Properties

Label 961.2.g.o.846.1
Level $961$
Weight $2$
Character 961.846
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-2,-4,-8,-24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.26873856000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 8x^{10} - 16x^{8} + 32x^{6} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 846.1
Root \(1.29195 - 0.575212i\) of defining polynomial
Character \(\chi\) \(=\) 961.846
Dual form 961.2.g.o.844.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.746033 + 2.29605i) q^{2} +(2.36146 + 0.501943i) q^{3} +(-3.09726 - 2.25029i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-2.91421 + 5.04757i) q^{6} +(2.20549 - 0.981949i) q^{7} +(3.57117 - 2.59461i) q^{8} +(2.58390 + 1.15042i) q^{9} +(2.36146 - 0.501943i) q^{10} +(0.548005 - 5.21392i) q^{11} +(-6.18453 - 6.86862i) q^{12} +(1.22346 - 1.35879i) q^{13} +(0.609237 + 5.79650i) q^{14} +(-0.746033 - 2.29605i) q^{15} +(0.927051 + 2.85317i) q^{16} +(0.0179342 + 0.170633i) q^{17} +(-4.56911 + 5.07451i) q^{18} +(1.06110 + 1.17847i) q^{19} +(-0.400180 + 3.80745i) q^{20} +(5.70106 - 1.21180i) q^{21} +(11.5626 + 5.14801i) q^{22} +(3.23607 - 2.35114i) q^{23} +(9.73552 - 4.33453i) q^{24} +(2.00000 - 3.46410i) q^{25} +(2.20711 + 3.82282i) q^{26} +(-0.335106 - 0.243469i) q^{27} +(-9.04067 - 1.92165i) q^{28} +(-0.362036 + 1.11423i) q^{29} +5.82843 q^{30} +1.58579 q^{32} +(3.91118 - 12.0374i) q^{33} +(-0.405162 - 0.0861198i) q^{34} +(-1.95314 - 1.41904i) q^{35} +(-5.41421 - 9.37769i) q^{36} +(-0.500000 + 0.866025i) q^{37} +(-3.49744 + 1.55716i) q^{38} +(3.57117 - 2.59461i) q^{39} +(-4.03258 - 1.79542i) q^{40} +(-9.27801 + 1.97210i) q^{41} +(-1.47083 + 13.9940i) q^{42} +(5.95492 + 6.61361i) q^{43} +(-13.4302 + 14.9157i) q^{44} +(-0.295651 - 2.81293i) q^{45} +(2.98413 + 9.18421i) q^{46} +(-0.511996 - 1.57576i) q^{47} +(0.757062 + 7.20296i) q^{48} +(-0.783935 + 0.870648i) q^{49} +(6.46170 + 7.17644i) q^{50} +(-0.0432971 + 0.411944i) q^{51} +(-6.84703 + 1.45538i) q^{52} +(0.156740 + 0.0697850i) q^{53} +(0.809017 - 0.587785i) q^{54} +(-4.78939 + 2.13237i) q^{55} +(5.32843 - 9.22911i) q^{56} +(1.91421 + 3.31552i) q^{57} +(-2.28825 - 1.66251i) q^{58} +(9.85099 + 2.09389i) q^{59} +(-2.85613 + 8.79027i) q^{60} +2.82843 q^{61} +6.82843 q^{63} +(-3.03715 + 9.34739i) q^{64} +(-1.78847 - 0.380151i) q^{65} +(24.7206 + 17.9606i) q^{66} +(2.62132 + 4.54026i) q^{67} +(0.328427 - 0.568852i) q^{68} +(8.82198 - 3.92780i) q^{69} +(4.71530 - 3.42586i) q^{70} +(-12.8546 - 5.72322i) q^{71} +(12.2124 - 2.59584i) q^{72} +(-0.400180 + 3.80745i) q^{73} +(-1.61542 - 1.79411i) q^{74} +(6.46170 - 7.17644i) q^{75} +(-0.634599 - 6.03781i) q^{76} +(-3.91118 - 12.0374i) q^{77} +(3.29315 + 10.1353i) q^{78} +(1.59329 + 15.1591i) q^{79} +(2.00739 - 2.22943i) q^{80} +(-6.34689 - 7.04894i) q^{81} +(2.39365 - 22.7740i) q^{82} +(-3.98211 + 0.846423i) q^{83} +(-20.3846 - 9.07580i) q^{84} +(0.138805 - 0.100848i) q^{85} +(-19.6278 + 8.73885i) q^{86} +(-1.41421 + 2.44949i) q^{87} +(-11.5711 - 20.0417i) q^{88} +(10.1008 + 7.33866i) q^{89} +(6.67921 + 1.41971i) q^{90} +(1.36407 - 4.19817i) q^{91} -15.3137 q^{92} +4.00000 q^{94} +(0.490035 - 1.50817i) q^{95} +(3.74477 + 0.795975i) q^{96} +(-8.76038 - 6.36479i) q^{97} +(-1.41421 - 2.44949i) q^{98} +(7.41421 - 12.8418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 2 q^{3} - 4 q^{4} - 8 q^{5} - 24 q^{6} + 2 q^{7} + 12 q^{8} - 2 q^{10} - 2 q^{11} - 10 q^{12} - 2 q^{13} - 6 q^{14} + 4 q^{15} - 12 q^{16} - 6 q^{17} - 8 q^{18} + 6 q^{19} + 2 q^{20} - 6 q^{21}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.746033 + 2.29605i −0.527525 + 1.62356i 0.231743 + 0.972777i \(0.425557\pi\)
−0.759268 + 0.650778i \(0.774443\pi\)
\(3\) 2.36146 + 0.501943i 1.36339 + 0.289797i 0.830797 0.556576i \(-0.187885\pi\)
0.532591 + 0.846373i \(0.321218\pi\)
\(4\) −3.09726 2.25029i −1.54863 1.12515i
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) −2.91421 + 5.04757i −1.18972 + 2.06066i
\(7\) 2.20549 0.981949i 0.833598 0.371142i 0.0548625 0.998494i \(-0.482528\pi\)
0.778736 + 0.627352i \(0.215861\pi\)
\(8\) 3.57117 2.59461i 1.26260 0.917333i
\(9\) 2.58390 + 1.15042i 0.861299 + 0.383475i
\(10\) 2.36146 0.501943i 0.746758 0.158728i
\(11\) 0.548005 5.21392i 0.165230 1.57206i −0.526674 0.850067i \(-0.676561\pi\)
0.691904 0.721989i \(-0.256772\pi\)
\(12\) −6.18453 6.86862i −1.78532 1.98280i
\(13\) 1.22346 1.35879i 0.339326 0.376859i −0.549196 0.835693i \(-0.685066\pi\)
0.888522 + 0.458834i \(0.151733\pi\)
\(14\) 0.609237 + 5.79650i 0.162825 + 1.54918i
\(15\) −0.746033 2.29605i −0.192625 0.592838i
\(16\) 0.927051 + 2.85317i 0.231763 + 0.713292i
\(17\) 0.0179342 + 0.170633i 0.00434969 + 0.0413846i 0.996481 0.0838135i \(-0.0267100\pi\)
−0.992132 + 0.125198i \(0.960043\pi\)
\(18\) −4.56911 + 5.07451i −1.07695 + 1.19607i
\(19\) 1.06110 + 1.17847i 0.243433 + 0.270359i 0.852463 0.522788i \(-0.175108\pi\)
−0.609030 + 0.793147i \(0.708441\pi\)
\(20\) −0.400180 + 3.80745i −0.0894829 + 0.851373i
\(21\) 5.70106 1.21180i 1.24407 0.264436i
\(22\) 11.5626 + 5.14801i 2.46516 + 1.09756i
\(23\) 3.23607 2.35114i 0.674767 0.490247i −0.196851 0.980433i \(-0.563071\pi\)
0.871617 + 0.490187i \(0.163071\pi\)
\(24\) 9.73552 4.33453i 1.98725 0.884783i
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 2.20711 + 3.82282i 0.432849 + 0.749717i
