\) 0 0
\(683\) −46.6274 −1.78415 −0.892074 0.451889i \(-0.850750\pi\)
−0.892074 + 0.451889i \(0.850750\pi\)
\(684\) 5.30631 16.3311i 0.202892 0.624437i
\(685\) −7.32171 1.55628i −0.279748 0.0594623i
\(686\) −38.5314 27.9947i −1.47114 1.06884i
\(687\) 13.8640 + 24.0131i 0.528943 + 0.916156i
\(688\) 13.3492 23.1216i 0.508935 0.881501i
\(689\) 0.286587 0.127597i 0.0109181 0.00486105i
\(690\) 18.8612 13.7035i 0.718033 0.521682i
\(691\) 12.8546 + 5.72322i 0.489011 + 0.217722i 0.636403 0.771357i \(-0.280421\pi\)
−0.147393 + 0.989078i \(0.547088\pi\)
\(692\) 53.6015 11.3934i 2.03762 0.433110i
\(693\) −3.74201 + 35.6029i −0.142147 + 1.35244i
\(694\) 36.4381 + 40.4686i 1.38317 + 1.53617i
\(695\) 0 0
\(696\) 1.30507 + 12.4169i 0.0494684 + 0.470661i
\(697\) 0.502900 + 1.54777i 0.0190487 + 0.0586258i
\(698\) −26.1952 80.6206i −0.991504 3.05154i
\(699\) 3.74201 + 35.6029i 0.141536 + 1.34662i
\(700\) −24.7381 + 27.4745i −0.935014 + 1.03844i
\(701\) 2.33211 + 2.59007i 0.0880825 + 0.0978255i 0.785575 0.618767i \(-0.212367\pi\)
−0.697492 + 0.716592i \(0.745701\pi\)
\(702\) 0.191123 1.81841i 0.00721346 0.0686315i
\(703\) 1.55113 0.329704i 0.0585021 0.0124350i
\(704\) −47.0722 20.9579i −1.77410 0.789880i
\(705\) 3.23607 2.35114i 0.121877 0.0885491i
\(706\) 6.61648 2.94585i 0.249015 0.110868i
\(707\) −10.2426 + 17.7408i −0.385214 + 0.667210i
\(708\) 46.5416 + 80.6125i 1.74914 + 3.02960i
\(709\) −4.29888 3.12332i −0.161448 0.117299i 0.504128 0.863629i \(-0.331814\pi\)
−0.665576 + 0.746330i \(0.731814\pi\)
\(710\) −33.2282 7.06288i −1.24703 0.265065i
\(711\) 13.3226 41.0026i 0.499635 1.53772i
\(712\) −55.1127 −2.06544
\(713\) 0 0
\(714\) −2.41421 −0.0903497
\(715\) −2.96217 + 9.11662i −0.110779 + 0.340942i
\(716\) −25.3047 5.37869i −0.945682 0.201011i
\(717\) −24.9169 18.1032i −0.930539 0.676076i
\(718\) 32.4706 + 56.2407i 1.21179 + 2.09888i
\(719\) 3.03553 5.25770i 0.113206 0.196079i −0.803855 0.594825i \(-0.797221\pi\)
0.917061 + 0.398746i \(0.130555\pi\)
\(720\) 7.75169 3.45127i 0.288888 0.128621i
\(721\) 23.5765 17.1293i 0.878034 0.637929i
\(722\) 36.3582 + 16.1877i 1.35311 + 0.602444i
\(723\) 58.2261 12.3763i 2.16545 0.460281i
\(724\) −4.12734 + 39.2690i −0.153391 + 1.45942i
\(725\) −3.13574 3.48259i −0.116458 0.129340i
\(726\) −64.2923 + 71.4038i −2.38611 + 2.65004i
\(727\) 4.89618 + 46.5840i 0.181589 + 1.72771i 0.583574 + 0.812060i \(0.301654\pi\)
−0.401985 + 0.915646i \(0.631680\pi\)
\(728\) 6.02128 + 18.5316i 0.223164 + 0.686827i
\(729\) −7.36339 22.6622i −0.272718 0.839340i
\(730\) −0.966119 9.19201i −0.0357577 0.340211i
