Properties

Label 775.2.o.d.749.1
Level $775$
Weight $2$
Character 775.749
Analytic conductor $6.188$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(149,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 749.1
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 775.749
Dual form 775.2.o.d.149.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421i q^{2} +(-2.09077 - 1.20711i) q^{3} -3.82843 q^{4} +(-2.91421 + 5.04757i) q^{6} +(-2.09077 - 1.20711i) q^{7} +4.41421i q^{8} +(1.41421 + 2.44949i) q^{9} +(2.62132 + 4.54026i) q^{11} +(8.00436 + 4.62132i) q^{12} +(-1.58346 + 0.914214i) q^{13} +(-2.91421 + 5.04757i) q^{14} +3.00000 q^{16} +(0.148586 + 0.0857864i) q^{17} +(5.91359 - 3.41421i) q^{18} +(0.792893 - 1.37333i) q^{19} +(2.91421 + 5.04757i) q^{21} +(10.9612 - 6.32843i) q^{22} +4.00000i q^{23} +(5.32843 - 9.22911i) q^{24} +(2.20711 + 3.82282i) q^{26} +0.414214i q^{27} +(8.00436 + 4.62132i) q^{28} +1.17157 q^{29} +(-5.00000 - 2.44949i) q^{31} +1.58579i q^{32} -12.6569i q^{33} +(0.207107 - 0.358719i) q^{34} +(-5.41421 - 9.37769i) q^{36} +(-0.866025 - 0.500000i) q^{37} +(-3.31552 - 1.91421i) q^{38} +4.41421 q^{39} +(-4.74264 - 8.21449i) q^{41} +(12.1859 - 7.03553i) q^{42} +(7.70719 + 4.44975i) q^{43} +(-10.0355 - 17.3821i) q^{44} +9.65685 q^{46} -1.65685i q^{47} +(-6.27231 - 3.62132i) q^{48} +(-0.585786 - 1.01461i) q^{49} +(-0.207107 - 0.358719i) q^{51} +(6.06218 - 3.50000i) q^{52} +(-0.148586 + 0.0857864i) q^{53} +1.00000 q^{54} +(5.32843 - 9.22911i) q^{56} +(-3.31552 + 1.91421i) q^{57} -2.82843i q^{58} +(-5.03553 + 8.72180i) q^{59} +2.82843 q^{61} +(-5.91359 + 12.0711i) q^{62} -6.82843i q^{63} +9.82843 q^{64} -30.5563 q^{66} +(-4.54026 + 2.62132i) q^{67} +(-0.568852 - 0.328427i) q^{68} +(4.82843 - 8.36308i) q^{69} +(7.03553 + 12.1859i) q^{71} +(-10.8126 + 6.24264i) q^{72} +(-3.31552 + 1.91421i) q^{73} +(-1.20711 + 2.09077i) q^{74} +(-3.03553 + 5.25770i) q^{76} -12.6569i q^{77} -10.6569i q^{78} +(-7.62132 + 13.2005i) q^{79} +(4.74264 - 8.21449i) q^{81} +(-19.8315 + 11.4497i) q^{82} +(-3.52565 + 2.03553i) q^{83} +(-11.1569 - 19.3242i) q^{84} +(10.7426 - 18.6068i) q^{86} +(-2.44949 - 1.41421i) q^{87} +(-20.0417 + 11.5711i) q^{88} +12.4853 q^{89} +4.41421 q^{91} -15.3137i q^{92} +(7.49706 + 11.1569i) q^{93} -4.00000 q^{94} +(1.91421 - 3.31552i) q^{96} +10.8284i q^{97} +(-2.44949 + 1.41421i) q^{98} +(-7.41421 + 12.8418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 12 q^{6} + 4 q^{11} - 12 q^{14} + 24 q^{16} + 12 q^{19} + 12 q^{21} + 20 q^{24} + 12 q^{26} + 32 q^{29} - 40 q^{31} - 4 q^{34} - 32 q^{36} + 24 q^{39} - 4 q^{41} - 52 q^{44} + 32 q^{46}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421i 1.70711i −0.521005 0.853553i \(-0.674443\pi\)
0.521005 0.853553i \(-0.325557\pi\)
\(3\) −2.09077 1.20711i −1.20711 0.696923i −0.244981 0.969528i \(-0.578782\pi\)
−0.962126 + 0.272605i \(0.912115\pi\)
\(4\) −3.82843 −1.91421
\(5\) 0 0
\(6\) −2.91421 + 5.04757i −1.18972 + 2.06066i
\(7\) −2.09077 1.20711i −0.790237 0.456243i 0.0498090 0.998759i \(-0.484139\pi\)
−0.840046 + 0.542515i \(0.817472\pi\)
\(8\) 4.41421i 1.56066i
\(9\) 1.41421 + 2.44949i 0.471405 + 0.816497i
\(10\) 0 0
\(11\) 2.62132 + 4.54026i 0.790358 + 1.36894i 0.925745 + 0.378147i \(0.123439\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(12\) 8.00436 + 4.62132i 2.31066 + 1.33406i
\(13\) −1.58346 + 0.914214i −0.439174 + 0.253557i −0.703247 0.710945i \(-0.748267\pi\)
0.264073 + 0.964503i \(0.414934\pi\)
\(14\) −2.91421 + 5.04757i −0.778856 + 1.34902i
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 0.148586 + 0.0857864i 0.0360375 + 0.0208063i 0.517911 0.855435i \(-0.326710\pi\)
−0.481873 + 0.876241i \(0.660043\pi\)
\(18\) 5.91359 3.41421i 1.39385 0.804738i
\(19\) 0.792893 1.37333i 0.181902 0.315064i −0.760626 0.649190i \(-0.775108\pi\)
0.942528 + 0.334126i \(0.108441\pi\)
\(20\) 0 0
\(21\) 2.91421 + 5.04757i 0.635934 + 1.10147i
\(22\) 10.9612 6.32843i 2.33693 1.34923i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 5.32843 9.22911i 1.08766 1.88388i
\(25\) 0 0
\(26\) 2.20711 + 3.82282i 0.432849 + 0.749717i
\(27\) 0.414214i 0.0797154i
\(28\) 8.00436 + 4.62132i 1.51268 + 0.873347i
\(29\) 1.17157 0.217556 0.108778 0.994066i \(-0.465306\pi\)
0.108778 + 0.994066i \(0.465306\pi\)
\(30\) 0 0
\(31\) −5.00000 2.44949i −0.898027 0.439941i
\(32\) 1.58579i 0.280330i
\(33\) 12.6569i 2.20328i
\(34\) 0.207107 0.358719i 0.0355185 0.0615199i
\(35\) 0 0
\(36\) −5.41421 9.37769i −0.902369 1.56295i
\(37\) −0.866025 0.500000i −0.142374 0.0821995i 0.427121 0.904194i \(-0.359528\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) −3.31552 1.91421i −0.537848 0.310526i
\(39\) 4.41421 0.706840
\(40\) 0 0
\(41\) −4.74264 8.21449i −0.740676 1.28289i −0.952188 0.305513i \(-0.901172\pi\)
0.211512 0.977375i \(-0.432161\pi\)
\(42\) 12.1859 7.03553i 1.88033 1.08561i
\(43\) 7.70719 + 4.44975i 1.17534 + 0.678580i 0.954931 0.296828i \(-0.0959290\pi\)
0.220404 + 0.975409i \(0.429262\pi\)
\(44\) −10.0355 17.3821i −1.51291 2.62044i
\(45\) 0 0
\(46\) 9.65685 1.42383
\(47\) 1.65685i 0.241677i −0.992672 0.120839i \(-0.961442\pi\)
0.992672 0.120839i \(-0.0385583\pi\)
\(48\) −6.27231 3.62132i −0.905330 0.522693i
\(49\) −0.585786 1.01461i −0.0836838 0.144945i
\(50\) 0 0
\(51\) −0.207107 0.358719i −0.0290008 0.0502308i
\(52\) 6.06218 3.50000i 0.840673 0.485363i
\(53\) −0.148586 + 0.0857864i −0.0204099 + 0.0117837i −0.510170 0.860073i \(-0.670418\pi\)
0.489760 + 0.871857i \(0.337084\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 5.32843 9.22911i 0.712041 1.23329i
\(57\) −3.31552 + 1.91421i −0.439151 + 0.253544i
\(58\) 2.82843i 0.371391i
\(59\) −5.03553 + 8.72180i −0.655571 + 1.13548i 0.326180 + 0.945308i \(0.394239\pi\)
−0.981750 + 0.190174i \(0.939095\pi\)
\(60\) 0 0
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) −5.91359 + 12.0711i −0.751027 + 1.53303i
\(63\) 6.82843i 0.860301i
\(64\) 9.82843 1.22855
\(65\) 0 0
\(66\) −30.5563 −3.76123
\(67\) −4.54026 + 2.62132i −0.554681 + 0.320245i −0.751008 0.660293i \(-0.770432\pi\)
0.196327 + 0.980539i \(0.437099\pi\)
\(68\) −0.568852 0.328427i −0.0689835 0.0398276i
\(69\) 4.82843 8.36308i 0.581274 1.00680i
\(70\) 0 0
\(71\) 7.03553 + 12.1859i 0.834964 + 1.44620i 0.894060 + 0.447948i \(0.147845\pi\)
−0.0590953 + 0.998252i \(0.518822\pi\)
\(72\) −10.8126 + 6.24264i −1.27427 + 0.735702i
\(73\) −3.31552 + 1.91421i −0.388052 + 0.224042i −0.681316 0.731990i \(-0.738592\pi\)
0.293264 + 0.956032i \(0.405259\pi\)
\(74\) −1.20711 + 2.09077i −0.140323 + 0.243047i