\(27\) −0.335106 0.243469i −0.0644911 0.0468556i
\(28\) −9.04067 1.92165i −1.70853 0.363158i
\(29\) −0.362036 + 1.11423i −0.0672284 + 0.206908i −0.979027 0.203729i \(-0.934694\pi\)
0.911799 + 0.410637i \(0.134694\pi\)
\(30\) 5.82843 1.06412
\(31\) 0 0
\(32\) 1.58579 0.280330
\(33\) 3.91118 12.0374i 0.680850 2.09544i
\(34\) −0.405162 0.0861198i −0.0694847 0.0147694i
\(35\) −1.95314 1.41904i −0.330141 0.239861i
\(36\) −5.41421 9.37769i −0.902369 1.56295i
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) −3.49744 + 1.55716i −0.567360 + 0.252605i
\(39\) 3.57117 2.59461i 0.571845 0.415470i
\(40\) −4.03258 1.79542i −0.637608 0.283881i
\(41\) −9.27801 + 1.97210i −1.44898 + 0.307990i −0.864179 0.503185i \(-0.832161\pi\)
−0.584802 + 0.811176i \(0.698828\pi\)
\(42\) −1.47083 + 13.9940i −0.226954 + 2.15932i
\(43\) 5.95492 + 6.61361i 0.908117 + 1.00857i 0.999918 + 0.0127892i \(0.00407105\pi\)
−0.0918008 + 0.995777i \(0.529262\pi\)
\(44\) −13.4302 + 14.9157i −2.02467 + 2.24863i
\(45\) −0.295651 2.81293i −0.0440731 0.419327i
\(46\) 2.98413 + 9.18421i 0.439986 + 1.35414i
\(47\) −0.511996 1.57576i −0.0746823 0.229849i 0.906746 0.421677i \(-0.138558\pi\)
−0.981428 + 0.191828i \(0.938558\pi\)
\(48\) 0.757062 + 7.20296i 0.109273 + 1.03966i
\(49\) −0.783935 + 0.870648i −0.111991 + 0.124378i
\(50\) 6.46170 + 7.17644i 0.913822 + 1.01490i
\(51\) −0.0432971 + 0.411944i −0.00606281 + 0.0576838i
\(52\) −6.84703 + 1.45538i −0.949513 + 0.201825i
\(53\) 0.156740 + 0.0697850i 0.0215298 + 0.00958570i 0.417473 0.908689i \(-0.362916\pi\)
−0.395943 + 0.918275i \(0.629582\pi\)
\(54\) 0.809017 0.587785i 0.110093 0.0799874i
\(55\) −4.78939 + 2.13237i −0.645801 + 0.287529i
\(56\) 5.32843 9.22911i 0.712041 1.23329i
\(57\) 1.91421 + 3.31552i 0.253544 + 0.439151i
\(58\) −2.28825 1.66251i −0.300461 0.218298i
\(59\) 9.85099 + 2.09389i 1.28249 + 0.272602i 0.798246 0.602332i \(-0.205761\pi\)
0.484244 + 0.874933i \(0.339095\pi\)
\(60\) −2.85613 + 8.79027i −0.368725 + 1.13482i
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) 0 0
\(63\) 6.82843 0.860301
\(64\) −3.03715 + 9.34739i −0.379644 + 1.16842i
\(65\) −1.78847 0.380151i −0.221833 0.0471520i
\(66\) 24.7206 + 17.9606i 3.04290 + 2.21079i
\(67\) 2.62132 + 4.54026i 0.320245 + 0.554681i 0.980539 0.196327i \(-0.0629013\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(68\) 0.328427 0.568852i 0.0398276 0.0689835i
\(69\) 8.82198 3.92780i 1.06204 0.472851i
\(70\) 4.71530 3.42586i 0.563586 0.409469i
\(71\) −12.8546 5.72322i −1.52556 0.679221i −0.538949 0.842338i \(-0.681178\pi\)
−0.986607 + 0.163117i \(0.947845\pi\)
\(72\) 12.2124 2.59584i 1.43925 0.305922i
\(73\) −0.400180 + 3.80745i −0.0468375 + 0.445629i 0.945822 + 0.324686i \(0.105259\pi\)
−0.992659 + 0.120943i \(0.961408\pi\)
\(74\) −1.61542 1.79411i −0.187789 0.208561i
\(75\) 6.46170 7.17644i 0.746132 0.828664i
\(76\) −0.634599 6.03781i −0.0727935 0.692584i
\(77\) −3.91118 12.0374i −0.445721 1.37179i
\(78\) 3.29315 + 10.1353i 0.372876 + 1.14759i
\(79\) 1.59329 + 15.1591i 0.179259 + 1.70554i 0.601352 + 0.798984i \(0.294629\pi\)
−0.422093 + 0.906552i \(0.638704\pi\)
\(80\) 2.00739 2.22943i 0.224433 0.249258i
\(81\) −6.34689 7.04894i −0.705210 0.783215i
\(82\) 2.39365 22.7740i 0.264334 2.51497i
\(83\) −3.98211 + 0.846423i −0.437093 + 0.0929069i −0.421202 0.906967i \(-0.638392\pi\)
−0.0158907 + 0.999874i \(0.505058\pi\)
\(84\) −20.3846 9.07580i −2.22414 0.990251i
\(85\) 0.138805 0.100848i 0.0150556 0.0109385i
\(86\) −19.6278 + 8.73885i −2.11652 + 0.942335i
\(87\) −1.41421 + 2.44949i −0.151620 + 0.262613i
\(88\) −11.5711 20.0417i −1.23348 2.13645i
\(89\) 10.1008 + 7.33866i 1.07068 + 0.777897i 0.976035 0.217614i \(-0.0698274\pi\)
0.0946482 + 0.995511i \(0.469827\pi\)
\(90\) 6.67921 + 1.41971i 0.704051 + 0.149651i
\(91\) 1.36407 4.19817i 0.142993 0.440087i
\(92\) −15.3137 −1.59656
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0.490035 1.50817i 0.0502765 0.154735i
\(96\) 3.74477 + 0.795975i 0.382199 + 0.0812388i
\(97\) −8.76038 6.36479i −0.889482 0.646246i 0.0462609 0.998929i \(-0.485269\pi\)
−0.935743 + 0.352683i \(0.885269\pi\)
\(98\) −1.41421 2.44949i −0.142857 0.247436i
\(99\) 7.41421 12.8418i 0.745157 1.29065i
\(100\) −13.9898 + 6.22865i −1.39898 + 0.622865i
\(101\) −6.86474 + 4.98752i −0.683067 + 0.496277i −0.874374 0.485253i \(-0.838727\pi\)
0.191307 + 0.981530i \(0.438727\pi\)
\(102\) −0.913545 0.406737i −0.0904545 0.0402729i
\(103\) 11.8073 2.50972i 1.16341 0.247290i 0.414553 0.910025i \(-0.363938\pi\)
0.748854 + 0.662736i \(0.230605\pi\)
\(104\) 0.843656 8.02685i 0.0827273 0.787098i
\(105\) −3.89998 4.33137i −0.380599 0.422698i
\(106\) −0.277163 + 0.307821i −0.0269204 + 0.0298982i
\(107\) −1.00199 9.53327i −0.0968658 0.921616i −0.929756 0.368177i \(-0.879982\pi\)
0.832890 0.553439i \(-0.186685\pi\)
\(108\) 0.490035 + 1.50817i 0.0471536 + 0.145124i
\(109\) −1.59810 4.91846i −0.153071 0.471103i 0.844890 0.534941i \(-0.179666\pi\)
−0.997960 + 0.0638377i \(0.979666\pi\)
\(110\) −1.32300 12.5875i −0.126143 1.20017i
\(111\) −1.61542 + 1.79411i −0.153329 + 0.170289i
\(112\) 4.84627 + 5.38233i 0.457930 + 0.508582i
\(113\) −0.558511 + 5.31388i −0.0525403 + 0.499887i 0.936332 + 0.351117i \(0.114198\pi\)
−0.988872 + 0.148770i \(0.952469\pi\)
\(114\) −9.04067 + 1.92165i −0.846736 + 0.179979i
\(115\) −3.65418 1.62695i −0.340754 0.151714i
\(116\) 3.62867 2.63638i 0.336913 0.244782i