\(731\) −1.02170 + 1.13472i −0.0377891 + 0.0419690i
\(732\) −17.4925 19.4274i −0.646542 0.718057i
\(733\) 3.09691 29.4651i 0.114387 1.08832i −0.775251 0.631653i \(-0.782377\pi\)
0.889638 0.456666i \(-0.150957\pi\)
\(734\) −43.0097 + 9.14199i −1.58752 + 0.337437i
\(735\) −2.58390 1.15042i −0.0953085 0.0424341i
\(736\) −5.13171 + 3.72841i −0.189157 + 0.137431i
\(737\) −25.1091 + 11.1793i −0.924904 + 0.411794i
\(738\) 32.3848 56.0921i 1.19210 2.06478i
\(739\) −3.93503 6.81567i −0.144752 0.250718i 0.784528 0.620093i \(-0.212905\pi\)
−0.929281 + 0.369375i \(0.879572\pi\)
\(740\) 3.09726 + 2.25029i 0.113858 + 0.0827224i
\(741\) 6.84703 + 1.45538i 0.251532 + 0.0534648i
\(742\) 0.309017 0.951057i 0.0113444 0.0349144i
\(743\) 5.65685 0.207530 0.103765 0.994602i \(-0.466911\pi\)
0.103765 + 0.994602i \(0.466911\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) −7.46033 + 22.9605i −0.273142 + 0.840645i
\(747\) 11.2631 + 2.39404i 0.412095 + 0.0875935i
\(748\) −2.78597 2.02413i −0.101865 0.0740094i
\(749\) −11.5711 20.0417i −0.422798 0.732307i
\(750\) −26.2279 + 45.4281i −0.957708 + 1.65880i
\(751\) −1.13521 + 0.505428i −0.0414244 + 0.0184433i −0.427344 0.904089i \(-0.640551\pi\)
0.385920 + 0.922532i \(0.373884\pi\)
\(752\) 4.02127 2.92162i 0.146641 0.106541i
\(753\) −7.90843 3.52106i −0.288199 0.128315i
\(754\) −5.05856 + 1.07523i −0.184222 + 0.0391576i
\(755\) −1.80978 + 17.2189i −0.0658645 + 0.626659i
\(756\) −2.56172 2.84508i −0.0931688 0.103474i
\(757\) −23.1900 + 25.7551i −0.842854 + 0.936084i −0.998662 0.0517036i \(-0.983535\pi\)
0.155809 + 0.987787i \(0.450202\pi\)
\(758\) −7.41537 70.5525i −0.269338 2.56258i
\(759\) 15.6447 + 48.1495i 0.567868 + 1.74772i
\(760\) −2.16312 6.65740i −0.0784646 0.241489i
\(761\) −2.13822 20.3438i −0.0775103 0.737462i −0.962395 0.271652i \(-0.912430\pi\)
0.884885 0.465809i \(-0.154237\pi\)
\(762\) −42.5078 + 47.2097i −1.53990 + 1.71023i
\(763\) −8.35428 9.27837i −0.302445 0.335900i
\(764\) 0.440400 4.19012i 0.0159331 0.151593i
\(765\) −0.474677 + 0.100896i −0.0171620 + 0.00364789i
\(766\) 54.9157 + 24.4500i 1.98418 + 0.883416i
\(767\) −14.8974 + 10.8236i −0.537914 + 0.390818i
\(768\) −66.0999 + 29.4296i −2.38517 + 1.06195i
\(769\) 13.0563 22.6143i 0.470824 0.815491i −0.528619 0.848859i \(-0.677290\pi\)
0.999443 + 0.0333680i \(0.0106233\pi\)
\(770\) 15.2782 + 26.4626i 0.550587 + 0.953645i
\(771\) 0.612717 + 0.445165i 0.0220664 + 0.0160322i
\(772\) 79.1724 + 16.8286i 2.84948 + 0.605675i
\(773\) −5.56231 + 17.1190i −0.200062 + 0.615728i 0.799818 + 0.600243i \(0.204929\pi\)