\(75\) 0 0
\(76\) −3.03553 + 5.25770i −0.348200 + 0.603099i
\(77\) 12.6569i 1.44238i
\(78\) 10.6569i 1.20665i
\(79\) −7.62132 + 13.2005i −0.857466 + 1.48517i 0.0168732 + 0.999858i \(0.494629\pi\)
−0.874339 + 0.485316i \(0.838704\pi\)
\(80\) 0 0
\(81\) 4.74264 8.21449i 0.526960 0.912722i
\(82\) −19.8315 + 11.4497i −2.19003 + 1.26441i
\(83\) −3.52565 + 2.03553i −0.386990 + 0.223429i −0.680855 0.732418i \(-0.738392\pi\)
0.293865 + 0.955847i \(0.405058\pi\)
\(84\) −11.1569 19.3242i −1.21731 2.10845i
\(85\) 0 0
\(86\) 10.7426 18.6068i 1.15841 2.00642i
\(87\) −2.44949 1.41421i −0.262613 0.151620i
\(88\) −20.0417 + 11.5711i −2.13645 + 1.23348i
\(89\) 12.4853 1.32344 0.661719 0.749752i \(-0.269827\pi\)
0.661719 + 0.749752i \(0.269827\pi\)
\(90\) 0 0
\(91\) 4.41421 0.462735
\(92\) 15.3137i 1.59656i
\(93\) 7.49706 + 11.1569i 0.777408 + 1.15691i
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) 1.91421 3.31552i 0.195369 0.338388i
\(97\) 10.8284i 1.09946i 0.835342 + 0.549730i \(0.185269\pi\)
−0.835342 + 0.549730i \(0.814731\pi\)
\(98\) −2.44949 + 1.41421i −0.247436 + 0.142857i
\(99\) −7.41421 + 12.8418i −0.745157 + 1.29065i
\(100\) 0 0
\(101\) 8.48528 0.844317 0.422159 0.906522i \(-0.361273\pi\)
0.422159 + 0.906522i \(0.361273\pi\)
\(102\) −0.866025 + 0.500000i −0.0857493 + 0.0495074i
\(103\) 10.4539 6.03553i 1.03005 0.594699i 0.113050 0.993589i \(-0.463938\pi\)
0.916999 + 0.398890i \(0.130605\pi\)
\(104\) −4.03553 6.98975i −0.395717 0.685401i
\(105\) 0 0
\(106\) 0.207107 + 0.358719i 0.0201160 + 0.0348419i
\(107\) −8.30153 4.79289i −0.802540 0.463346i 0.0418188 0.999125i \(-0.486685\pi\)
−0.844358 + 0.535779i \(0.820018\pi\)
\(108\) 1.58579i 0.152592i
\(109\) 5.17157 0.495347 0.247673 0.968844i \(-0.420334\pi\)
0.247673 + 0.968844i \(0.420334\pi\)
\(110\) 0 0
\(111\) 1.20711 + 2.09077i 0.114574 + 0.198447i
\(112\) −6.27231 3.62132i −0.592678 0.342183i
\(113\) −4.62730 + 2.67157i −0.435300 + 0.251320i −0.701602 0.712569i \(-0.747531\pi\)
0.266302 + 0.963890i \(0.414198\pi\)
\(114\) 4.62132 + 8.00436i 0.432826 + 0.749677i
\(115\) 0 0
\(116\) −4.48528 −0.416448
\(117\) −4.47871 2.58579i −0.414057 0.239056i
\(118\) 21.0563 + 12.1569i 1.93839 + 1.11913i
\(119\) −0.207107 0.358719i −0.0189854 0.0328838i
\(120\) 0 0
\(121\) −8.24264 + 14.2767i −0.749331 + 1.29788i
\(122\) 6.82843i 0.618217i
\(123\) 22.8995i 2.06478i
\(124\) 19.1421 + 9.37769i 1.71901 + 0.842142i
\(125\) 0 0
\(126\) −16.4853 −1.46863
\(127\) 9.43924 + 5.44975i 0.837597 + 0.483587i 0.856447 0.516235i \(-0.172667\pi\)
−0.0188496 + 0.999822i \(0.506000\pi\)
\(128\) 20.5563i 1.81694i
\(129\) −10.7426 18.6068i −0.945837 1.63824i
\(130\) 0 0
\(131\) 2.37868 4.11999i 0.207826 0.359966i −0.743203 0.669066i \(-0.766694\pi\)
0.951030 + 0.309100i \(0.100028\pi\)
\(132\) 48.4558i 4.21754i
\(133\) −3.31552 + 1.91421i −0.287492 + 0.165983i
\(134\) 6.32843 + 10.9612i 0.546693 + 0.946900i
\(135\) 0 0
\(136\) −0.378680 + 0.655892i −0.0324715 + 0.0562423i
\(137\) −6.48244 + 3.74264i −0.553833 + 0.319755i −0.750666 0.660681i \(-0.770267\pi\)
0.196834 + 0.980437i \(0.436934\pi\)
\(138\) −20.1903 11.6569i −1.71871 0.992297i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −2.00000 + 3.46410i −0.168430 + 0.291730i
\(142\) 29.4194 16.9853i 2.46882 1.42537i
\(143\) −8.30153 4.79289i −0.694209 0.400802i
\(144\) 4.24264 + 7.34847i 0.353553 + 0.612372i
\(145\) 0 0
\(146\) 4.62132 + 8.00436i 0.382463 + 0.662446i
\(147\) 2.82843i 0.233285i
\(148\) 3.31552 + 1.91421i 0.272534 + 0.157347i
\(149\) 0.500000 0.866025i 0.0409616 0.0709476i −0.844818 0.535054i \(-0.820291\pi\)
0.885779 + 0.464107i \(0.153625\pi\)
\(150\) 0 0
\(151\) −17.3137 −1.40897 −0.704485 0.709719i \(-0.748822\pi\)
−0.704485 + 0.709719i \(0.748822\pi\)
\(152\) 6.06218 + 3.50000i 0.491708 + 0.283887i
\(153\) 0.485281i 0.0392327i
\(154\) −30.5563 −2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 14.8284i 1.18344i 0.806145 + 0.591719i \(0.201550\pi\)
−0.806145 + 0.591719i \(0.798450\pi\)
\(158\) 31.8689 + 18.3995i 2.53535 + 1.46379i
\(159\) 0.414214 0.0328493
\(160\) 0 0
\(161\) 4.82843 8.36308i 0.380533 0.659103i
\(162\) −19.8315 11.4497i −1.55811 0.899577i
\(163\) 12.9706i 1.01593i 0.861377 + 0.507966i \(0.169603\pi\)
−0.861377 + 0.507966i \(0.830397\pi\)
\(164\) 18.1569 + 31.4486i 1.41781 + 2.45572i
\(165\) 0 0
\(166\) 4.91421 + 8.51167i 0.381417 + 0.660634i
\(167\) 7.41002 + 4.27817i 0.573404 + 0.331055i 0.758508 0.651664i \(-0.225929\pi\)
−0.185104 + 0.982719i \(0.559262\pi\)
\(168\) −22.2810 + 12.8640i −1.71902 + 0.992476i
\(169\) −4.82843 + 8.36308i −0.371417 + 0.643314i
\(170\) 0 0
\(171\) 4.48528 0.342998
\(172\) −29.5064 17.0355i −2.24984 1.29895i
\(173\) 12.3960 7.15685i 0.942453 0.544126i 0.0517246 0.998661i \(-0.483528\pi\)
0.890728 + 0.454536i \(0.150195\pi\)
\(174\) −3.41421 + 5.91359i −0.258831 + 0.448308i
\(175\) 0 0
\(176\) 7.86396 + 13.6208i 0.592768 + 1.02670i
\(177\) 21.0563 12.1569i 1.58269 0.913765i
\(178\) 30.1421i 2.25925i
\(179\) −3.37868 + 5.85204i −0.252534 + 0.437402i −0.964223 0.265093i \(-0.914597\pi\)
0.711689 + 0.702495i \(0.247931\pi\)
\(180\) 0 0
\(181\) 5.15685 + 8.93193i 0.383306 + 0.663905i 0.991533 0.129858i \(-0.0414522\pi\)
−0.608227 + 0.793763i \(0.708119\pi\)
\(182\) 10.6569i 0.789939i
\(183\) −5.91359 3.41421i −0.437145 0.252386i
\(184\) −17.6569 −1.30168
\(185\) 0 0
\(186\) 26.9350 18.0995i 1.97497 1.32712i
\(187\) 0.899495i 0.0657776i
\(188\) 6.34315i 0.462621i
\(189\) 0.500000 0.866025i 0.0363696 0.0629941i
\(190\) 0 0
\(191\) 0.550253 + 0.953065i 0.0398149 + 0.0689614i 0.885246 0.465123i \(-0.153990\pi\)
−0.845431 + 0.534084i \(0.820657\pi\)
\(192\) −20.5490 11.8640i −1.48300 0.856208i
\(193\) −18.3096 10.5711i −1.31796 0.760922i −0.334556 0.942376i \(-0.608586\pi\)
−0.983399 + 0.181454i \(0.941920\pi\)
\(194\) 26.1421 1.87690
\(195\) 0 0
\(196\) 2.24264 + 3.88437i 0.160189 + 0.277455i
\(197\) 3.01834 1.74264i 0.215048 0.124158i −0.388607 0.921404i \(-0.627044\pi\)
0.603655 + 0.797245i \(0.293710\pi\)
\(198\) 31.0028 + 17.8995i 2.20328 + 1.27206i
\(199\) 7.79289 + 13.4977i 0.552424 + 0.956826i 0.998099 + 0.0616310i \(0.0196302\pi\)
−0.445675 + 0.895195i \(0.647036\pi\)
\(200\) 0 0
\(201\) 12.6569 0.892746
\(202\) 20.4853i 1.44134i
\(203\) −2.44949 1.41421i −0.171920 0.0992583i
\(204\) 0.792893 + 1.37333i 0.0555136 + 0.0961524i
\(205\) 0 0
\(206\) −14.5711 25.2378i −1.01521 1.75840i
\(207\) −9.79796 + 5.65685i −0.681005 + 0.393179i
\(208\) −4.75039 + 2.74264i −0.329380 + 0.190168i
\(209\) 8.31371 0.575071