\(117\) 4.72447 2.10347i 0.436777 0.194466i
\(118\) −12.1569 + 21.0563i −1.11913 + 1.93839i
\(119\) 0.207107 + 0.358719i 0.0189854 + 0.0328838i
\(120\) −8.62158 6.26394i −0.787039 0.571817i
\(121\) −16.1250 3.42748i −1.46591 0.311589i
\(122\) −2.11010 + 6.49422i −0.191039 + 0.587959i
\(123\) −22.8995 −2.06478
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −5.09423 + 15.6784i −0.453830 + 1.39675i
\(127\) 10.6613 + 2.26613i 0.946039 + 0.201087i 0.655004 0.755626i \(-0.272667\pi\)
0.291035 + 0.956712i \(0.406000\pi\)
\(128\) −16.6304 12.0827i −1.46994 1.06797i
\(129\) 10.7426 + 18.6068i 0.945837 + 1.63824i
\(130\) 2.20711 3.82282i 0.193576 0.335284i
\(131\) −4.34606 + 1.93499i −0.379717 + 0.169061i −0.587715 0.809068i \(-0.699972\pi\)
0.207997 + 0.978129i \(0.433306\pi\)
\(132\) −39.2016 + 28.4816i −3.41206 + 2.47901i
\(133\) 3.49744 + 1.55716i 0.303267 + 0.135023i
\(134\) −12.3803 + 2.63151i −1.06949 + 0.227328i
\(135\) −0.0432971 + 0.411944i −0.00372642 + 0.0354545i
\(136\) 0.506772 + 0.562828i 0.0434554 + 0.0482621i
\(137\) −5.00863 + 5.56265i −0.427916 + 0.475249i −0.918088 0.396377i \(-0.870267\pi\)
0.490172 + 0.871626i \(0.336934\pi\)
\(138\) 2.43695 + 23.1860i 0.207447 + 1.97372i
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 2.85613 + 8.79027i 0.241387 + 0.742914i
\(141\) −0.418114 3.97809i −0.0352115 0.335015i
\(142\) 22.7307 25.2450i 1.90752 2.11852i
\(143\) −6.41414 7.12363i −0.536378 0.595708i
\(144\) −0.886953 + 8.43880i −0.0739128 + 0.703233i
\(145\) 1.14597 0.243584i 0.0951677 0.0202285i
\(146\) −8.44357 3.75932i −0.698795 0.311124i
\(147\) −2.28825 + 1.66251i −0.188731 + 0.137121i
\(148\) 3.49744 1.55716i 0.287488 0.127998i
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 11.6569 + 20.1903i 0.951778 + 1.64853i
\(151\) 14.0071 + 10.1767i 1.13988 + 0.828172i 0.987103 0.160089i \(-0.0511781\pi\)
0.152778 + 0.988261i \(0.451178\pi\)
\(152\) 6.84703 + 1.45538i 0.555368 + 0.118047i
\(153\) −0.149960 + 0.461530i −0.0121236 + 0.0373125i
\(154\) 30.5563 2.46230
\(155\) 0 0
\(156\) −16.8995 −1.35304
\(157\) 4.58224 14.1027i 0.365702 1.12552i −0.583838 0.811870i \(-0.698450\pi\)
0.949540 0.313646i \(-0.101550\pi\)
\(158\) −35.9948 7.65094i −2.86360 0.608676i
\(159\) 0.335106 + 0.243469i 0.0265756 + 0.0193083i
\(160\) −0.792893 1.37333i −0.0626837 0.108571i
\(161\) 4.82843 8.36308i 0.380533 0.659103i
\(162\) 20.9197 9.31406i 1.64361 0.731782i
\(163\) 10.4934 7.62391i 0.821907 0.597150i −0.0953511 0.995444i \(-0.530397\pi\)
0.917258 + 0.398293i \(0.130397\pi\)
\(164\) 33.1742 + 14.7701i 2.59047 + 1.15335i
\(165\) −12.3803 + 2.63151i −0.963803 + 0.204863i
\(166\) 1.02735 9.77459i 0.0797379 0.758655i
\(167\) −5.72532 6.35861i −0.443038 0.492044i 0.479721 0.877421i \(-0.340738\pi\)
−0.922759 + 0.385377i \(0.874071\pi\)
\(168\) 17.2153 19.1196i 1.32819 1.47511i
\(169\) 1.00942 + 9.60395i 0.0776474 + 0.738766i
\(170\) 0.127999 + 0.393941i 0.00981708 + 0.0302139i
\(171\) 1.38603 + 4.26576i 0.105992 + 0.326211i
\(172\) −3.56140 33.8844i −0.271554 2.58366i
\(173\) −9.57774 + 10.6372i −0.728182 + 0.808728i −0.987592 0.157039i \(-0.949805\pi\)
0.259410 + 0.965767i \(0.416472\pi\)
\(174\) −4.56911 5.07451i −0.346383 0.384698i
\(175\) 1.00942 9.60395i 0.0763047 0.725991i
\(176\) 15.3842 3.27002i 1.15963 0.246487i
\(177\) 22.2117 + 9.88928i 1.66953 + 0.743324i
\(178\) −24.3855 + 17.7171i −1.82777 + 1.32795i
\(179\) −6.17315 + 2.74847i −0.461403 + 0.205430i −0.624255 0.781221i \(-0.714597\pi\)
0.162852 + 0.986651i \(0.447931\pi\)
\(180\) −5.41421 + 9.37769i −0.403552 + 0.698972i
\(181\) 5.15685 + 8.93193i 0.383306 + 0.663905i 0.991533 0.129858i \(-0.0414522\pi\)
−0.608227 + 0.793763i \(0.708119\pi\)
\(182\) 8.62158 + 6.26394i 0.639074 + 0.464314i
\(183\) 6.67921 + 1.41971i 0.493741 + 0.104948i
\(184\) 5.45627 16.7927i 0.402241 1.23797i
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) −1.96014 + 6.03269i −0.142958 + 0.439979i
\(189\) −0.978148 0.207912i −0.0711498 0.0151234i
\(190\) 3.09726 + 2.25029i 0.224699 + 0.163253i
\(191\) 0.550253 + 0.953065i 0.0398149 + 0.0689614i 0.885246 0.465123i \(-0.153990\pi\)
−0.845431 + 0.534084i \(0.820657\pi\)
\(192\) −11.8640 + 20.5490i −0.856208 + 1.48300i
\(193\) −19.3143 + 8.59928i −1.39027 + 0.618990i −0.959045 0.283253i \(-0.908586\pi\)
−0.431229 + 0.902243i \(0.641920\pi\)
\(194\) 21.1494 15.3660i 1.51844 1.10321i
\(195\) −4.03258 1.79542i −0.288779 0.128573i
\(196\) 4.38727 0.932542i 0.313376 0.0666102i
\(197\) −0.364311 + 3.46619i −0.0259561 + 0.246956i 0.973849 + 0.227198i \(0.0729563\pi\)
−0.999805 + 0.0197582i \(0.993710\pi\)
\(198\) 23.9542 + 26.6038i 1.70235 + 1.89065i
\(199\) 10.4289 11.5825i 0.739287 0.821061i −0.249815 0.968294i \(-0.580370\pi\)
0.989102 + 0.147232i \(0.0470365\pi\)
\(200\) −1.84564 17.5601i −0.130507 1.24169i
\(201\) 3.91118 + 12.0374i 0.275874 + 0.849052i
\(202\) −6.33030 19.4827i −0.445398 1.37080i
\(203\) 0.295651 + 2.81293i 0.0207506 + 0.197429i
\(204\) 1.06110 1.17847i 0.0742917 0.0825093i
\(205\) 6.34689 + 7.04894i 0.443286 + 0.492319i
\(206\) −3.04618 + 28.9825i −0.212238 + 2.01931i
\(207\) 11.0665 2.35225i 0.769173 0.163493i
\(208\) 5.01105 + 2.23106i 0.347454 + 0.154697i
\(209\) 6.72593 4.88668i 0.465242 0.338018i
\(210\) 12.8546 5.72322i 0.887049 0.394940i
\(211\) −3.79289 + 6.56948i −0.261114 + 0.452262i −0.966538 0.256523i \(-0.917423\pi\)