−0.999880 + 0.0154855i \(0.995071\pi\)
\(774\) 60.7696 2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) −1.80108 + 5.54316i −0.0646135 + 0.198860i
\(778\) −40.4804 8.60438i −1.45129 0.308482i
\(779\) −12.1689 8.84125i −0.435997 0.316771i
\(780\) 8.44975 + 14.6354i 0.302549 + 0.524031i
\(781\) 36.8848 63.8863i 1.31984 2.28603i
\(782\) −1.51361 + 0.673903i −0.0541266 + 0.0240987i
\(783\) 0.392601 0.285241i 0.0140304 0.0101937i
\(784\) −3.21086 1.42956i −0.114673 0.0510559i
\(785\) −14.5044 + 3.08300i −0.517684 + 0.110037i
\(786\) −2.89836 + 27.5760i −0.103381 + 0.983604i
\(787\) −26.4881 29.4180i −0.944197 1.04864i −0.998743 0.0501262i \(-0.984038\pi\)
0.0545455 0.998511i \(-0.482629\pi\)
\(788\) −8.92831 + 9.91589i −0.318058 + 0.353239i
\(789\) −0.173188 1.64778i −0.00616567 0.0586624i
\(790\) −11.3715 34.9979i −0.404580 1.24517i
\(791\) 3.98616 + 12.2681i 0.141732 + 0.436205i
\(792\) 6.84200 + 65.0973i 0.243120 + 2.31313i
\(793\) 3.46046 3.84323i 0.122884 0.136477i
\(794\) 26.6783 + 29.6292i 0.946777 + 1.05150i
\(795\) 0.0432971 0.411944i 0.00153559 0.0146102i
\(796\) 58.3651 12.4059i 2.06870 0.439715i
\(797\) 20.5144 + 9.13361i 0.726659 + 0.323529i 0.736514 0.676422i \(-0.236471\pi\)
−0.00985554 + 0.999951i \(0.503137\pi\)
\(798\) 18.0522 13.1157i 0.639040 0.464290i
\(799\) −0.259695 + 0.115624i −0.00918734 + 0.00409047i
\(800\) 3.17157 5.49333i 0.112132 0.194218i
\(801\) −17.6569 30.5826i −0.623874 1.08058i
\(802\) 41.3510 + 30.0433i 1.46016 + 1.06087i
\(803\) 19.6325 + 4.17301i 0.692815 + 0.147262i
\(804\) −14.9737 + 46.0842i −0.528081 + 1.62527i
\(805\) 9.65685 0.340359
\(806\) 0 0
\(807\) 76.8406 2.70492
\(808\) −11.5745 + 35.6226i −0.407189 + 1.25320i
\(809\) −44.9660 9.55782i −1.58092 0.336035i −0.667996 0.744165i \(-0.732848\pi\)
−0.912924 + 0.408130i \(0.866181\pi\)
\(810\) −18.5261 13.4600i −0.650940 0.472936i
\(811\) −5.86396 10.1567i −0.205912 0.356649i 0.744511 0.667610i \(-0.232683\pi\)
−0.950423 + 0.310961i \(0.899349\pi\)
\(812\) −5.41421 + 9.37769i −0.190002 + 0.329093i
\(813\) 51.4182 22.8929i 1.80332 0.802888i
\(814\) −10.2396 + 7.43951i −0.358898 + 0.260755i
\(815\) −11.8492 5.27560i −0.415059 0.184796i
\(816\) −1.21549 + 0.258360i −0.0425505 + 0.00904439i
\(817\) 1.47518 14.0354i 0.0516100 0.491036i
\(818\) 15.0931 + 16.7626i 0.527719 + 0.586092i
\(819\) −8.35428 + 9.27837i −0.291922 + 0.324213i
\(820\) −3.79582 36.1148i −0.132556 1.26118i
\(821\) 2.62210 + 8.06998i 0.0915118 + 0.281644i 0.986329 0.164789i \(-0.0526942\pi\)