\(210\) 0 0
\(211\) −3.79289 + 6.56948i −0.261114 + 0.452262i −0.966538 0.256523i \(-0.917423\pi\)
0.705425 + 0.708785i \(0.250756\pi\)
\(212\) 0.568852 0.328427i 0.0390689 0.0225565i
\(213\) 33.9706i 2.32762i
\(214\) −11.5711 + 20.0417i −0.790982 + 1.37002i
\(215\) 0 0
\(216\) −1.82843 −0.124409
\(217\) 7.49706 + 11.1569i 0.508933 + 0.757377i
\(218\) 12.4853i 0.845610i
\(219\) 9.24264 0.624560
\(220\) 0 0
\(221\) −0.313708 −0.0211023
\(222\) 5.04757 2.91421i 0.338770 0.195589i
\(223\) 1.49642 + 0.863961i 0.100208 + 0.0578551i 0.549266 0.835647i \(-0.314907\pi\)
−0.449059 + 0.893502i \(0.648241\pi\)
\(224\) 1.91421 3.31552i 0.127899 0.221527i
\(225\) 0 0
\(226\) 6.44975 + 11.1713i 0.429031 + 0.743103i
\(227\) −13.4977 + 7.79289i −0.895873 + 0.517232i −0.875859 0.482567i \(-0.839704\pi\)
−0.0200140 + 0.999800i \(0.506371\pi\)
\(228\) 12.6932 7.32843i 0.840628 0.485337i
\(229\) 5.74264 9.94655i 0.379484 0.657286i −0.611503 0.791242i \(-0.709435\pi\)
0.990987 + 0.133956i \(0.0427681\pi\)
\(230\) 0 0
\(231\) −15.2782 + 26.4626i −1.00523 + 1.74111i
\(232\) 5.17157i 0.339530i
\(233\) 14.8284i 0.971443i 0.874114 + 0.485721i \(0.161443\pi\)
−0.874114 + 0.485721i \(0.838557\pi\)
\(234\) −6.24264 + 10.8126i −0.408094 + 0.706840i
\(235\) 0 0
\(236\) 19.2782 33.3908i 1.25490 2.17355i
\(237\) 31.8689 18.3995i 2.07010 1.19518i
\(238\) −0.866025 + 0.500000i −0.0561361 + 0.0324102i
\(239\) −6.37868 11.0482i −0.412602 0.714648i 0.582571 0.812780i \(-0.302047\pi\)
−0.995173 + 0.0981314i \(0.968713\pi\)
\(240\) 0 0
\(241\) −12.3284 + 21.3535i −0.794144 + 1.37550i 0.129238 + 0.991614i \(0.458747\pi\)
−0.923381 + 0.383884i \(0.874586\pi\)
\(242\) 34.4669 + 19.8995i 2.21562 + 1.27919i
\(243\) −18.7554 + 10.8284i −1.20316 + 0.694644i
\(244\) −10.8284 −0.693219
\(245\) 0 0
\(246\) 55.2843 3.52480
\(247\) 2.89949i 0.184490i
\(248\) 10.8126 22.0711i 0.686599 1.40151i
\(249\) 9.82843 0.622851
\(250\) 0 0
\(251\) −1.79289 + 3.10538i −0.113166 + 0.196010i −0.917045 0.398783i \(-0.869433\pi\)
0.803879 + 0.594793i \(0.202766\pi\)
\(252\) 26.1421i 1.64680i
\(253\) −18.1610 + 10.4853i −1.14177 + 0.659204i
\(254\) 13.1569 22.7883i 0.825534 1.42987i
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) −0.271680 + 0.156854i −0.0169469 + 0.00978430i −0.508450 0.861092i \(-0.669781\pi\)
0.491503 + 0.870876i \(0.336448\pi\)
\(258\) −44.9208 + 25.9350i −2.79665 + 1.61464i
\(259\) 1.20711 + 2.09077i 0.0750060 + 0.129914i
\(260\) 0 0
\(261\) 1.65685 + 2.86976i 0.102557 + 0.177633i
\(262\) −9.94655 5.74264i −0.614500 0.354782i
\(263\) 0.686292i 0.0423185i 0.999776 + 0.0211593i \(0.00673571\pi\)
−0.999776 + 0.0211593i \(0.993264\pi\)
\(264\) 55.8701 3.43856
\(265\) 0 0
\(266\) 4.62132 + 8.00436i 0.283351 + 0.490779i
\(267\) −26.1039 15.0711i −1.59753 0.922334i
\(268\) 17.3821 10.0355i 1.06178 0.613018i
\(269\) −15.9142 27.5642i −0.970307 1.68062i −0.694626 0.719371i \(-0.744430\pi\)
−0.275681 0.961249i \(-0.588903\pi\)
\(270\) 0 0
\(271\) −23.3137 −1.41621 −0.708103 0.706109i \(-0.750449\pi\)
−0.708103 + 0.706109i \(0.750449\pi\)
\(272\) 0.445759 + 0.257359i 0.0270281 + 0.0156047i
\(273\) −9.22911 5.32843i −0.558571 0.322491i
\(274\) 9.03553 + 15.6500i 0.545857 + 0.945451i
\(275\) 0 0
\(276\) −18.4853 + 32.0174i −1.11268 + 1.92722i
\(277\) 14.1421i 0.849719i −0.905259 0.424859i \(-0.860324\pi\)
0.905259 0.424859i \(-0.139676\pi\)
\(278\) 0 0
\(279\) −1.07107 15.7116i −0.0641232 0.940626i
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 8.36308 + 4.82843i 0.498014 + 0.287529i
\(283\) 2.34315i 0.139286i 0.997572 + 0.0696428i \(0.0221859\pi\)
−0.997572 + 0.0696428i \(0.977814\pi\)
\(284\) −26.9350 46.6528i −1.59830 2.76834i
\(285\) 0 0
\(286\) −11.5711 + 20.0417i −0.684212 + 1.18509i
\(287\) 22.8995i 1.35171i
\(288\) −3.88437 + 2.24264i −0.228889 + 0.132149i
\(289\) −8.48528 14.6969i −0.499134 0.864526i
\(290\) 0 0
\(291\) 13.0711 22.6398i 0.766240 1.32717i
\(292\) 12.6932 7.32843i 0.742814 0.428864i
\(293\) −21.4766 12.3995i −1.25467 0.724386i −0.282640 0.959226i \(-0.591210\pi\)
−0.972034 + 0.234840i \(0.924543\pi\)
\(294\) 6.82843 0.398242
\(295\) 0 0
\(296\) 2.20711 3.82282i 0.128285 0.222197i
\(297\) −1.88064 + 1.08579i −0.109126 + 0.0630037i
\(298\) −2.09077 1.20711i −0.121115 0.0699258i
\(299\) −3.65685 6.33386i −0.211481 0.366296i
\(300\) 0 0
\(301\) −10.7426 18.6068i −0.619196 1.07248i
\(302\) 41.7990i 2.40526i
\(303\) −17.7408 10.2426i −1.01918 0.588424i
\(304\) 2.37868 4.11999i 0.136427 0.236298i
\(305\) 0 0
\(306\) 1.17157 0.0669744
\(307\) 2.38794 + 1.37868i 0.136287 + 0.0786854i 0.566593 0.823998i \(-0.308261\pi\)
−0.430306 + 0.902683i \(0.641594\pi\)
\(308\) 48.4558i 2.76103i
\(309\) −29.1421 −1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 19.4853i 1.10314i
\(313\) 3.31552 + 1.91421i 0.187404 + 0.108198i 0.590767 0.806842i \(-0.298825\pi\)
−0.403363 + 0.915040i \(0.632159\pi\)
\(314\) 35.7990 2.02025
\(315\) 0 0
\(316\) 29.1777 50.5372i 1.64137 2.84294i
\(317\) 1.88064 + 1.08579i 0.105627 + 0.0609838i 0.551883 0.833922i \(-0.313910\pi\)
−0.446256 + 0.894905i \(0.647243\pi\)
\(318\) 1.00000i 0.0560772i
\(319\) 3.07107 + 5.31925i 0.171947 + 0.297821i
\(320\) 0 0
\(321\) 11.5711 + 20.0417i 0.645834 + 1.11862i
\(322\) −20.1903 11.6569i −1.12516 0.649611i
\(323\) 0.235626 0.136039i 0.0131106 0.00756941i
\(324\) −18.1569 + 31.4486i −1.00871 + 1.74714i
\(325\) 0 0
\(326\) 31.3137 1.73431
\(327\) −10.8126 6.24264i −0.597937 0.345219i
\(328\) 36.2605 20.9350i 2.00215 1.15594i
\(329\) −2.00000 + 3.46410i −0.110264 + 0.190982i
\(330\) 0 0
\(331\) −0.378680 0.655892i −0.0208141 0.0360511i 0.855431 0.517917i \(-0.173292\pi\)
−0.876245 + 0.481866i \(0.839959\pi\)
\(332\) 13.4977 7.79289i 0.740782 0.427691i
\(333\) 2.82843i 0.154997i
\(334\) 10.3284 17.8894i 0.565146 0.978862i
\(335\) 0 0
\(336\) 8.74264 + 15.1427i 0.476950 + 0.826102i
\(337\) 13.3137i 0.725244i −0.931936 0.362622i \(-0.881882\pi\)
0.931936 0.362622i \(-0.118118\pi\)
\(338\) 20.1903 + 11.6569i 1.09821 + 0.634049i
\(339\) 12.8995 0.700604
\(340\) 0 0
\(341\) −1.98528 29.1222i −0.107509 1.57706i
\(342\) 10.8284i 0.585534i
\(343\) 19.7279i 1.06521i
\(344\) −19.6421 + 34.0212i −1.05903 + 1.83430i
\(345\) 0 0
\(346\) −17.2782 29.9267i −0.928880 1.60887i
\(347\) −19.5344 11.2782i −1.04866 0.605444i −0.126386 0.991981i \(-0.540338\pi\)
−0.922274 + 0.386537i \(0.873671\pi\)
\(348\) 9.37769 + 5.41421i 0.502697 + 0.290232i
\(349\) −35.1127 −1.87954 −0.939770 0.341808i \(-0.888961\pi\)
−0.939770 + 0.341808i \(0.888961\pi\)