0.705425 + 0.708785i \(0.250756\pi\)
\(212\) −0.328427 0.568852i −0.0225565 0.0390689i
\(213\) −27.4828 19.9674i −1.88309 1.36814i
\(214\) 22.6364 + 4.81152i 1.54739 + 0.328909i
\(215\) 2.75010 8.46392i 0.187555 0.577235i
\(216\) −1.82843 −0.124409
\(217\) 0 0
\(218\) 12.4853 0.845610
\(219\) −2.85613 + 8.79027i −0.193000 + 0.593992i
\(220\) 19.6325 + 4.17301i 1.32362 + 0.281344i
\(221\) 0.253796 + 0.184393i 0.0170721 + 0.0124036i
\(222\) −2.91421 5.04757i −0.195589 0.338770i
\(223\) −0.863961 + 1.49642i −0.0578551 + 0.100208i −0.893502 0.449059i \(-0.851759\pi\)
0.835647 + 0.549266i \(0.185093\pi\)
\(224\) 3.49744 1.55716i 0.233683 0.104042i
\(225\) 9.15298 6.65003i 0.610199 0.443335i
\(226\) −11.7843 5.24670i −0.783878 0.349005i
\(227\) 15.2452 3.24047i 1.01186 0.215077i 0.327990 0.944681i \(-0.393629\pi\)
0.683870 + 0.729604i \(0.260296\pi\)
\(228\) 1.53206 14.5766i 0.101463 0.965356i
\(229\) 7.68515 + 8.53523i 0.507849 + 0.564024i 0.941481 0.337067i \(-0.109435\pi\)
−0.433632 + 0.901090i \(0.642768\pi\)
\(230\) 6.46170 7.17644i 0.426072 0.473201i
\(231\) −3.19401 30.3890i −0.210150 1.99945i
\(232\) 1.59810 + 4.91846i 0.104921 + 0.322913i
\(233\) −4.58224 14.1027i −0.300192 0.923897i −0.981428 0.191832i \(-0.938557\pi\)
0.681235 0.732064i \(-0.261443\pi\)
\(234\) 1.30507 + 12.4169i 0.0853149 + 0.811717i
\(235\) −1.10865 + 1.23128i −0.0723205 + 0.0803200i
\(236\) −25.7992 28.6530i −1.67939 1.86515i
\(237\) −3.84654 + 36.5974i −0.249860 + 2.37726i
\(238\) −0.978148 + 0.207912i −0.0634039 + 0.0134769i
\(239\) −11.6544 5.18889i −0.753862 0.335641i −0.00643017 0.999979i \(-0.502047\pi\)
−0.747432 + 0.664338i \(0.768713\pi\)
\(240\) 5.85942 4.25712i 0.378224 0.274796i
\(241\) 22.5252 10.0288i 1.45097 0.646015i 0.478300 0.878196i \(-0.341253\pi\)
0.972672 + 0.232181i \(0.0745863\pi\)
\(242\) 19.8995 34.4669i 1.27919 2.21562i
\(243\) −10.8284 18.7554i −0.694644 1.20316i
\(244\) −8.76038 6.36479i −0.560826 0.407464i
\(245\) 1.14597 + 0.243584i 0.0732134 + 0.0155620i
\(246\) 17.0838 52.5785i 1.08922 3.35228i
\(247\) 2.89949 0.184490
\(248\) 0 0
\(249\) −9.82843 −0.622851
\(250\) 6.71430 20.6645i 0.424649 1.30694i
\(251\) −3.50743 0.745527i −0.221387 0.0470572i 0.0958826 0.995393i \(-0.469433\pi\)
−0.317270 + 0.948335i \(0.602766\pi\)
\(252\) −21.1494 15.3660i −1.33229 0.967965i
\(253\) −10.4853 18.1610i −0.659204 1.14177i
\(254\) −13.1569 + 22.7883i −0.825534 + 1.42987i
\(255\) 0.378403 0.168476i 0.0236965 0.0105504i
\(256\) 24.2467 17.6163i 1.51542 1.10102i
\(257\) −0.286587 0.127597i −0.0178768 0.00795927i 0.397779 0.917481i \(-0.369781\pi\)
−0.415656 + 0.909522i \(0.636448\pi\)
\(258\) −50.7366 + 10.7844i −3.15872 + 0.671407i
\(259\) −0.252354 + 2.40099i −0.0156805 + 0.149190i
\(260\) 4.68391 + 5.20201i 0.290484 + 0.322615i
\(261\) −2.21730 + 2.46257i −0.137248 + 0.152429i
\(262\) −1.20054 11.4224i −0.0741695 0.705676i
\(263\) −0.212076 0.652702i −0.0130772 0.0402473i 0.944305 0.329071i \(-0.106736\pi\)
−0.957382 + 0.288824i \(0.906736\pi\)
\(264\) −17.2648 53.1356i −1.06257 3.27027i
\(265\) −0.0179342 0.170633i −0.00110169 0.0104819i
\(266\) −6.18453 + 6.86862i −0.379198 + 0.421142i
\(267\) 20.1690 + 22.4000i 1.23432 + 1.37086i
\(268\) 2.09800 19.9611i 0.128156 1.21932i
\(269\) 31.1329 6.61750i 1.89821 0.403476i 0.898814 0.438330i \(-0.144430\pi\)
0.999392 + 0.0348541i \(0.0110966\pi\)
\(270\) −0.913545 0.406737i −0.0555966 0.0247532i
\(271\) 18.8612 13.7035i 1.14574 0.832426i 0.157827 0.987467i \(-0.449551\pi\)
0.987908 + 0.155041i \(0.0495510\pi\)
\(272\) −0.470219 + 0.209355i −0.0285112 + 0.0126940i
\(273\) 5.32843 9.22911i 0.322491 0.558571i
\(274\) −9.03553 15.6500i −0.545857 0.945451i
\(275\) −16.9655 12.3262i −1.02306 0.743297i
\(276\) −36.1627 7.68661i −2.17674 0.462680i
\(277\) −4.37016 + 13.4500i −0.262577 + 0.808130i 0.729664 + 0.683806i \(0.239676\pi\)
−0.992242 + 0.124325i \(0.960324\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.6569 −0.636869
\(281\) 0.618034 1.90211i 0.0368688 0.113471i −0.930928 0.365202i \(-0.881000\pi\)
0.967797 + 0.251731i \(0.0809999\pi\)
\(282\) 9.44583 + 2.00777i 0.562491 + 0.119561i
\(283\) 1.89564 + 1.37727i 0.112684 + 0.0818700i 0.642700 0.766118i \(-0.277814\pi\)
−0.530016 + 0.847988i \(0.677814\pi\)
\(284\) 26.9350 + 46.6528i 1.59830 + 2.76834i
\(285\) 1.91421 3.31552i 0.113388 0.196394i
\(286\) 21.1414 9.41275i 1.25012 0.556588i
\(287\) −18.5261 + 13.4600i −1.09356 + 0.794518i
\(288\) 4.09751 + 1.82433i 0.241448 + 0.107500i
\(289\) 16.5997 3.52838i 0.976454 0.207552i
\(290\) −0.295651 + 2.81293i −0.0173612 + 0.165181i
\(291\) −17.4925 19.4274i −1.02543 1.13885i
\(292\) 9.80735 10.8922i 0.573932 0.637416i
\(293\) 2.59220 + 24.6631i 0.151438 + 1.44084i 0.761337 + 0.648357i \(0.224543\pi\)
−0.609899 + 0.792479i \(0.708790\pi\)
\(294\) −2.11010 6.49422i −0.123064 0.378751i
\(295\) −3.11213 9.57815i −0.181195 0.557662i
\(296\) 0.461411 + 4.39003i 0.0268190 + 0.255165i
\(297\) −1.45307 + 1.61379i −0.0843154 + 0.0936418i
\(298\) −1.61542 1.79411i −0.0935790 0.103930i
\(299\) 0.764491 7.27364i 0.0442116 0.420646i
\(300\) −36.1627 + 7.68661i −2.08785 + 0.443787i
\(301\) 19.6278 + 8.73885i 1.13133 + 0.503699i
\(302\) −33.8161 + 24.5688i −1.94590 + 1.41378i
\(303\) −18.7142 + 8.33211i −1.07510 + 0.478667i