−0.894817 + 0.446433i \(0.852694\pi\)
\(822\) −13.4816 41.4921i −0.470225 1.44720i
\(823\) −0.649457 6.17917i −0.0226386 0.215392i −0.999993 0.00378233i \(-0.998796\pi\)
0.977354 0.211610i \(-0.0678706\pi\)
\(824\) 35.6541 39.5979i 1.24207 1.37946i
\(825\) −33.8764 37.6235i −1.17942 1.30988i
\(826\) −6.13566 + 58.3769i −0.213487 + 2.03119i
\(827\) 16.7268 3.55539i 0.581648 0.123633i 0.0923148 0.995730i \(-0.470573\pi\)
0.489334 + 0.872097i \(0.337240\pi\)
\(828\) 39.5690 + 17.6173i 1.37512 + 0.612243i
\(829\) −37.5598 + 27.2888i −1.30450 + 0.947778i −0.999989 0.00472973i \(-0.998494\pi\)
−0.304515 + 0.952507i \(0.598494\pi\)
\(830\) 8.97871 3.99758i 0.311656 0.138758i
\(831\) −17.0711 + 29.5680i −0.592189 + 1.02570i
\(832\) −8.98528 15.5630i −0.311509 0.539549i
\(833\) 0.162621 + 0.118151i 0.00563447 + 0.00409368i
\(834\) 0 0
\(835\) 2.64406 8.13757i 0.0915014 0.281612i
\(836\) 31.8284 1.10081
\(837\) 0 0
\(838\) −67.5980 −2.33513
\(839\) 9.46439 29.1284i 0.326747 1.00562i −0.643899 0.765111i \(-0.722684\pi\)
0.970646 0.240513i \(-0.0773158\pi\)
\(840\) 25.1657 + 5.34914i 0.868299 + 0.184563i
\(841\) 22.3510 + 16.2390i 0.770726 + 0.559965i
\(842\) −3.44975 5.97514i −0.118886 0.205917i
\(843\) −2.41421 + 4.18154i −0.0831499 + 0.144020i
\(844\) 26.5308 11.8123i 0.913230 0.406596i
\(845\) 7.81256 5.67616i 0.268760 0.195266i
\(846\) 10.3356 + 4.60170i 0.355345 + 0.158210i
\(847\) −38.9293 + 8.27468i −1.33763 + 0.284321i
\(848\) 0.0538027 0.511899i 0.00184759 0.0175787i
\(849\) −3.78517 4.20386i −0.129907 0.144276i
\(850\) 1.10865 1.23128i 0.0380264 0.0422326i
\(851\) 0.418114 + 3.97809i 0.0143328 + 0.136367i
\(852\) −40.1888 123.689i −1.37685 4.23750i
\(853\) −10.0385 30.8953i −0.343712 1.05784i −0.962270 0.272097i \(-0.912283\pi\)
0.618558 0.785739i \(-0.287717\pi\)
\(854\) −1.72318 16.3950i −0.0589660 0.561024i
\(855\) 3.00124 3.33321i 0.102640 0.113994i
\(856\) −28.3134 31.4452i −0.967732 1.07478i
\(857\) 0.262860 2.50094i 0.00897912 0.0854306i −0.989115 0.147147i \(-0.952991\pi\)
0.998094 + 0.0617167i \(0.0196575\pi\)
\(858\) −54.6492 + 11.6160i −1.86569 + 0.396565i
\(859\) 11.5246 + 5.13107i 0.393214 + 0.175070i 0.593812 0.804603i \(-0.297622\pi\)
−0.200599 + 0.979673i \(0.564289\pi\)
\(860\) 27.5641 20.0265i 0.939927 0.682897i
\(861\) 50.5047 22.4861i 1.72120 0.766326i
\(862\) −30.4706 + 52.7766i −1.03783 + 1.79758i
\(863\) −19.6924 34.1082i −0.670337 1.16106i −0.977809 0.209500i \(-0.932816\pi\)
0.307472 0.951557i \(-0.400517\pi\)
\(864\) 0.531406 + 0.386089i 0.0180788 + 0.0131350i