\(350\) 0 0
\(351\) −0.378680 0.655892i −0.0202124 0.0350089i
\(352\) −7.19988 + 4.15685i −0.383755 + 0.221561i
\(353\) 2.59808 + 1.50000i 0.138282 + 0.0798369i 0.567545 0.823343i \(-0.307893\pi\)
−0.429263 + 0.903179i \(0.641227\pi\)
\(354\) −29.3492 50.8344i −1.55989 2.70182i
\(355\) 0 0
\(356\) −47.7990 −2.53334
\(357\) 1.00000i 0.0529256i
\(358\) 14.1281 + 8.15685i 0.746693 + 0.431103i
\(359\) 13.4497 + 23.2956i 0.709851 + 1.22950i 0.964912 + 0.262572i \(0.0845709\pi\)
−0.255062 + 0.966925i \(0.582096\pi\)
\(360\) 0 0
\(361\) 8.24264 + 14.2767i 0.433823 + 0.751404i
\(362\) 21.5636 12.4497i 1.13336 0.654344i
\(363\) 34.4669 19.8995i 1.80904 1.04445i
\(364\) −16.8995 −0.885774
\(365\) 0 0
\(366\) −8.24264 + 14.2767i −0.430850 + 0.746254i
\(367\) 15.7731 9.10660i 0.823349 0.475361i −0.0282210 0.999602i \(-0.508984\pi\)
0.851570 + 0.524241i \(0.175651\pi\)
\(368\) 12.0000i 0.625543i
\(369\) 13.4142 23.2341i 0.698316 1.20952i
\(370\) 0 0
\(371\) 0.414214 0.0215049
\(372\) −28.7019 42.7132i −1.48813 2.21458i
\(373\) 10.0000i 0.517780i −0.965907 0.258890i \(-0.916643\pi\)
0.965907 0.258890i \(-0.0833568\pi\)
\(374\) 2.17157 0.112289
\(375\) 0 0
\(376\) 7.31371 0.377176
\(377\) −1.85514 + 1.07107i −0.0955448 + 0.0551628i
\(378\) −2.09077 1.20711i −0.107538 0.0620869i
\(379\) −14.6924 + 25.4480i −0.754697 + 1.30717i 0.190827 + 0.981624i \(0.438883\pi\)
−0.945525 + 0.325550i \(0.894450\pi\)
\(380\) 0 0
\(381\) −13.1569 22.7883i −0.674046 1.16748i
\(382\) 2.30090 1.32843i 0.117724 0.0679682i
\(383\) −21.5636 + 12.4497i −1.10185 + 0.636152i −0.936706 0.350117i \(-0.886142\pi\)
−0.165142 + 0.986270i \(0.552808\pi\)
\(384\) −24.8137 + 42.9786i −1.26627 + 2.19324i
\(385\) 0 0
\(386\) −25.5208 + 44.2033i −1.29898 + 2.24989i
\(387\) 25.1716i 1.27954i
\(388\) 41.4558i 2.10460i
\(389\) 8.57107 14.8455i 0.434570 0.752698i −0.562690 0.826668i \(-0.690234\pi\)
0.997260 + 0.0739699i \(0.0235669\pi\)
\(390\) 0 0
\(391\) −0.343146 + 0.594346i −0.0173536 + 0.0300574i
\(392\) 4.47871 2.58579i 0.226209 0.130602i
\(393\) −9.94655 + 5.74264i −0.501737 + 0.289678i
\(394\) −4.20711 7.28692i −0.211951 0.367110i
\(395\) 0 0
\(396\) 28.3848 49.1639i 1.42639 2.47058i
\(397\) 14.3022 + 8.25736i 0.717805 + 0.414425i 0.813944 0.580943i \(-0.197316\pi\)
−0.0961392 + 0.995368i \(0.530649\pi\)
\(398\) 32.5863 18.8137i 1.63340 0.943046i
\(399\) 9.24264 0.462711
\(400\) 0 0
\(401\) −21.1716 −1.05726 −0.528629 0.848853i \(-0.677294\pi\)
−0.528629 + 0.848853i \(0.677294\pi\)
\(402\) 30.5563i 1.52401i
\(403\) 10.1567 0.692388i 0.505940 0.0344903i
\(404\) −32.4853 −1.61620
\(405\) 0 0
\(406\) −3.41421 + 5.91359i −0.169445 + 0.293487i
\(407\) 5.24264i 0.259868i
\(408\) 1.58346 0.914214i 0.0783932 0.0452603i
\(409\) 4.67157 8.09140i 0.230994 0.400094i −0.727107 0.686525i \(-0.759135\pi\)
0.958101 + 0.286431i \(0.0924688\pi\)
\(410\) 0 0
\(411\) 18.0711 0.891380
\(412\) −40.0218 + 23.1066i −1.97173 + 1.13838i
\(413\) 21.0563 12.1569i 1.03611 0.598200i
\(414\) 13.6569 + 23.6544i 0.671198 + 1.16255i
\(415\) 0 0
\(416\) −1.44975 2.51104i −0.0710797 0.123114i
\(417\) 0 0
\(418\) 20.0711i 0.981708i
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 1.42893 + 2.47498i 0.0696419 + 0.120623i 0.898744 0.438474i \(-0.144481\pi\)
−0.829102 + 0.559098i \(0.811148\pi\)
\(422\) 15.8601 + 9.15685i 0.772059 + 0.445749i
\(423\) 4.05845 2.34315i 0.197328 0.113928i
\(424\) −0.378680 0.655892i −0.0183903 0.0318530i
\(425\) 0 0
\(426\) −82.0122 −3.97350
\(427\) −5.91359 3.41421i −0.286179 0.165225i
\(428\) 31.7818 + 18.3492i 1.53623 + 0.886944i
\(429\) 11.5711 + 20.0417i 0.558656 + 0.967621i
\(430\) 0 0
\(431\) 12.6213 21.8608i 0.607948 1.05300i −0.383631 0.923487i \(-0.625326\pi\)
0.991578 0.129510i \(-0.0413403\pi\)
\(432\) 1.24264i 0.0597866i
\(433\) 35.1127i 1.68741i 0.536808 + 0.843704i \(0.319630\pi\)
−0.536808 + 0.843704i \(0.680370\pi\)
\(434\) 26.9350 18.0995i 1.29292 0.868803i
\(435\) 0 0
\(436\) −19.7990 −0.948200
\(437\) 5.49333 + 3.17157i 0.262781 + 0.151717i
\(438\) 22.3137i 1.06619i
\(439\) −6.03553 10.4539i −0.288060 0.498935i 0.685286 0.728274i \(-0.259677\pi\)
−0.973347 + 0.229339i \(0.926344\pi\)
\(440\) 0 0
\(441\) 1.65685 2.86976i 0.0788978 0.136655i
\(442\) 0.757359i 0.0360239i
\(443\) 11.4685 6.62132i 0.544883 0.314588i −0.202173 0.979350i \(-0.564800\pi\)
0.747056 + 0.664761i \(0.231467\pi\)
\(444\) −4.62132 8.00436i −0.219318 0.379870i
\(445\) 0 0
\(446\) 2.08579 3.61269i 0.0987649 0.171066i
\(447\) −2.09077 + 1.20711i −0.0988900 + 0.0570942i
\(448\) −20.5490 11.8640i −0.970848 0.560519i
\(449\) −4.62742 −0.218381 −0.109191 0.994021i \(-0.534826\pi\)
−0.109191 + 0.994021i \(0.534826\pi\)
\(450\) 0 0
\(451\) 24.8640 43.0656i 1.17080 2.02788i
\(452\) 17.7153 10.2279i 0.833257 0.481081i
\(453\) 36.1990 + 20.8995i 1.70078 + 0.981944i
\(454\) 18.8137 + 32.5863i 0.882971 + 1.52935i
\(455\) 0 0
\(456\) −8.44975 14.6354i −0.395696 0.685365i
\(457\) 31.1127i 1.45539i 0.685901 + 0.727695i \(0.259409\pi\)
−0.685901 + 0.727695i \(0.740591\pi\)
\(458\) −24.0131 13.8640i −1.12206 0.647820i
\(459\) −0.0355339 + 0.0615465i −0.00165858 + 0.00287275i
\(460\) 0 0
\(461\) 26.1421 1.21756 0.608780 0.793339i \(-0.291659\pi\)
0.608780 + 0.793339i \(0.291659\pi\)
\(462\) 63.8863 + 36.8848i 2.97226 + 1.71604i
\(463\) 24.9706i 1.16048i −0.814445 0.580240i \(-0.802959\pi\)
0.814445 0.580240i \(-0.197041\pi\)
\(464\) 3.51472 0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) 8.00000i 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 17.1464 + 9.89949i 0.792594 + 0.457604i
\(469\) 12.6569 0.584439
\(470\) 0 0
\(471\) 17.8995 31.0028i 0.824765 1.42854i
\(472\) −38.4999 22.2279i −1.77210 1.02312i
\(473\) 46.6569i 2.14528i
\(474\) −44.4203 76.9382i −2.04029 3.53389i
\(475\) 0 0
\(476\) 0.792893 + 1.37333i 0.0363422 + 0.0629465i
\(477\) −0.420266 0.242641i −0.0192427 0.0111098i
\(478\) −26.6727 + 15.3995i −1.21998 + 0.704357i
\(479\) 4.86396 8.42463i 0.222240 0.384931i −0.733248 0.679962i \(-0.761996\pi\)
0.955488 + 0.295030i \(0.0953298\pi\)
\(480\) 0 0
\(481\) 1.82843 0.0833691
\(482\) 51.5518 + 29.7635i 2.34812 + 1.35569i
\(483\) −20.1903 + 11.6569i −0.918689 + 0.530405i
\(484\) 31.5563 54.6572i 1.43438 2.48442i
\(485\) 0 0
\(486\) 26.1421 + 45.2795i 1.18583 + 2.05392i
\(487\) −15.0557 + 8.69239i −0.682237 + 0.393890i −0.800697 0.599069i \(-0.795537\pi\)
0.118460 + 0.992959i \(0.462204\pi\)
\(488\) 12.4853i 0.565182i
\(489\) 15.6569 27.1185i 0.708027 1.22634i
\(490\) 0 0