\(304\) −2.37868 + 4.11999i −0.136427 + 0.236298i
\(305\) −1.41421 2.44949i −0.0809776 0.140257i
\(306\) −0.947822 0.688633i −0.0541834 0.0393665i
\(307\) 2.69710 + 0.573287i 0.153932 + 0.0327192i 0.284233 0.958755i \(-0.408261\pi\)
−0.130301 + 0.991474i \(0.541594\pi\)
\(308\) −14.9737 + 46.0842i −0.853205 + 2.62589i
\(309\) 29.1421 1.65784
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 6.02128 18.5316i 0.340888 1.04915i
\(313\) −3.74477 0.795975i −0.211667 0.0449912i 0.100858 0.994901i \(-0.467841\pi\)
−0.312524 + 0.949910i \(0.601175\pi\)
\(314\) 28.9620 + 21.0421i 1.63442 + 1.18748i
\(315\) −3.41421 5.91359i −0.192369 0.333193i
\(316\) 29.1777 50.5372i 1.64137 2.84294i
\(317\) −1.98383 + 0.883258i −0.111423 + 0.0496087i −0.461691 0.887041i \(-0.652757\pi\)
0.350268 + 0.936649i \(0.386090\pi\)
\(318\) −0.809017 + 0.587785i −0.0453674 + 0.0329614i
\(319\) 5.61112 + 2.49823i 0.314162 + 0.139874i
\(320\) 9.61365 2.04344i 0.537420 0.114232i
\(321\) 2.41901 23.0154i 0.135016 1.28459i
\(322\) 15.5999 + 17.3255i 0.869349 + 0.965510i
\(323\) −0.182056 + 0.202193i −0.0101298 + 0.0112503i
\(324\) 3.79582 + 36.1148i 0.210879 + 2.00638i
\(325\) −2.26006 6.95575i −0.125366 0.385836i
\(326\) 9.67647 + 29.7811i 0.535930 + 1.64942i
\(327\) −1.30507 12.4169i −0.0721704 0.686655i
\(328\) −28.0165 + 31.1155i −1.54695 + 1.71807i
\(329\) −2.67652 2.97258i −0.147561 0.163884i
\(330\) 3.19401 30.3890i 0.175824 1.67286i
\(331\) −0.740809 + 0.157464i −0.0407186 + 0.00865500i −0.228226 0.973608i \(-0.573292\pi\)
0.187507 + 0.982263i \(0.439959\pi\)
\(332\) 14.2383 + 6.33931i 0.781430 + 0.347915i
\(333\) −2.28825 + 1.66251i −0.125395 + 0.0911049i
\(334\) 18.8710 8.40190i 1.03257 0.459731i
\(335\) 2.62132 4.54026i 0.143218 0.248061i
\(336\) 8.74264 + 15.1427i 0.476950 + 0.826102i
\(337\) 10.7710 + 7.82560i 0.586735 + 0.426288i 0.841146 0.540808i \(-0.181882\pi\)
−0.254411 + 0.967096i \(0.581882\pi\)
\(338\) −22.8042 4.84719i −1.24039 0.263653i
\(339\) −3.98616 + 12.2681i −0.216499 + 0.666314i
\(340\) −0.656854 −0.0356229
\(341\) 0 0
\(342\) −10.8284 −0.585534
\(343\) −6.09626 + 18.7624i −0.329167 + 1.01307i
\(344\) 38.4258 + 8.16766i 2.07178 + 0.440371i
\(345\) −7.81256 5.67616i −0.420614 0.305594i
\(346\) −17.2782 29.9267i −0.928880 1.60887i
\(347\) −11.2782 + 19.5344i −0.605444 + 1.04866i 0.386537 + 0.922274i \(0.373671\pi\)
−0.991981 + 0.126386i \(0.959662\pi\)
\(348\) 9.89226 4.40432i 0.530281 0.236096i
\(349\) −28.4068 + 20.6387i −1.52058 + 1.10477i −0.559380 + 0.828911i \(0.688961\pi\)
−0.961199 + 0.275854i \(0.911039\pi\)
\(350\) 21.2981 + 9.48254i 1.13843 + 0.506863i
\(351\) −0.740809 + 0.157464i −0.0395415 + 0.00840480i
\(352\) 0.869019 8.26817i 0.0463189 0.440695i
\(353\) 2.00739 + 2.22943i 0.106843 + 0.118661i 0.794194 0.607664i \(-0.207893\pi\)
−0.687351 + 0.726325i \(0.741227\pi\)
\(354\) −39.2770 + 43.6215i −2.08755 + 2.31846i
\(355\) 1.47083 + 13.9940i 0.0780634 + 0.742724i
\(356\) −14.7707 45.4595i −0.782846 2.40935i
\(357\) 0.309017 + 0.951057i 0.0163549 + 0.0503352i
\(358\) −1.70525 16.2243i −0.0901251 0.857483i
\(359\) 17.9993 19.9902i 0.949965 1.05504i −0.0484531 0.998825i \(-0.515429\pi\)
0.998419 0.0562180i \(-0.0179042\pi\)
\(360\) −8.35428 9.27837i −0.440309 0.489013i
\(361\) 1.72318 16.3950i 0.0906937 0.862893i
\(362\) −24.3554 + 5.17690i −1.28009 + 0.272092i
\(363\) −36.3582 16.1877i −1.90831 0.849634i
\(364\) −13.6720 + 9.93327i −0.716606 + 0.520645i
\(365\) 3.49744 1.55716i 0.183064 0.0815056i
\(366\) −8.24264 + 14.2767i −0.430850 + 0.746254i
\(367\) −9.10660 15.7731i −0.475361 0.823349i 0.524241 0.851570i \(-0.324349\pi\)
−0.999602 + 0.0282210i \(0.991016\pi\)
\(368\) 9.70820 + 7.05342i 0.506075 + 0.367685i
\(369\) −26.2422 5.57794i −1.36611 0.290376i
\(370\) −0.746033 + 2.29605i −0.0387844 + 0.119366i
\(371\) 0.414214 0.0215049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −0.671053 + 2.06529i −0.0346993 + 0.106794i
\(375\) −21.2531 4.51749i −1.09751 0.233282i
\(376\) −5.91691 4.29889i −0.305142 0.221698i
\(377\) 1.07107 + 1.85514i 0.0551628 + 0.0955448i
\(378\) 1.20711 2.09077i 0.0620869 0.107538i
\(379\) −26.8443 + 11.9519i −1.37890 + 0.613926i −0.956299 0.292390i \(-0.905550\pi\)
−0.422601 + 0.906316i \(0.638883\pi\)
\(380\) −4.91160 + 3.56848i −0.251960 + 0.183059i
\(381\) 24.0388 + 10.7027i 1.23154 + 0.548318i
\(382\) −2.59880 + 0.552391i −0.132966 + 0.0282628i
\(383\) −2.60271 + 24.7631i −0.132992 + 1.26533i 0.700841 + 0.713318i \(0.252808\pi\)
−0.833833 + 0.552017i \(0.813858\pi\)
\(384\) −33.2072 36.8804i −1.69460 1.88204i
\(385\) −8.46909 + 9.40588i −0.431625 + 0.479368i
\(386\) −5.33530 50.7620i −0.271560 2.58372i
\(387\) 7.77844 + 23.9396i 0.395401 + 1.21692i
\(388\) 12.8106 + 39.4269i 0.650358 + 2.00160i
\(389\) −1.79184 17.0482i −0.0908499 0.864380i −0.941129 0.338047i \(-0.890234\pi\)
0.850279 0.526332i \(-0.176433\pi\)
\(390\) 7.13083 7.91959i 0.361083 0.401024i
\(391\) 0.459219 + 0.510014i 0.0232237 + 0.0257925i
\(392\) −0.540577 + 5.14324i −0.0273032 + 0.259773i
\(393\) −11.2343 + 2.38792i −0.566695 + 0.120455i
\(394\) −7.68677 3.42237i −0.387254 0.172416i
\(395\) 12.3316 8.95940i 0.620468 0.450796i
\(396\) −51.8616 + 23.0903i −2.60614 + 1.16033i
\(397\) 8.25736 14.3022i 0.414425 0.717805i −0.580943 0.813944i \(-0.697316\pi\)
0.995368 + 0.0961392i \(0.0306494\pi\)
\(398\) 18.8137 + 32.5863i 0.943046 + 1.63340i