\(865\) 14.0009 + 2.97599i 0.476046 + 0.101187i
\(866\) −26.1952 + 80.6206i −0.890150 + 2.73960i
\(867\) −40.9706 −1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) −2.11010 + 6.49422i −0.0715391 + 0.220175i
\(871\) −9.37631 1.99300i −0.317704 0.0675301i
\(872\) −18.4686 13.4182i −0.625425 0.454398i
\(873\) −15.3137 26.5241i −0.518291 0.897705i
\(874\) 7.65685 13.2621i 0.258997 0.448596i
\(875\) −19.8494 + 8.83754i −0.671034 + 0.298763i
\(876\) 28.6269 20.7986i 0.967213 0.702721i
\(877\) 44.0069 + 19.5931i 1.48601 + 0.661613i 0.979651 0.200710i \(-0.0643250\pi\)
0.506357 + 0.862324i \(0.330992\pi\)
\(878\) −28.5053 + 6.05899i −0.962008 + 0.204481i
\(879\) 6.25813 59.5421i 0.211081 2.00830i
\(880\) 10.5240 + 11.6881i 0.354765 + 0.394007i
\(881\) −22.9604 + 25.5001i −0.773554 + 0.859119i −0.993195 0.116462i \(-0.962845\pi\)
0.219641 + 0.975581i \(0.429511\pi\)
\(882\) −0.836228 7.95618i −0.0281573 0.267898i
\(883\) −8.12229 24.9978i −0.273337 0.841244i −0.989655 0.143470i \(-0.954174\pi\)
0.716318 0.697774i \(-0.245826\pi\)
\(884\) −0.371133 1.14223i −0.0124825 0.0384173i
\(885\) 2.54147 + 24.1805i 0.0854307 + 0.812819i
\(886\) 21.3925 23.7588i 0.718694 0.798191i
\(887\) 35.6820 + 39.6289i 1.19808 + 1.33061i 0.930154 + 0.367169i \(0.119673\pi\)
0.267930 + 0.963438i \(0.413661\pi\)
\(888\) −1.11394 + 10.5985i −0.0373815 + 0.355662i
\(889\) −25.7387 + 5.47093i −0.863248 + 0.183489i
\(890\) −27.5362 12.2599i −0.923016 0.410953i
\(891\) 40.2307 29.2293i 1.34778 0.979220i
\(892\) −6.04331 + 2.69065i −0.202345 + 0.0900898i
\(893\) 1.31371 2.27541i 0.0439616 0.0761437i
\(894\) 2.91421 + 5.04757i 0.0974659 + 0.168816i
\(895\) −5.46682 3.97188i −0.182736 0.132765i
\(896\) −48.5429 10.3181i −1.62171 0.344704i
\(897\) −5.45627 + 16.7927i −0.182179 + 0.560691i
\(898\) 11.1716 0.372800
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) −0.00909661 + 0.0279965i −0.000303052 + 0.000932698i
\(902\) 117.430 + 24.9606i 3.91000 + 0.831097i
\(903\) 41.9638 + 30.4885i 1.39647 + 1.01459i
\(904\) 11.7929 + 20.4259i 0.392226 + 0.679355i
\(905\) −5.15685 + 8.93193i −0.171420 + 0.296908i
\(906\) −92.1874 + 41.0445i −3.06272 + 1.36361i
\(907\) −44.7497 + 32.5126i −1.48589 + 1.07956i −0.510292 + 0.860001i \(0.670463\pi\)
−0.975599 + 0.219561i \(0.929537\pi\)
\(908\) −54.5104 24.2696i −1.80899 0.805415i
\(909\) −23.4755 + 4.98988i −0.778635 + 0.165504i
\(910\) −1.11394 + 10.5985i −0.0369269 + 0.351336i
\(911\) −32.8153 36.4450i −1.08722 1.20748i −0.976926 0.213579i \(-0.931488\pi\)
−0.110292 0.993899i \(-0.535179\pi\)