\(491\) −2.20711 3.82282i −0.0996053 0.172522i 0.811916 0.583774i \(-0.198425\pi\)
−0.911521 + 0.411253i \(0.865091\pi\)
\(492\) 87.6690i 3.95243i
\(493\) 0.174080 + 0.100505i 0.00784016 + 0.00452652i
\(494\) 7.00000 0.314945
\(495\) 0 0
\(496\) −15.0000 7.34847i −0.673520 0.329956i
\(497\) 33.9706i 1.52379i
\(498\) 23.7279i 1.06327i
\(499\) 20.1066 34.8257i 0.900095 1.55901i 0.0727259 0.997352i \(-0.476830\pi\)
0.827369 0.561659i \(-0.189837\pi\)
\(500\) 0 0
\(501\) −10.3284 17.8894i −0.461440 0.799238i
\(502\) 7.49706 + 4.32843i 0.334610 + 0.193187i
\(503\) 20.2518 + 11.6924i 0.902984 + 0.521338i 0.878167 0.478354i \(-0.158766\pi\)
0.0248166 + 0.999692i \(0.492100\pi\)
\(504\) 30.1421 1.34264
\(505\) 0 0
\(506\) 25.3137 + 43.8446i 1.12533 + 1.94913i
\(507\) 20.1903 11.6569i 0.896681 0.517699i
\(508\) −36.1374 20.8640i −1.60334 0.925689i
\(509\) 3.39949 + 5.88810i 0.150680 + 0.260985i 0.931478 0.363799i \(-0.118520\pi\)
−0.780798 + 0.624784i \(0.785187\pi\)
\(510\) 0 0
\(511\) 9.24264 0.408870
\(512\) 31.2426i 1.38074i
\(513\) 0.568852 + 0.328427i 0.0251154 + 0.0145004i
\(514\) 0.378680 + 0.655892i 0.0167028 + 0.0289302i
\(515\) 0 0
\(516\) 41.1274 + 71.2348i 1.81053 + 3.13594i
\(517\) 7.52255 4.34315i 0.330841 0.191011i
\(518\) 5.04757 2.91421i 0.221777 0.128043i
\(519\) −34.5563 −1.51686
\(520\) 0 0
\(521\) −15.2279 + 26.3755i −0.667147 + 1.15553i 0.311551 + 0.950229i \(0.399152\pi\)
−0.978698 + 0.205304i \(0.934182\pi\)
\(522\) 6.92820 4.00000i 0.303239 0.175075i
\(523\) 8.00000i 0.349816i 0.984585 + 0.174908i \(0.0559627\pi\)
−0.984585 + 0.174908i \(0.944037\pi\)
\(524\) −9.10660 + 15.7731i −0.397824 + 0.689051i
\(525\) 0 0
\(526\) 1.65685 0.0722423
\(527\) −0.532799 0.792893i −0.0232091 0.0345390i
\(528\) 37.9706i 1.65246i
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) −28.4853 −1.23616
\(532\) 12.6932 7.32843i 0.550320 0.317728i
\(533\) 15.0196 + 8.67157i 0.650571 + 0.375608i
\(534\) −36.3848 + 63.0203i −1.57452 + 2.72715i
\(535\) 0 0
\(536\) −11.5711 20.0417i −0.499794 0.865669i
\(537\) 14.1281 8.15685i 0.609672 0.351994i
\(538\) −66.5459 + 38.4203i −2.86900 + 1.65642i
\(539\) 3.07107 5.31925i 0.132280 0.229116i
\(540\) 0 0
\(541\) −12.6421 + 21.8968i −0.543528 + 0.941418i 0.455170 + 0.890405i \(0.349578\pi\)
−0.998698 + 0.0510134i \(0.983755\pi\)
\(542\) 56.2843i 2.41762i
\(543\) 24.8995i 1.06854i
\(544\) −0.136039 + 0.235626i −0.00583262 + 0.0101024i
\(545\) 0 0
\(546\) −12.8640 + 22.2810i −0.550527 + 0.953540i
\(547\) 4.96053 2.86396i 0.212097 0.122454i −0.390189 0.920735i \(-0.627590\pi\)
0.602285 + 0.798281i \(0.294257\pi\)
\(548\) 24.8176 14.3284i 1.06015 0.612080i
\(549\) 4.00000 + 6.92820i 0.170716 + 0.295689i
\(550\) 0 0
\(551\) 0.928932 1.60896i 0.0395738 0.0685439i
\(552\) 36.9164 + 21.3137i 1.57127 + 0.907172i
\(553\) 31.8689 18.3995i 1.35520 0.782426i
\(554\) −34.1421 −1.45056
\(555\) 0 0
\(556\) 0 0
\(557\) 44.4853i 1.88490i 0.334344 + 0.942451i \(0.391485\pi\)
−0.334344 + 0.942451i \(0.608515\pi\)
\(558\) −37.9310 + 2.58579i −1.60575 + 0.109465i
\(559\) −16.2721 −0.688236
\(560\) 0 0
\(561\) 1.08579 1.88064i 0.0458419 0.0794006i
\(562\) 4.82843i 0.203675i
\(563\) −4.11999 + 2.37868i −0.173637 + 0.100249i −0.584300 0.811538i \(-0.698631\pi\)
0.410663 + 0.911787i \(0.365297\pi\)
\(564\) 7.65685 13.2621i 0.322412 0.558433i
\(565\) 0 0
\(566\) 5.65685 0.237775
\(567\) −19.8315 + 11.4497i −0.832847 + 0.480844i
\(568\) −53.7912 + 31.0563i −2.25703 + 1.30310i
\(569\) 7.57107 + 13.1135i 0.317396 + 0.549745i 0.979944 0.199274i \(-0.0638583\pi\)
−0.662548 + 0.749019i \(0.730525\pi\)
\(570\) 0 0
\(571\) 20.4497 + 35.4200i 0.855795 + 1.48228i 0.875905 + 0.482483i \(0.160265\pi\)
−0.0201099 + 0.999798i \(0.506402\pi\)
\(572\) 31.7818 + 18.3492i 1.32886 + 0.767220i
\(573\) 2.65685i 0.110992i
\(574\) 55.2843 2.30752
\(575\) 0 0
\(576\) 13.8995 + 24.0746i 0.579146 + 1.00311i
\(577\) 29.4194 + 16.9853i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833335\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(578\) −35.4815 + 20.4853i −1.47584 + 0.852075i
\(579\) 25.5208 + 44.2033i 1.06061 + 1.83703i
\(580\) 0 0
\(581\) 9.82843 0.407752
\(582\) −54.6572 31.5563i −2.26561 1.30805i
\(583\) −0.778985 0.449747i −0.0322623 0.0186266i
\(584\) −8.44975 14.6354i −0.349653 0.605617i
\(585\) 0 0
\(586\) −29.9350 + 51.8490i −1.23660 + 2.14186i
\(587\) 20.3431i 0.839651i −0.907605 0.419826i \(-0.862091\pi\)
0.907605 0.419826i \(-0.137909\pi\)
\(588\) 10.8284i 0.446557i
\(589\) −7.32843 + 4.92447i −0.301963 + 0.202909i
\(590\) 0 0
\(591\) −8.41421 −0.346114
\(592\) −2.59808 1.50000i −0.106780 0.0616496i
\(593\) 21.3137i 0.875249i −0.899158 0.437625i \(-0.855820\pi\)
0.899158 0.437625i \(-0.144180\pi\)
\(594\) 2.62132 + 4.54026i 0.107554 + 0.186289i
\(595\) 0 0
\(596\) −1.91421 + 3.31552i −0.0784092 + 0.135809i
\(597\) 37.6274i 1.53999i
\(598\) −15.2913 + 8.82843i −0.625307 + 0.361021i
\(599\) 17.4497 + 30.2238i 0.712977 + 1.23491i 0.963734 + 0.266863i \(0.0859871\pi\)
−0.250757 + 0.968050i \(0.580680\pi\)
\(600\) 0 0
\(601\) 11.7426 20.3389i 0.478992 0.829639i −0.520717 0.853729i \(-0.674336\pi\)
0.999710 + 0.0240900i \(0.00766884\pi\)
\(602\) −44.9208 + 25.9350i −1.83083 + 1.05703i
\(603\) −12.8418 7.41421i −0.522958 0.301930i
\(604\) 66.2843 2.69707
\(605\) 0 0
\(606\) −24.7279 + 42.8300i −1.00450 + 1.73985i
\(607\) −3.82282 + 2.20711i −0.155164 + 0.0895837i −0.575571 0.817752i \(-0.695220\pi\)
0.420408 + 0.907335i \(0.361887\pi\)
\(608\) 2.17781 + 1.25736i 0.0883219 + 0.0509927i
\(609\) 3.41421 + 5.91359i 0.138351 + 0.239631i
\(610\) 0 0
\(611\) 1.51472 + 2.62357i 0.0612790 + 0.106138i
\(612\) 1.85786i 0.0750997i
\(613\) −8.93193 5.15685i −0.360757 0.208283i 0.308656 0.951174i \(-0.400121\pi\)
−0.669413 + 0.742890i \(0.733454\pi\)
\(614\) 3.32843 5.76500i 0.134324 0.232657i
\(615\) 0 0
\(616\) 55.8701 2.25107
\(617\) −20.1648 11.6421i −0.811803 0.468695i 0.0357786 0.999360i \(-0.488609\pi\)
−0.847582 + 0.530665i \(0.821942\pi\)
\(618\) 70.3553i 2.83011i
\(619\) 31.6569 1.27240 0.636198 0.771526i \(-0.280506\pi\)
0.636198 + 0.771526i \(0.280506\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 27.3137i 1.09518i
\(623\) −26.1039 15.0711i −1.04583 0.603810i
\(624\) 13.2426 0.530130
\(625\) 0 0
\(626\) 4.62132 8.00436i 0.184705 0.319919i
\(627\) −17.3821 10.0355i −0.694172 0.400781i
\(628\) 56.7696i 2.26535i
\(629\) −0.0857864 0.148586i −0.00342053 0.00592453i
\(630\) 0 0
\(631\) 16.0061 + 27.7234i 0.637193 + 1.10365i 0.986046 + 0.166473i \(0.0532378\pi\)
−0.348853 + 0.937177i \(0.613429\pi\)