\(399\) 7.47745 + 5.43269i 0.374341 + 0.271975i
\(400\) 11.7378 + 2.49494i 0.586889 + 0.124747i
\(401\) −6.54238 + 20.1354i −0.326711 + 1.00551i 0.643952 + 0.765066i \(0.277294\pi\)
−0.970663 + 0.240446i \(0.922706\pi\)
\(402\) −30.5563 −1.52401
\(403\) 0 0
\(404\) 32.4853 1.61620
\(405\) −2.93111 + 9.02104i −0.145648 + 0.448259i
\(406\) −6.67921 1.41971i −0.331484 0.0704590i
\(407\) 4.24139 + 3.08155i 0.210238 + 0.152747i
\(408\) 0.914214 + 1.58346i 0.0452603 + 0.0783932i
\(409\) −4.67157 + 8.09140i −0.230994 + 0.400094i −0.958101 0.286431i \(-0.907531\pi\)
0.727107 + 0.686525i \(0.240865\pi\)
\(410\) −20.9197 + 9.31406i −1.03315 + 0.459989i
\(411\) −14.6198 + 10.6219i −0.721142 + 0.523940i
\(412\) −42.2179 18.7966i −2.07992 0.926042i
\(413\) 23.7824 5.05510i 1.17026 0.248745i
\(414\) −2.85506 + 27.1641i −0.140319 + 1.33504i
\(415\) 2.72408 + 3.02539i 0.133720 + 0.148511i
\(416\) 1.94014 2.15474i 0.0951232 0.105645i
\(417\) 0 0
\(418\) 6.20230 + 19.0887i 0.303364 + 0.933660i
\(419\) 8.65248 + 26.6296i 0.422701 + 1.30094i 0.905178 + 0.425032i \(0.139737\pi\)
−0.482477 + 0.875908i \(0.660263\pi\)
\(420\) 2.33242 + 22.1915i 0.113810 + 1.08283i
\(421\) −1.91228 + 2.12381i −0.0931990 + 0.103508i −0.787940 0.615752i \(-0.788852\pi\)
0.694741 + 0.719260i \(0.255519\pi\)
\(422\) −12.2543 13.6097i −0.596528 0.662512i
\(423\) 0.489851 4.66062i 0.0238174 0.226607i
\(424\) 0.740809 0.157464i 0.0359769 0.00764712i
\(425\) 0.626958 + 0.279140i 0.0304120 + 0.0135403i
\(426\) 66.3493 48.2056i 3.21463 2.33557i
\(427\) 6.23808 2.77737i 0.301882 0.134406i
\(428\) −18.3492 + 31.7818i −0.886944 + 1.53623i
\(429\) −11.5711 20.0417i −0.558656 0.967621i
\(430\) 17.3820 + 12.6287i 0.838232 + 0.609012i
\(431\) 24.6910 + 5.24824i 1.18932 + 0.252799i 0.759740 0.650227i \(-0.225326\pi\)
0.429585 + 0.903026i \(0.358660\pi\)
\(432\) 0.383997 1.18182i 0.0184751 0.0568604i
\(433\) −35.1127 −1.68741 −0.843704 0.536808i \(-0.819630\pi\)
−0.843704 + 0.536808i \(0.819630\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) −6.11822 + 18.8300i −0.293010 + 0.901791i
\(437\) 6.20453 + 1.31881i 0.296803 + 0.0630874i
\(438\) −18.0522 13.1157i −0.862566 0.626691i
\(439\) 6.03553 + 10.4539i 0.288060 + 0.498935i 0.973347 0.229339i \(-0.0736563\pi\)
−0.685286 + 0.728274i \(0.740323\pi\)
\(440\) −11.5711 + 20.0417i −0.551629 + 0.955449i
\(441\) −3.02722 + 1.34781i −0.144153 + 0.0641813i
\(442\) −0.612717 + 0.445165i −0.0291440 + 0.0211743i
\(443\) −12.0978 5.38627i −0.574782 0.255909i 0.0986951 0.995118i \(-0.468533\pi\)
−0.673477 + 0.739208i \(0.735200\pi\)
\(444\) 9.04067 1.92165i 0.429051 0.0911976i
\(445\) 1.30507 12.4169i 0.0618661 0.588617i
\(446\) −2.79133 3.10008i −0.132173 0.146793i
\(447\) −1.61542 + 1.79411i −0.0764069 + 0.0848585i
\(448\) 2.48024 + 23.5979i 0.117180 + 1.11490i
\(449\) 1.42995 + 4.40094i 0.0674835 + 0.207693i 0.979112 0.203323i \(-0.0651741\pi\)
−0.911628 + 0.411016i \(0.865174\pi\)
\(450\) 8.44040 + 25.9769i 0.397884 + 1.22456i
\(451\) 5.19798 + 49.4555i 0.244763 + 2.32877i
\(452\) 13.6876 15.2017i 0.643812 0.715026i
\(453\) 27.9690 + 31.0627i 1.31410 + 1.45945i
\(454\) −3.93314 + 37.4213i −0.184591 + 1.75627i
\(455\) −4.31775 + 0.917767i −0.202419 + 0.0430256i
\(456\) 15.4385 + 6.87364i 0.722972 + 0.321888i
\(457\) −25.1707 + 18.2876i −1.17744 + 0.855457i −0.991880 0.127177i \(-0.959409\pi\)
−0.185556 + 0.982634i \(0.559409\pi\)
\(458\) −25.3307 + 11.2780i −1.18363 + 0.526985i
\(459\) 0.0355339 0.0615465i 0.00165858 0.00287275i
\(460\) 7.65685 + 13.2621i 0.357003 + 0.618347i
\(461\) −21.1494 15.3660i −0.985027 0.715664i −0.0262008 0.999657i \(-0.508341\pi\)
−0.958826 + 0.283993i \(0.908341\pi\)
\(462\) 72.1575 + 15.3376i 3.35707 + 0.713568i
\(463\) 7.71633 23.7484i 0.358608 1.10368i −0.595279 0.803519i \(-0.702959\pi\)
0.953888 0.300164i \(-0.0970413\pi\)
\(464\) −3.51472 −0.163167
\(465\) 0 0
\(466\) 35.7990 1.65836
\(467\) −2.47214 + 7.60845i −0.114397 + 0.352077i −0.991821 0.127639i \(-0.959260\pi\)
0.877424 + 0.479716i \(0.159260\pi\)
\(468\) −19.3663 4.11644i −0.895209 0.190283i
\(469\) 10.2396 + 7.43951i 0.472821 + 0.343525i
\(470\) −2.00000 3.46410i −0.0922531 0.159787i
\(471\) 17.8995 31.0028i 0.824765 1.42854i
\(472\) 40.6124 18.0818i 1.86934 0.832283i
\(473\) 37.7462 27.4242i 1.73557 1.26097i
\(474\) −81.1599 36.1347i −3.72780 1.65972i
\(475\) 6.20453 1.31881i 0.284683 0.0605113i
\(476\) 0.165760 1.57710i 0.00759759 0.0722862i
\(477\) 0.324717 + 0.360634i 0.0148678 + 0.0165123i
\(478\) 20.6085 22.8881i 0.942613 1.04688i
\(479\) −1.01684 9.67463i −0.0464608 0.442045i −0.992881 0.119108i \(-0.961996\pi\)
0.946420 0.322937i \(-0.104670\pi\)
\(480\) −1.18305 3.64105i −0.0539986 0.166190i
\(481\) 0.565015 + 1.73894i 0.0257625 + 0.0792887i
\(482\) 6.22226 + 59.2008i 0.283416 + 2.69652i
\(483\) 15.5999 17.3255i 0.709821 0.788336i
\(484\) 42.2306 + 46.9019i 1.91957 + 2.13190i
\(485\) −1.13188 + 10.7691i −0.0513960 + 0.489000i
\(486\) 51.1417 10.8705i 2.31984 0.493096i
\(487\) −15.8818 7.07103i −0.719672 0.320419i 0.0140190 0.999902i \(-0.495537\pi\)
−0.733691 + 0.679483i \(0.762204\pi\)
\(488\) 10.1008 7.33866i 0.457242 0.332206i
\(489\) 28.6065 12.7364i 1.29363 0.575961i
\(490\) −1.41421 + 2.44949i −0.0638877 + 0.110657i
\(491\) −2.20711 3.82282i −0.0996053 0.172522i 0.811916 0.583774i \(-0.198425\pi\)