\(912\) 7.68515 8.53523i 0.254481 0.282630i
\(913\) 2.23097 + 21.2262i 0.0738342 + 0.702486i
\(914\) 23.2111 + 71.4364i 0.767755 + 2.36291i
\(915\) −2.11010 6.49422i −0.0697578 0.214692i
\(916\) 4.59618 + 43.7297i 0.151862 + 1.44487i
\(917\) −7.68515 + 8.53523i −0.253786 + 0.281858i
\(918\) 0.114805 + 0.127503i 0.00378912 + 0.00420824i
\(919\) 1.57843 15.0178i 0.0520677 0.495391i −0.937149 0.348930i \(-0.886545\pi\)
0.989216 0.146461i \(-0.0467883\pi\)
\(920\) 17.2710 3.67107i 0.569408 0.121031i
\(921\) −6.08134 2.70759i −0.200387 0.0892180i
\(922\) −51.0592 + 37.0967i −1.68155 + 1.22172i
\(923\) 23.5036 10.4645i 0.773631 0.344443i
\(924\) −58.4914 + 101.310i −1.92423 + 3.33286i
\(925\) −2.00000 3.46410i −0.0657596 0.113899i
\(926\) −48.7710 35.4342i −1.60271 1.16444i
\(927\) 33.3960 + 7.09855i 1.09687 + 0.233147i
\(928\) 0.574112 1.76693i 0.0188461 0.0580025i
\(929\) −24.4853 −0.803336 −0.401668 0.915785i \(-0.631569\pi\)
−0.401668 + 0.915785i \(0.631569\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) −17.5428 + 53.9911i −0.574632 + 1.76854i
\(933\) 26.7168 + 5.67884i 0.874670 + 0.185917i
\(934\) −15.6251 11.3523i −0.511269 0.371459i
\(935\) −0.449747 0.778985i −0.0147083 0.0254755i
\(936\) −11.4142 + 19.7700i −0.373085 + 0.646203i
\(937\) 35.0013 15.5836i 1.14344 0.509094i 0.254483 0.967077i \(-0.418095\pi\)
0.888961 + 0.457984i \(0.151428\pi\)
\(938\) −24.7206 + 17.9606i −0.807156 + 0.586433i
\(939\) −8.44357 3.75932i −0.275546 0.122681i
\(940\) 6.20453 1.31881i 0.202370 0.0430150i
\(941\) −3.65850 + 34.8083i −0.119264 + 1.13472i 0.757178 + 0.653209i \(0.226578\pi\)
−0.876441 + 0.481508i \(0.840089\pi\)
\(942\) −57.8306 64.2273i −1.88422 2.09264i
\(943\) 25.3876 28.1958i 0.826733 0.918180i
\(944\) 3.15814 + 30.0477i 0.102789 + 0.977969i
\(945\) −0.309017 0.951057i −0.0100523 0.0309379i
\(946\) 34.8076 + 107.127i 1.13169 + 3.48299i
\(947\) 4.06610 + 38.6864i 0.132131 + 1.25714i 0.836763 + 0.547566i \(0.184445\pi\)
−0.704632 + 0.709573i \(0.748888\pi\)
\(948\) 94.2686 104.696i 3.06170 3.40037i
\(949\) 4.68391 + 5.20201i 0.152046 + 0.168865i
\(950\) −1.60072 + 15.2298i −0.0519342 + 0.494121i
\(951\) 5.12808 1.09001i 0.166289 0.0353459i
\(952\) −1.67035 0.743688i −0.0541364 0.0241031i
\(953\) 16.5729 12.0409i 0.536850 0.390045i −0.286064 0.958211i \(-0.592347\pi\)
0.822914 + 0.568166i \(0.192347\pi\)
\(954\) 1.07029 0.476522i 0.0346518 0.0154280i
\(955\) 0.550253 0.953065i 0.0178058 0.0308405i
\(956\) −24.4203 42.2972i −0.789809 1.36799i
\(957\) −11.9964 8.71593i −0.387790 0.281746i