\(632\) −58.2699 33.6421i −2.31785 1.33821i
\(633\) 15.8601 9.15685i 0.630384 0.363952i
\(634\) 2.62132 4.54026i 0.104106 0.180317i
\(635\) 0 0
\(636\) −1.58579 −0.0628805
\(637\) 1.85514 + 1.07107i 0.0735035 + 0.0424373i
\(638\) 12.8418 7.41421i 0.508412 0.293532i
\(639\) −19.8995 + 34.4669i −0.787212 + 1.36349i
\(640\) 0 0
\(641\) −9.98528 17.2950i −0.394395 0.683112i 0.598629 0.801027i \(-0.295712\pi\)
−0.993024 + 0.117915i \(0.962379\pi\)
\(642\) 48.3849 27.9350i 1.90960 1.10251i
\(643\) 12.6863i 0.500298i −0.968207 0.250149i \(-0.919520\pi\)
0.968207 0.250149i \(-0.0804797\pi\)
\(644\) −18.4853 + 32.0174i −0.728422 + 1.26166i
\(645\) 0 0
\(646\) −0.328427 0.568852i −0.0129218 0.0223812i
\(647\) 22.6863i 0.891890i −0.895060 0.445945i \(-0.852868\pi\)
0.895060 0.445945i \(-0.147132\pi\)
\(648\) 36.2605 + 20.9350i 1.42445 + 0.822406i
\(649\) −52.7990 −2.07254
\(650\) 0 0
\(651\) −2.20711 32.3762i −0.0865033 1.26892i
\(652\) 49.6569i 1.94471i
\(653\) 22.1421i 0.866489i −0.901276 0.433244i \(-0.857369\pi\)
0.901276 0.433244i \(-0.142631\pi\)
\(654\) −15.0711 + 26.1039i −0.589325 + 1.02074i
\(655\) 0 0
\(656\) −14.2279 24.6435i −0.555507 0.962166i
\(657\) −9.37769 5.41421i −0.365859 0.211229i
\(658\) 8.36308 + 4.82843i 0.326027 + 0.188232i
\(659\) −9.65685 −0.376178 −0.188089 0.982152i \(-0.560229\pi\)
−0.188089 + 0.982152i \(0.560229\pi\)
\(660\) 0 0
\(661\) −16.5711 28.7019i −0.644540 1.11638i −0.984408 0.175903i \(-0.943716\pi\)
0.339868 0.940473i \(-0.389618\pi\)
\(662\) −1.58346 + 0.914214i −0.0615431 + 0.0355319i
\(663\) 0.655892 + 0.378680i 0.0254728 + 0.0147067i
\(664\) −8.98528 15.5630i −0.348697 0.603960i
\(665\) 0 0
\(666\) −6.82843 −0.264596
\(667\) 4.68629i 0.181454i
\(668\) −28.3687 16.3787i −1.09762 0.633710i
\(669\) −2.08579 3.61269i −0.0806412 0.139675i
\(670\) 0 0
\(671\) 7.41421 + 12.8418i 0.286223 + 0.495752i
\(672\) −8.00436 + 4.62132i −0.308775 + 0.178271i
\(673\) −17.8894 + 10.3284i −0.689584 + 0.398132i −0.803456 0.595364i \(-0.797008\pi\)
0.113872 + 0.993495i \(0.463675\pi\)
\(674\) −32.1421 −1.23807
\(675\) 0 0
\(676\) 18.4853 32.0174i 0.710972 1.23144i
\(677\) 35.1589 20.2990i 1.35127 0.780154i 0.362839 0.931852i \(-0.381808\pi\)
0.988427 + 0.151698i \(0.0484742\pi\)
\(678\) 31.1421i 1.19601i
\(679\) 13.0711 22.6398i 0.501622 0.868834i
\(680\) 0 0
\(681\) 37.6274 1.44189
\(682\) −70.3072 + 4.79289i −2.69220 + 0.183529i
\(683\) 46.6274i 1.78415i 0.451889 + 0.892074i \(0.350750\pi\)
−0.451889 + 0.892074i \(0.649250\pi\)
\(684\) −17.1716 −0.656571
\(685\) 0 0
\(686\) 47.6274 1.81842
\(687\) −24.0131 + 13.8640i −0.916156 + 0.528943i
\(688\) 23.1216 + 13.3492i 0.881501 + 0.508935i
\(689\) 0.156854 0.271680i 0.00597567 0.0103502i
\(690\) 0 0
\(691\) −7.03553 12.1859i −0.267644 0.463574i 0.700609 0.713546i \(-0.252912\pi\)
−0.968253 + 0.249972i \(0.919579\pi\)
\(692\) −47.4573 + 27.3995i −1.80406 + 1.04157i
\(693\) 31.0028 17.8995i 1.17770 0.679946i
\(694\) −27.2279 + 47.1601i −1.03356 + 1.79017i
\(695\) 0 0
\(696\) 6.24264 10.8126i 0.236627 0.409849i
\(697\) 1.62742i 0.0616428i
\(698\) 84.7696i 3.20857i
\(699\) 17.8995 31.0028i 0.677021 1.17263i
\(700\) 0 0
\(701\) −1.74264 + 3.01834i −0.0658186 + 0.114001i −0.897057 0.441915i \(-0.854299\pi\)
0.831238 + 0.555916i \(0.187633\pi\)
\(702\) −1.58346 + 0.914214i −0.0597640 + 0.0345048i
\(703\) −1.37333 + 0.792893i −0.0517962 + 0.0299045i
\(704\) 25.7635 + 44.6236i 0.970997 + 1.68182i
\(705\) 0 0
\(706\) 3.62132 6.27231i 0.136290 0.236062i
\(707\) −17.7408 10.2426i −0.667210 0.385214i
\(708\) −80.6125 + 46.5416i −3.02960 + 1.74914i
\(709\) 5.31371 0.199561 0.0997803 0.995009i \(-0.468186\pi\)
0.0997803 + 0.995009i \(0.468186\pi\)
\(710\) 0 0
\(711\) −43.1127 −1.61685
\(712\) 55.1127i 2.06544i
\(713\) 9.79796 20.0000i 0.366936 0.749006i
\(714\) 2.41421 0.0903497
\(715\) 0 0
\(716\) 12.9350 22.4041i 0.483405 0.837282i
\(717\) 30.7990i 1.15021i
\(718\) 56.2407 32.4706i 2.09888 1.21179i
\(719\) 3.03553 5.25770i 0.113206 0.196079i −0.803855 0.594825i \(-0.797221\pi\)
0.917061 + 0.398746i \(0.130555\pi\)
\(720\) 0 0
\(721\) −29.1421 −1.08531
\(722\) 34.4669 19.8995i 1.28273 0.740583i
\(723\) 51.5518 29.7635i 1.91723 1.10691i
\(724\) −19.7426 34.1953i −0.733729 1.27086i
\(725\) 0 0
\(726\) −48.0416 83.2105i −1.78299 3.08823i
\(727\) 40.5652 + 23.4203i 1.50448 + 0.868611i 0.999987 + 0.00519502i \(0.00165363\pi\)
0.504492 + 0.863416i \(0.331680\pi\)
\(728\) 19.4853i 0.722173i
\(729\) 23.8284 0.882534
\(730\) 0 0
\(731\) 0.763456 + 1.32234i 0.0282374 + 0.0489087i
\(732\) 22.6398 + 13.0711i 0.836789 + 0.483121i
\(733\) 25.6581 14.8137i 0.947703 0.547157i 0.0553366 0.998468i \(-0.482377\pi\)
0.892367 + 0.451311i \(0.149043\pi\)
\(734\) −21.9853 38.0796i −0.811492 1.40554i
\(735\) 0 0
\(736\) −6.34315 −0.233811
\(737\) −23.8030 13.7426i −0.876793 0.506217i
\(738\) −56.0921 32.3848i −2.06478 1.19210i
\(739\) −3.93503 6.81567i −0.144752 0.250718i 0.784528 0.620093i \(-0.212905\pi\)
−0.929281 + 0.369375i \(0.879572\pi\)
\(740\) 0 0
\(741\) 3.50000 6.06218i 0.128576 0.222700i
\(742\) 1.00000i 0.0367112i
\(743\) 5.65685i 0.207530i 0.994602 + 0.103765i \(0.0330890\pi\)
−0.994602 + 0.103765i \(0.966911\pi\)
\(744\) −49.2487 + 33.0936i −1.80555 + 1.21327i
\(745\) 0 0
\(746\) −24.1421 −0.883906
\(747\) −9.97204 5.75736i −0.364858 0.210651i
\(748\) 3.44365i 0.125912i
\(749\) 11.5711 + 20.0417i 0.422798 + 0.732307i
\(750\) 0 0
\(751\) 0.621320 1.07616i 0.0226723 0.0392696i −0.854467 0.519506i \(-0.826116\pi\)
0.877139 + 0.480237i \(0.159449\pi\)
\(752\) 4.97056i 0.181258i
\(753\) 7.49706 4.32843i 0.273208 0.157737i
\(754\) 2.58579 + 4.47871i 0.0941688 + 0.163105i
\(755\) 0 0
\(756\) −1.91421 + 3.31552i −0.0696193 + 0.120584i
\(757\) 30.0137 17.3284i 1.09087 0.629812i 0.157060 0.987589i \(-0.449798\pi\)
0.933807 + 0.357777i \(0.116465\pi\)
\(758\) 61.4368 + 35.4706i 2.23149 + 1.28835i
\(759\) 50.6274 1.83766
\(760\) 0 0
\(761\) 10.2279 17.7153i 0.370762 0.642178i −0.618921 0.785453i \(-0.712430\pi\)
0.989683 + 0.143275i \(0.0457633\pi\)
\(762\) −55.0159 + 31.7635i −1.99302 + 1.15067i
\(763\) −10.8126 6.24264i −0.391441 0.225999i
\(764\) −2.10660 3.64874i −0.0762142 0.132007i
\(765\) 0 0
\(766\) 30.0563 + 52.0591i 1.08598 + 1.88097i
\(767\) 18.4142i 0.664899i
\(768\) 62.6616 + 36.1777i 2.26110 + 1.30545i
\(769\) −13.0563 + 22.6143i −0.470824 + 0.815491i −0.999443 0.0333680i \(-0.989377\pi\)
0.528619 + 0.848859i \(0.322710\pi\)
\(770\) 0 0
\(771\) 0.757359 0.0272756
\(772\) 70.0971 + 40.4706i 2.52285 + 1.45657i