−0.911521 + 0.411253i \(0.865091\pi\)
\(492\) 70.9257 + 51.5306i 3.19758 + 2.32318i
\(493\) −0.196618 0.0417924i −0.00885521 0.00188223i
\(494\) −2.16312 + 6.65740i −0.0973233 + 0.299530i
\(495\) −14.8284 −0.666488
\(496\) 0 0
\(497\) −33.9706 −1.52379
\(498\) 7.33233 22.5666i 0.328570 1.01123i
\(499\) −39.3344 8.36080i −1.76085 0.374281i −0.789840 0.613313i \(-0.789837\pi\)
−0.971012 + 0.239032i \(0.923170\pi\)
\(500\) 27.8754 + 20.2526i 1.24662 + 0.905725i
\(501\) −10.3284 17.8894i −0.461440 0.799238i
\(502\) 4.32843 7.49706i 0.193187 0.334610i
\(503\) 21.3631 9.51145i 0.952532 0.424094i 0.129177 0.991622i \(-0.458766\pi\)
0.823355 + 0.567527i \(0.192100\pi\)
\(504\) 24.3855 17.7171i 1.08622 0.789182i
\(505\) 7.75169 + 3.45127i 0.344946 + 0.153580i
\(506\) 49.5211 10.5260i 2.20148 0.467939i
\(507\) −2.43695 + 23.1860i −0.108229 + 1.02973i
\(508\) −27.9214 31.0099i −1.23881 1.37584i
\(509\) 4.54941 5.05263i 0.201649 0.223954i −0.633835 0.773468i \(-0.718520\pi\)
0.835485 + 0.549514i \(0.185187\pi\)
\(510\) 0.104528 + 0.994522i 0.00462860 + 0.0440382i
\(511\) 2.85613 + 8.79027i 0.126348 + 0.388859i
\(512\) 9.65451 + 29.7135i 0.426673 + 1.31316i
\(513\) −0.0686600 0.653256i −0.00303141 0.0288420i
\(514\) 0.506772 0.562828i 0.0223528 0.0248253i
\(515\) −8.07712 8.97055i −0.355920 0.395290i
\(516\) 8.59797 81.8042i 0.378505 3.60123i
\(517\) −8.49648 + 1.80598i −0.373675 + 0.0794270i
\(518\) −5.32453 2.37063i −0.233947 0.104160i
\(519\) −27.9567 + 20.3117i −1.22716 + 0.891585i
\(520\) −7.37329 + 3.28280i −0.323340 + 0.143960i
\(521\) −15.2279 + 26.3755i −0.667147 + 1.15553i 0.311551 + 0.950229i \(0.399152\pi\)
−0.978698 + 0.205304i \(0.934182\pi\)
\(522\) −4.00000 6.92820i −0.175075 0.303239i
\(523\) 6.47214 + 4.70228i 0.283007 + 0.205616i 0.720228 0.693738i \(-0.244037\pi\)
−0.437221 + 0.899354i \(0.644037\pi\)
\(524\) 17.8152 + 3.78674i 0.778261 + 0.165424i
\(525\) 7.20433 22.1727i 0.314423 0.967694i
\(526\) 1.65685 0.0722423
\(527\) 0 0
\(528\) 37.9706 1.65246
\(529\) −2.16312 + 6.65740i −0.0940487 + 0.289452i
\(530\) 0.405162 + 0.0861198i 0.0175991 + 0.00374081i
\(531\) 23.0451 + 16.7432i 1.00007 + 0.726594i
\(532\) −7.32843 12.6932i −0.317728 0.550320i
\(533\) −8.67157 + 15.0196i −0.375608 + 0.650571i
\(534\) −66.4783 + 29.5980i −2.87680 + 1.28083i
\(535\) −7.75506 + 5.63438i −0.335281 + 0.243596i
\(536\) 21.1414 + 9.41275i 0.913169 + 0.406569i
\(537\) −15.9572 + 3.39181i −0.688605 + 0.146367i
\(538\) −8.03203 + 76.4197i −0.346285 + 3.29469i
\(539\) 4.10989 + 4.56450i 0.177026 + 0.196607i
\(540\) 1.06110 1.17847i 0.0456624 0.0507132i
\(541\) −2.64293 25.1458i −0.113628 1.08110i −0.891607 0.452810i \(-0.850422\pi\)
0.777979 0.628291i \(-0.216245\pi\)
\(542\) 17.3928 + 53.5295i 0.747085 + 2.29929i
\(543\) 7.69437 + 23.6808i 0.330197 + 1.01624i
\(544\) 0.0284399 + 0.270587i 0.00121935 + 0.0116013i
\(545\) −3.46046 + 3.84323i −0.148230 + 0.164626i
\(546\) 17.2153 + 19.1196i 0.736749 + 0.818242i
\(547\) −0.598731 + 5.69654i −0.0255999 + 0.243567i 0.974237 + 0.225525i \(0.0724098\pi\)
−0.999837 + 0.0180415i \(0.994257\pi\)
\(548\) 28.0306 5.95810i 1.19741 0.254517i
\(549\) 7.30836 + 3.25389i 0.311913 + 0.138873i
\(550\) 40.9584 29.7580i 1.74647 1.26889i
\(551\) −1.69724 + 0.755662i −0.0723050 + 0.0321923i
\(552\) 21.3137 36.9164i 0.907172 1.57127i
\(553\) 18.3995 + 31.8689i 0.782426 + 1.35520i
\(554\) −27.6216 20.0682i −1.17353 0.852618i
\(555\) 2.36146 + 0.501943i 0.100238 + 0.0213063i
\(556\) 0 0
\(557\) 44.4853 1.88490 0.942451 0.334344i \(-0.108515\pi\)
0.942451 + 0.334344i \(0.108515\pi\)
\(558\) 0 0
\(559\) 16.2721 0.688236
\(560\) 2.23810 6.88816i 0.0945769 0.291078i
\(561\) 2.12412 + 0.451495i 0.0896804 + 0.0190622i
\(562\) 3.90628 + 2.83808i 0.164776 + 0.119717i
\(563\) −2.37868 4.11999i −0.100249 0.173637i 0.811538 0.584300i \(-0.198631\pi\)
−0.911787 + 0.410663i \(0.865297\pi\)
\(564\) −7.65685 + 13.2621i −0.322412 + 0.558433i
\(565\) 4.88121 2.17325i 0.205354 0.0914294i
\(566\) −4.57649 + 3.32502i −0.192364 + 0.139761i
\(567\) −20.9197 9.31406i −0.878546 0.391154i
\(568\) −60.7554 + 12.9140i −2.54924 + 0.541858i
\(569\) −1.58278 + 15.0592i −0.0663538 + 0.631314i 0.909921 + 0.414781i \(0.136142\pi\)
−0.976275 + 0.216533i \(0.930525\pi\)
\(570\) 6.18453 + 6.86862i 0.259042 + 0.287695i
\(571\) −27.3671 + 30.3942i −1.14528 + 1.27196i −0.188199 + 0.982131i \(0.560265\pi\)
−0.957079 + 0.289829i \(0.906402\pi\)
\(572\) 3.83604 + 36.4974i 0.160393 + 1.52603i
\(573\) 0.821013 + 2.52682i 0.0342983 + 0.105559i
\(574\) −17.0838 52.5785i −0.713063 2.19458i
\(575\) −1.67246 15.9124i −0.0697462 0.663591i
\(576\) −18.6012 + 20.6587i −0.775048 + 0.860778i
\(577\) −22.7307 25.2450i −0.946293 1.05097i −0.998630 0.0523356i \(-0.983333\pi\)
0.0523363 0.998630i \(-0.483333\pi\)
\(578\) −4.28259 + 40.7461i −0.178132 + 1.69482i
\(579\) −49.9262 + 10.6122i −2.07486 + 0.441026i
\(580\) −4.09751 1.82433i −0.170140 0.0757511i
\(581\) −7.95136 + 5.77700i −0.329878 + 0.239671i
\(582\) 57.6563 25.6702i 2.38993 1.06407i
\(583\) 0.449747 0.778985i 0.0186266 0.0322623i
\(584\) 8.44975 + 14.6354i 0.349653 + 0.605617i
\(585\) −4.18389 3.03977i −0.172983 0.125679i
\(586\) −58.5618 12.4477i −2.41916 0.514209i
\(587\) −6.28638 + 19.3475i −0.259467 + 0.798556i 0.733450 + 0.679743i \(0.237909\pi\)
−0.992917 + 0.118813i \(0.962091\pi\)