\(958\) 22.9721 + 4.88286i 0.742194 + 0.157758i
\(959\) 5.58427 17.1866i 0.180325 0.554984i
\(960\) −23.7279 −0.765815
\(961\) 0 0
\(962\) −4.41421 −0.142320
\(963\) 8.37828 25.7857i 0.269986 0.830933i
\(964\) 92.3342 + 19.6262i 2.97388 + 0.632118i
\(965\) 17.1043 + 12.4270i 0.550608 + 0.400040i
\(966\) 28.1421 + 48.7436i 0.905458 + 1.56830i
\(967\) −23.2782 + 40.3190i −0.748576 + 1.29657i 0.199930 + 0.979810i \(0.435929\pi\)
−0.948505 + 0.316761i \(0.897405\pi\)
\(968\) −66.4783 + 29.5980i −2.13669 + 0.951317i
\(969\) −0.531406 + 0.386089i −0.0170712 + 0.0124030i
\(970\) −23.8820 10.6330i −0.766806 0.341404i
\(971\) −57.4158 + 12.2041i −1.84256 + 0.391648i −0.991138 0.132833i \(-0.957592\pi\)
−0.851422 + 0.524482i \(0.824259\pi\)
\(972\) 8.66663 82.4575i 0.277982 2.64483i
\(973\) 0 0
\(974\) −28.0838 + 31.1902i −0.899863 + 0.999399i
\(975\) −1.84564 17.5601i −0.0591079 0.562374i
\(976\) −2.62210 8.06998i −0.0839313 0.258314i
\(977\) 5.09423 + 15.6784i 0.162979 + 0.501598i 0.998882 0.0472800i \(-0.0150553\pi\)
−0.835903 + 0.548878i \(0.815055\pi\)
\(978\) −7.90214 75.1838i −0.252683 2.40411i
\(979\) 43.7985 48.6432i 1.39981 1.55464i
\(980\) −3.00124 3.33321i −0.0958711 0.106476i
\(981\) 1.52898 14.5473i 0.0488166 0.464459i
\(982\) −10.4240 + 2.21568i −0.332642 + 0.0707053i
\(983\) −44.6181 19.8653i −1.42310 0.633604i −0.456458 0.889745i \(-0.650882\pi\)
−0.966639 + 0.256141i \(0.917549\pi\)
\(984\) 81.7781 59.4153i 2.60699 1.89409i
\(985\) −3.18396 + 1.41759i −0.101449 + 0.0451682i
\(986\) 0.242641 0.420266i 0.00772725 0.0133840i
\(987\) 4.82843 + 8.36308i 0.153691 + 0.266200i
\(988\) 8.98050 + 6.52471i 0.285708 + 0.207579i
\(989\) 34.8201 + 7.40124i 1.10721 + 0.235346i
\(990\) −11.0625 + 34.0469i −0.351589 + 1.08208i
\(991\) 19.9411 0.633451 0.316725 0.948517i \(-0.397417\pi\)
0.316725 + 0.948517i \(0.397417\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 25.3432 77.9982i 0.803836 2.47395i
\(995\) 15.2452 + 3.24047i 0.483305 + 0.102730i
\(996\) 30.4412 + 22.1168i 0.964567 + 0.700799i
\(997\) 23.2990 + 40.3550i 0.737886 + 1.27806i 0.953445 + 0.301566i \(0.0975093\pi\)
−0.215559 + 0.976491i \(0.569157\pi\)
\(998\) −48.5416 + 84.0766i −1.53656 + 2.66140i
\(999\) 0.378403 0.168476i 0.0119721 0.00533034i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.r.846.1 16
31.2 even 5 961.2.c.a.439.1 4
31.3 odd 30 961.2.g.o.732.2 16
31.4 even 5 inner 961.2.g.r.547.1 16
31.5 even 3 961.2.d.i.628.1 8
31.6 odd 6 961.2.g.o.448.1 16
31.7 even 15 inner 961.2.g.r.844.1 16