\(773\) 18.0000i 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 60.7696 2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) 5.82843i 0.209094i
\(778\) −35.8403 20.6924i −1.28494 0.741858i
\(779\) −15.0416 −0.538922
\(780\) 0 0
\(781\) −36.8848 + 63.8863i −1.31984 + 2.28603i
\(782\) 1.43488 + 0.828427i 0.0513111 + 0.0296245i
\(783\) 0.485281i 0.0173425i
\(784\) −1.75736 3.04384i −0.0627628 0.108708i
\(785\) 0 0
\(786\) 13.8640 + 24.0131i 0.494511 + 0.856518i
\(787\) −34.2823 19.7929i −1.22203 0.705540i −0.256681 0.966496i \(-0.582629\pi\)
−0.965351 + 0.260956i \(0.915962\pi\)
\(788\) −11.5555 + 6.67157i −0.411648 + 0.237665i
\(789\) 0.828427 1.43488i 0.0294928 0.0510830i
\(790\) 0 0
\(791\) 12.8995 0.458653
\(792\) −56.6864 32.7279i −2.01426 1.16294i
\(793\) −4.47871 + 2.58579i −0.159044 + 0.0918240i
\(794\) 19.9350 34.5285i 0.707468 1.22537i
\(795\) 0 0
\(796\) −29.8345 51.6749i −1.05746 1.83157i
\(797\) −19.4473 + 11.2279i −0.688860 + 0.397713i −0.803185 0.595730i \(-0.796863\pi\)
0.114325 + 0.993443i \(0.463529\pi\)
\(798\) 22.3137i 0.789897i
\(799\) 0.142136 0.246186i 0.00502840 0.00870944i
\(800\) 0 0
\(801\) 17.6569 + 30.5826i 0.623874 + 1.08058i
\(802\) 51.1127i 1.80485i
\(803\) −17.3821 10.0355i −0.613399 0.354146i
\(804\) −48.4558 −1.70891
\(805\) 0 0
\(806\) −1.67157 24.5204i −0.0588786 0.863694i
\(807\) 76.8406i 2.70492i
\(808\) 37.4558i 1.31769i
\(809\) −22.9853 + 39.8117i −0.808119 + 1.39970i 0.106045 + 0.994361i \(0.466181\pi\)
−0.914165 + 0.405343i \(0.867152\pi\)
\(810\) 0 0
\(811\) −5.86396 10.1567i −0.205912 0.356649i 0.744511 0.667610i \(-0.232683\pi\)
−0.950423 + 0.310961i \(0.899349\pi\)
\(812\) 9.37769 + 5.41421i 0.329093 + 0.190002i
\(813\) 48.7436 + 28.1421i 1.70951 + 0.986988i
\(814\) −12.6569 −0.443623
\(815\) 0 0
\(816\) −0.621320 1.07616i −0.0217506 0.0376731i
\(817\) 12.2220 7.05635i 0.427592 0.246870i
\(818\) −19.5344 11.2782i −0.683003 0.394332i
\(819\) 6.24264 + 10.8126i 0.218136 + 0.377822i
\(820\) 0 0
\(821\) −8.48528 −0.296138 −0.148069 0.988977i \(-0.547306\pi\)
−0.148069 + 0.988977i \(0.547306\pi\)
\(822\) 43.6274i 1.52168i
\(823\) −5.38079 3.10660i −0.187563 0.108289i 0.403278 0.915077i \(-0.367871\pi\)
−0.590841 + 0.806788i \(0.701204\pi\)
\(824\) 26.6421 + 46.1455i 0.928123 + 1.60756i
\(825\) 0 0
\(826\) −29.3492 50.8344i −1.02119 1.76875i
\(827\) 14.8095 8.55025i 0.514976 0.297321i −0.219901 0.975522i \(-0.570573\pi\)
0.734877 + 0.678201i \(0.237240\pi\)
\(828\) 37.5108 21.6569i 1.30359 0.752628i
\(829\) 46.4264 1.61246 0.806228 0.591605i \(-0.201506\pi\)
0.806228 + 0.591605i \(0.201506\pi\)
\(830\) 0 0
\(831\) −17.0711 + 29.5680i −0.592189 + 1.02570i
\(832\) −15.5630 + 8.98528i −0.539549 + 0.311509i
\(833\) 0.201010i 0.00696459i
\(834\) 0 0
\(835\) 0 0
\(836\) −31.8284 −1.10081
\(837\) 1.01461 2.07107i 0.0350701 0.0715866i
\(838\) 67.5980i 2.33513i
\(839\) −30.6274 −1.05738 −0.528688 0.848816i \(-0.677316\pi\)
−0.528688 + 0.848816i \(0.677316\pi\)
\(840\) 0 0
\(841\) −27.6274 −0.952670
\(842\) 5.97514 3.44975i 0.205917 0.118886i
\(843\) −4.18154 2.41421i −0.144020 0.0831499i
\(844\) 14.5208 25.1508i 0.499827 0.865726i
\(845\) 0 0
\(846\) −5.65685 9.79796i −0.194487 0.336861i
\(847\) 34.4669 19.8995i 1.18430 0.683755i
\(848\) −0.445759 + 0.257359i −0.0153074 + 0.00883776i
\(849\) 2.82843 4.89898i 0.0970714 0.168133i
\(850\) 0 0
\(851\) 2.00000 3.46410i 0.0685591 0.118748i
\(852\) 130.054i 4.45557i
\(853\) 32.4853i 1.11227i 0.831090 + 0.556137i \(0.187717\pi\)
−0.831090 + 0.556137i \(0.812283\pi\)
\(854\) −8.24264 + 14.2767i −0.282057 + 0.488538i
\(855\) 0 0
\(856\) 21.1569 36.6447i 0.723126 1.25249i
\(857\) −2.17781 + 1.25736i −0.0743926 + 0.0429506i −0.536735 0.843751i \(-0.680342\pi\)
0.462342 + 0.886702i \(0.347009\pi\)
\(858\) 48.3849 27.9350i 1.65183 0.953686i
\(859\) −6.30761 10.9251i −0.215213 0.372760i 0.738125 0.674663i \(-0.235711\pi\)
−0.953338 + 0.301904i \(0.902378\pi\)
\(860\) 0 0
\(861\) 27.6421 47.8776i 0.942041 1.63166i
\(862\) −52.7766 30.4706i −1.79758 1.03783i
\(863\) 34.1082 19.6924i 1.16106 0.670337i 0.209500 0.977809i \(-0.432816\pi\)
0.951557 + 0.307472i \(0.0994830\pi\)
\(864\) −0.656854 −0.0223466
\(865\) 0 0
\(866\) 84.7696 2.88059
\(867\) 40.9706i 1.39143i
\(868\) −28.7019 42.7132i −0.974207 1.44978i
\(869\) −79.9117 −2.71082
\(870\) 0 0
\(871\) 4.79289 8.30153i 0.162401 0.281287i
\(872\) 22.8284i 0.773068i
\(873\) −26.5241 + 15.3137i −0.897705 + 0.518291i
\(874\) 7.65685 13.2621i 0.258997 0.448596i
\(875\) 0 0
\(876\) −35.3848 −1.19554
\(877\) 41.7178 24.0858i 1.40871 0.813319i 0.413446 0.910529i \(-0.364325\pi\)
0.995264 + 0.0972093i \(0.0309916\pi\)
\(878\) −25.2378 + 14.5711i −0.851735 + 0.491750i
\(879\) 29.9350 + 51.8490i 1.00968 + 1.74882i
\(880\) 0 0
\(881\) −17.1569 29.7165i −0.578029 1.00118i −0.995705 0.0925798i \(-0.970489\pi\)
0.417676 0.908596i \(-0.362845\pi\)
\(882\) −6.92820 4.00000i −0.233285 0.134687i
\(883\) 26.2843i 0.884536i −0.896883 0.442268i \(-0.854174\pi\)
0.896883 0.442268i \(-0.145826\pi\)
\(884\) 1.20101 0.0403943
\(885\) 0 0
\(886\) −15.9853 27.6873i −0.537036 0.930174i
\(887\) −46.1816 26.6630i −1.55063 0.895254i −0.998091 0.0617647i \(-0.980327\pi\)
−0.552535 0.833490i \(-0.686339\pi\)
\(888\) −9.22911 + 5.32843i −0.309709 + 0.178810i
\(889\) −13.1569 22.7883i −0.441267 0.764296i
\(890\) 0 0
\(891\) 49.7279 1.66595
\(892\) −5.72895 3.30761i −0.191819 0.110747i
\(893\) −2.27541 1.31371i −0.0761437 0.0439616i
\(894\) 2.91421 + 5.04757i 0.0974659 + 0.168816i
\(895\) 0 0
\(896\) −24.8137 + 42.9786i −0.828968 + 1.43581i
\(897\) 17.6569i 0.589545i
\(898\) 11.1716i 0.372800i
\(899\) −5.85786 2.86976i −0.195371 0.0957117i
\(900\) 0 0
\(901\) −0.0294373 −0.000980697
\(902\) −103.970 60.0269i −3.46181 1.99868i
\(903\) 51.8701i 1.72613i
\(904\) −11.7929 20.4259i −0.392226 0.679355i
\(905\) 0 0
\(906\) 50.4558 87.3921i 1.67628 2.90341i
\(907\) 55.3137i 1.83666i 0.395814 + 0.918331i \(0.370463\pi\)
−0.395814 + 0.918331i \(0.629537\pi\)
\(908\) 51.6749 29.8345i 1.71489 0.990093i
\(909\) 12.0000 + 20.7846i 0.398015 + 0.689382i
\(910\) 0 0
\(911\) −24.5208 + 42.4713i −0.812411 + 1.40714i 0.0987614 + 0.995111i \(0.468512\pi\)
−0.911172 + 0.412026i \(0.864821\pi\)
\(912\) −9.94655 + 5.74264i −0.329363 + 0.190158i
\(913\) −18.4837 10.6716i −0.611721 0.353178i
\(914\) 75.1127 2.48451
\(915\) 0 0
\(916\) −21.9853 + 38.0796i −0.726414 + 1.25819i
\(917\) −9.94655 + 5.74264i −0.328464 + 0.189639i
\(918\) 0.148586 + 0.0857864i 0.00490408 + 0.00283137i