31.8 even 5 inner 961.2.g.r.235.2 16
31.9 even 15 961.2.d.i.388.2 8
31.10 even 15 961.2.a.c.1.1 2
31.11 odd 30 961.2.d.l.531.1 8
31.12 odd 30 31.2.c.a.25.1 yes 4
31.13 odd 30 961.2.d.l.374.2 8
31.14 even 15 inner 961.2.g.r.338.2 16
31.15 odd 10 961.2.g.o.816.2 16
31.16 even 5 inner 961.2.g.r.816.2 16
31.17 odd 30 961.2.g.o.338.2 16
31.18 even 15 961.2.d.i.374.2 8
31.19 even 15 961.2.c.a.521.1 4
31.20 even 15 961.2.d.i.531.1 8
31.21 odd 30 961.2.a.a.1.1 2
31.22 odd 30 961.2.d.l.388.2 8
31.23 odd 10 961.2.g.o.235.2 16
31.24 odd 30 961.2.g.o.844.1 16
31.25 even 3 inner 961.2.g.r.448.1 16
31.26 odd 6 961.2.d.l.628.1 8
31.27 odd 10 961.2.g.o.547.1 16
31.28 even 15 inner 961.2.g.r.732.2 16
31.29 odd 10 31.2.c.a.5.1 4
31.30 odd 2 961.2.g.o.846.1 16
93.29 even 10 279.2.h.c.253.2 4
93.41 odd 30 8649.2.a.k.1.2 2
93.74 even 30 279.2.h.c.118.2 4
93.83 even 30 8649.2.a.l.1.2 2
124.43 even 30 496.2.i.h.273.1 4
124.91 even 10 496.2.i.h.129.1 4
155.12 even 60 775.2.o.d.149.1 8
155.29 odd 10 775.2.e.e.501.2 4
155.43 even 60 775.2.o.d.149.4 8
155.74 odd 30 775.2.e.e.676.2 4
155.122 even 20 775.2.o.d.749.1 8
155.153 even 20 775.2.o.d.749.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 31.29 odd 10
31.2.c.a.25.1 yes 4 31.12 odd 30
279.2.h.c.118.2 4 93.74 even 30
279.2.h.c.253.2 4 93.29 even 10
496.2.i.h.129.1 4 124.91 even 10
496.2.i.h.273.1 4 124.43 even 30
775.2.e.e.501.2 4 155.29 odd 10
775.2.e.e.676.2 4 155.74 odd 30
775.2.o.d.149.1 8 155.12 even 60
775.2.o.d.149.4 8 155.43 even 60
775.2.o.d.749.1 8 155.122 even 20
775.2.o.d.749.4 8 155.153 even 20
961.2.a.a.1.1 2 31.21 odd 30
961.2.a.c.1.1 2 31.10 even 15
961.2.c.a.439.1 4 31.2 even 5
961.2.c.a.521.1 4 31.19 even 15
961.2.d.i.374.2 8 31.18 even 15
961.2.d.i.388.2 8 31.9 even 15
961.2.d.i.531.1 8 31.20 even 15
961.2.d.i.628.1 8 31.5 even 3
961.2.d.l.374.2 8 31.13 odd 30
961.2.d.l.388.2 8 31.22 odd 30
961.2.d.l.531.1 8 31.11 odd 30
961.2.d.l.628.1 8 31.26 odd 6
961.2.g.o.235.2 16 31.23 odd 10
961.2.g.o.338.2 16 31.17 odd 30
961.2.g.o.448.1 16 31.6 odd 6
961.2.g.o.547.1 16 31.27 odd 10
961.2.g.o.732.2 16 31.3 odd 30
961.2.g.o.816.2 16 31.15 odd 10
961.2.g.o.844.1 16 31.24 odd 30
961.2.g.o.846.1 16 31.30 odd 2
961.2.g.r.235.2 16 31.8 even 5 inner
961.2.g.r.338.2 16 31.14 even 15 inner
961.2.g.r.448.1 16 31.25 even 3 inner
961.2.g.r.547.1 16 31.4 even 5 inner
961.2.g.r.732.2 16 31.28 even 15 inner
961.2.g.r.816.2 16 31.16 even 5 inner
961.2.g.r.844.1 16 31.7 even 15 inner
961.2.g.r.846.1 16 1.1 even 1 trivial
8649.2.a.k.1.2 2 93.41 odd 30
8649.2.a.l.1.2 2 93.83 even 30