\(919\) −7.55025 13.0774i −0.249060 0.431384i 0.714205 0.699936i \(-0.246788\pi\)
−0.963265 + 0.268552i \(0.913455\pi\)
\(920\) 0 0
\(921\) −3.32843 5.76500i −0.109675 0.189963i
\(922\) 63.1127i 2.07851i
\(923\) −22.2810 12.8640i −0.733389 0.423422i
\(924\) 58.4914 101.310i 1.92423 3.33286i
\(925\) 0 0
\(926\) −60.2843 −1.98106
\(927\) 29.5680 + 17.0711i 0.971139 + 0.560687i
\(928\) 1.85786i 0.0609874i
\(929\) −24.4853 −0.803336 −0.401668 0.915785i \(-0.631569\pi\)
−0.401668 + 0.915785i \(0.631569\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) 56.7696i 1.85955i
\(933\) 23.6544 + 13.6569i 0.774409 + 0.447105i
\(934\) −19.3137 −0.631964
\(935\) 0 0
\(936\) 11.4142 19.7700i 0.373085 0.646203i
\(937\) −33.1806 19.1569i −1.08396 0.625827i −0.152001 0.988380i \(-0.548572\pi\)
−0.931963 + 0.362553i \(0.881905\pi\)
\(938\) 30.5563i 0.997700i
\(939\) −4.62132 8.00436i −0.150811 0.261212i
\(940\) 0 0
\(941\) 17.5000 + 30.3109i 0.570484 + 0.988107i 0.996516 + 0.0833989i \(0.0265776\pi\)
−0.426033 + 0.904708i \(0.640089\pi\)
\(942\) −74.8475 43.2132i −2.43866 1.40796i
\(943\) 32.8580 18.9706i 1.07000 0.617767i
\(944\) −15.1066 + 26.1654i −0.491678 + 0.851611i
\(945\) 0 0
\(946\) 112.640 3.66223
\(947\) −33.6880 19.4497i −1.09471 0.632032i −0.159884 0.987136i \(-0.551112\pi\)
−0.934827 + 0.355104i \(0.884445\pi\)
\(948\) −122.008 + 70.4411i −3.96262 + 2.28782i
\(949\) 3.50000 6.06218i 0.113615 0.196787i
\(950\) 0 0
\(951\) −2.62132 4.54026i −0.0850021 0.147228i
\(952\) 1.58346 0.914214i 0.0513204 0.0296298i
\(953\) 20.4853i 0.663583i −0.943353 0.331792i \(-0.892347\pi\)
0.943353 0.331792i \(-0.107653\pi\)
\(954\) −0.585786 + 1.01461i −0.0189655 + 0.0328493i
\(955\) 0 0
\(956\) 24.4203 + 42.2972i 0.789809 + 1.36799i
\(957\) 14.8284i 0.479335i
\(958\) −20.3389 11.7426i −0.657118 0.379387i
\(959\) 18.0711 0.583545
\(960\) 0 0
\(961\) 19.0000 + 24.4949i 0.612903 + 0.790158i
\(962\) 4.41421i 0.142320i
\(963\) 27.1127i 0.873694i
\(964\) 47.1985 81.7502i 1.52016 2.63300i
\(965\) 0 0
\(966\) 28.1421 + 48.7436i 0.905458 + 1.56830i
\(967\) 40.3190 + 23.2782i 1.29657 + 0.748576i 0.979810 0.199930i \(-0.0640714\pi\)
0.316761 + 0.948505i \(0.397405\pi\)
\(968\) −63.0203 36.3848i −2.02555 1.16945i
\(969\) −0.656854 −0.0211012
\(970\) 0 0
\(971\) −29.3492 50.8344i −0.941862 1.63135i −0.761915 0.647676i \(-0.775741\pi\)
−0.179947 0.983676i \(-0.557592\pi\)
\(972\) 71.8036 41.4558i 2.30310 1.32970i
\(973\) 0 0
\(974\) 20.9853 + 36.3476i 0.672412 + 1.16465i
\(975\) 0 0
\(976\) 8.48528 0.271607
\(977\) 16.4853i 0.527411i 0.964603 + 0.263705i \(0.0849447\pi\)
−0.964603 + 0.263705i \(0.915055\pi\)
\(978\) −65.4698 37.7990i −2.09349 1.20868i
\(979\) 32.7279 + 56.6864i 1.04599 + 1.81171i
\(980\) 0 0
\(981\) 7.31371 + 12.6677i 0.233509 + 0.404449i
\(982\) −9.22911 + 5.32843i −0.294513 + 0.170037i
\(983\) −42.2972 + 24.4203i −1.34907 + 0.778887i −0.988118 0.153697i \(-0.950882\pi\)
−0.360954 + 0.932584i \(0.617549\pi\)
\(984\) −101.083 −3.22242
\(985\) 0 0
\(986\) 0.242641 0.420266i 0.00772725 0.0133840i
\(987\) 8.36308 4.82843i 0.266200 0.153691i
\(988\) 11.1005i 0.353154i
\(989\) −17.7990 + 30.8288i −0.565975 + 0.980297i
\(990\) 0 0
\(991\) −19.9411 −0.633451 −0.316725 0.948517i \(-0.602583\pi\)
−0.316725 + 0.948517i \(0.602583\pi\)
\(992\) 3.88437 7.92893i 0.123329 0.251744i
\(993\) 1.82843i 0.0580234i
\(994\) −82.0122 −2.60127
\(995\) 0 0
\(996\) −37.6274 −1.19227
\(997\) −40.3550 + 23.2990i −1.27806 + 0.737886i −0.976491 0.215559i \(-0.930843\pi\)
−0.301566 + 0.953445i \(0.597509\pi\)
\(998\) −84.0766 48.5416i −2.66140 1.53656i
\(999\) 0.207107 0.358719i 0.00655257 0.0113494i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.o.d.749.1 8
5.2 odd 4 775.2.e.e.501.2 4
5.3 odd 4 31.2.c.a.5.1 4
5.4 even 2 inner 775.2.o.d.749.4 8
15.8 even 4 279.2.h.c.253.2 4
20.3 even 4 496.2.i.h.129.1 4
31.25 even 3 inner 775.2.o.d.149.1 8
155.3 even 60 961.2.g.r.448.1 16
155.8 odd 20 961.2.g.o.816.2 16
155.13 even 60 961.2.d.i.628.1 8
155.18 odd 60 961.2.d.l.628.1 8
155.23 even 20 961.2.g.r.816.2 16
155.28 odd 60 961.2.g.o.448.1 16
155.33 odd 20 961.2.g.o.547.1 16
155.38 odd 60 961.2.g.o.338.2 16
155.43 even 60 961.2.g.r.844.1 16
155.48 even 60 961.2.g.r.732.2 16
155.53 even 60 961.2.d.i.374.2 8
155.58 even 20 961.2.g.r.235.2 16
155.68 even 12 961.2.c.a.521.1 4
155.73 even 60 961.2.d.i.388.2 8
155.78 odd 20 961.2.g.o.846.1 16
155.83 even 60 961.2.d.i.531.1 8
155.87 odd 12 775.2.e.e.676.2 4
155.88 even 12 961.2.a.c.1.1 2
155.98 odd 12 961.2.a.a.1.1 2
155.103 odd 60 961.2.d.l.531.1 8
155.108 even 20 961.2.g.r.846.1 16
155.113 odd 60 961.2.d.l.388.2 8
155.118 odd 12 31.2.c.a.25.1 yes 4
155.123 even 4 961.2.c.a.439.1 4
155.128 odd 20 961.2.g.o.235.2 16
155.133 odd 60 961.2.d.l.374.2 8
155.138 odd 60 961.2.g.o.732.2 16
155.143 odd 60 961.2.g.o.844.1 16
155.148 even 60 961.2.g.r.338.2 16
155.149 even 6 inner 775.2.o.d.149.4 8
155.153 even 20 961.2.g.r.547.1 16
465.98 even 12 8649.2.a.l.1.2 2
465.398 odd 12 8649.2.a.k.1.2 2
465.428 even 12 279.2.h.c.118.2 4
620.583 even 12 496.2.i.h.273.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 5.3 odd 4
31.2.c.a.25.1 yes 4 155.118 odd 12
279.2.h.c.118.2 4 465.428 even 12
279.2.h.c.253.2 4 15.8 even 4
496.2.i.h.129.1 4 20.3 even 4
496.2.i.h.273.1 4 620.583 even 12
775.2.e.e.501.2 4 5.2 odd 4
775.2.e.e.676.2 4 155.87 odd 12
775.2.o.d.149.1 8 31.25 even 3 inner
775.2.o.d.149.4 8 155.149 even 6 inner
775.2.o.d.749.1 8 1.1 even 1 trivial
775.2.o.d.749.4 8 5.4 even 2 inner
961.2.a.a.1.1 2 155.98 odd 12
961.2.a.c.1.1 2 155.88 even 12
961.2.c.a.439.1 4 155.123 even 4
961.2.c.a.521.1 4 155.68 even 12
961.2.d.i.374.2 8 155.53 even 60
961.2.d.i.388.2 8 155.73 even 60
961.2.d.i.531.1 8 155.83 even 60
961.2.d.i.628.1 8 155.13 even 60
961.2.d.l.374.2 8 155.133 odd 60
961.2.d.l.388.2 8 155.113 odd 60
961.2.d.l.531.1 8 155.103 odd 60
961.2.d.l.628.1 8 155.18 odd 60
961.2.g.o.235.2 16 155.128 odd 20
961.2.g.o.338.2 16 155.38 odd 60
961.2.g.o.448.1 16 155.28 odd 60
961.2.g.o.547.1 16 155.33 odd 20
961.2.g.o.732.2 16 155.138 odd 60
961.2.g.o.816.2 16 155.8 odd 20
961.2.g.o.844.1 16 155.143 odd 60
961.2.g.o.846.1 16 155.78 odd 20
961.2.g.r.235.2 16 155.58 even 20
961.2.g.r.338.2 16 155.148 even 60
961.2.g.r.448.1 16 155.3 even 60
961.2.g.r.547.1 16 155.153 even 20
961.2.g.r.732.2 16 155.48 even 60
961.2.g.r.816.2 16 155.23 even 20
961.2.g.r.844.1 16 155.43 even 60
961.2.g.r.846.1 16 155.108 even 20
8649.2.a.k.1.2 2 465.398 odd 12
8649.2.a.l.1.2 2 465.98 even 12