\(588\) 10.8284 0.446557
\(589\) 0 0
\(590\) 24.3137 1.00098
\(591\) −2.60013 + 8.00239i −0.106955 + 0.329174i
\(592\) −2.93444 0.623735i −0.120605 0.0256354i
\(593\) −17.2432 12.5279i −0.708091 0.514459i 0.174466 0.984663i \(-0.444180\pi\)
−0.882557 + 0.470205i \(0.844180\pi\)
\(594\) −2.62132 4.54026i −0.107554 0.186289i
\(595\) 0.207107 0.358719i 0.00849055 0.0147061i
\(596\) 3.49744 1.55716i 0.143261 0.0637838i
\(597\) 30.4412 22.1168i 1.24588 0.905182i
\(598\) 16.1303 + 7.18169i 0.659619 + 0.293681i
\(599\) −34.1369 + 7.25601i −1.39479 + 0.296473i −0.843182 0.537628i \(-0.819320\pi\)
−0.551612 + 0.834101i \(0.685987\pi\)
\(600\) 4.45578 42.3939i 0.181906 1.73072i
\(601\) −15.7147 17.4530i −0.641017 0.711921i 0.331838 0.943336i \(-0.392331\pi\)
−0.972855 + 0.231415i \(0.925664\pi\)
\(602\) −34.7078 + 38.5470i −1.41459 + 1.57106i
\(603\) 1.54999 + 14.7472i 0.0631206 + 0.600552i
\(604\) −20.4830 63.0401i −0.833440 2.56506i
\(605\) 5.09423 + 15.6784i 0.207110 + 0.637419i
\(606\) −5.16954 49.1849i −0.209998 1.99800i
\(607\) −2.95369 + 3.28040i −0.119886 + 0.133147i −0.800100 0.599867i \(-0.795220\pi\)
0.680214 + 0.733014i \(0.261887\pi\)
\(608\) 1.68268 + 1.86880i 0.0682415 + 0.0757899i
\(609\) −0.713765 + 6.79102i −0.0289232 + 0.275186i
\(610\) 6.67921 1.41971i 0.270433 0.0574824i
\(611\) −2.76753 1.23218i −0.111962 0.0498488i
\(612\) 1.50304 1.09203i 0.0607569 0.0441425i
\(613\) −9.42204 + 4.19496i −0.380553 + 0.169433i −0.588093 0.808794i \(-0.700121\pi\)
0.207540 + 0.978227i \(0.433454\pi\)
\(614\) −3.32843 + 5.76500i −0.134324 + 0.232657i
\(615\) 11.4497 + 19.8315i 0.461698 + 0.799685i
\(616\) −45.1998 32.8396i −1.82115 1.32315i
\(617\) −22.7755 4.84107i −0.916905 0.194894i −0.274792 0.961504i \(-0.588609\pi\)
−0.642114 + 0.766610i \(0.721942\pi\)
\(618\) −21.7410 + 66.9119i −0.874551 + 2.69159i
\(619\) −31.6569 −1.27240 −0.636198 0.771526i \(-0.719494\pi\)
−0.636198 + 0.771526i \(0.719494\pi\)
\(620\) 0 0
\(621\) −1.65685 −0.0664873
\(622\) 8.44040 25.9769i 0.338429 1.04158i
\(623\) 29.4835 + 6.26690i 1.18123 + 0.251078i
\(624\) 10.7135 + 7.78383i 0.428884 + 0.311603i
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 4.62132 8.00436i 0.184705 0.319919i
\(627\) 18.3358 8.16364i 0.732263 0.326024i
\(628\) −45.9275 + 33.3683i −1.83271 + 1.33154i
\(629\) −0.156740 0.0697850i −0.00624962 0.00278251i
\(630\) 16.1250 3.42748i 0.642437 0.136554i
\(631\) 3.34619 31.8368i 0.133210 1.26740i −0.699878 0.714263i \(-0.746762\pi\)
0.833087 0.553141i \(-0.186571\pi\)
\(632\) 45.0220 + 50.0020i 1.79088 + 1.98897i
\(633\) −12.2543 + 13.6097i −0.487063 + 0.540939i
\(634\) −0.548005 5.21392i −0.0217641 0.207071i
\(635\) −3.36813 10.3660i −0.133660 0.411364i
\(636\) −0.490035 1.50817i −0.0194312 0.0598029i
\(637\) 0.223914 + 2.13040i 0.00887180 + 0.0844096i
\(638\) −9.92215 + 11.0197i −0.392822 + 0.436273i
\(639\) −26.6307 29.5764i −1.05350 1.17002i
\(640\) −2.14872 + 20.4437i −0.0849358 + 0.808110i
\(641\) −19.5342 + 4.15211i −0.771553 + 0.163999i −0.576835 0.816861i \(-0.695712\pi\)
−0.194718 + 0.980859i \(0.562379\pi\)
\(642\) 51.0398 + 22.7244i 2.01438 + 0.896861i
\(643\) −10.2634 + 7.45682i −0.404750 + 0.294068i −0.771473 0.636262i \(-0.780480\pi\)
0.366723 + 0.930330i \(0.380480\pi\)
\(644\) −33.7743 + 15.0373i −1.33089 + 0.592552i
\(645\) 10.7426 18.6068i 0.422991 0.732642i
\(646\) −0.328427 0.568852i −0.0129218 0.0223812i
\(647\) 18.3536 + 13.3347i 0.721554 + 0.524240i 0.886880 0.461999i \(-0.152868\pi\)
−0.165326 + 0.986239i \(0.552868\pi\)
\(648\) −40.9551 8.70527i −1.60887 0.341975i
\(649\) 16.3158 50.2148i 0.640451 1.97110i
\(650\) 17.6569 0.692559
\(651\) 0 0
\(652\) −49.6569 −1.94471
\(653\) 6.84230 21.0584i 0.267760 0.824080i −0.723285 0.690550i \(-0.757369\pi\)
0.991045 0.133530i \(-0.0426313\pi\)
\(654\) 29.4835 + 6.26690i 1.15289 + 0.245055i
\(655\) 3.84878 + 2.79631i 0.150384 + 0.109261i
\(656\) −14.2279 24.6435i −0.555507 0.962166i
\(657\) −5.41421 + 9.37769i −0.211229 + 0.365859i
\(658\) 8.82198 3.92780i 0.343916 0.153121i
\(659\) −7.81256 + 5.67616i −0.304334 + 0.221112i −0.729462 0.684022i \(-0.760229\pi\)
0.425127 + 0.905134i \(0.360229\pi\)
\(660\) 44.2666 + 19.7088i 1.72308 + 0.767163i
\(661\) −32.4179 + 6.89064i −1.26091 + 0.268015i −0.789418 0.613856i \(-0.789618\pi\)
−0.471492 + 0.881870i \(0.656284\pi\)
\(662\) 0.191123 1.81841i 0.00742819 0.0706745i
\(663\) 0.506772 + 0.562828i 0.0196814 + 0.0218584i
\(664\) −12.0247 + 13.3547i −0.466647 + 0.518264i
\(665\) −0.400180 3.80745i −0.0155183 0.147647i
\(666\) −2.11010 6.49422i −0.0817647 0.251646i
\(667\) 1.44814 + 4.45693i 0.0560723 + 0.172573i
\(668\) 3.42408 + 32.5779i 0.132481 + 1.26048i
\(669\) −2.79133 + 3.10008i −0.107919 + 0.119856i
\(670\) 8.46909 + 9.40588i 0.327189 + 0.363381i
\(671\) 1.54999 14.7472i 0.0598368 0.569309i
\(672\) 9.04067 1.92165i 0.348751 0.0741294i
\(673\) 18.8710 + 8.40190i 0.727423 + 0.323869i 0.736822 0.676086i \(-0.236325\pi\)
−0.00939971 + 0.999956i \(0.502992\pi\)
\(674\) −26.0035 + 18.8927i −1.00162 + 0.727719i
\(675\) −1.51361 + 0.673903i −0.0582589 + 0.0259386i
\(676\) 18.4853 32.0174i 0.710972 1.23144i
\(677\) −20.2990 35.1589i −0.780154 1.35127i −0.931852 0.362839i \(-0.881808\pi\)
0.151698 0.988427i \(-0.451526\pi\)
\(678\) −25.1945 18.3049i −0.967590 0.702995i
\(679\) −25.5709 5.43526i −0.981320 0.208586i
\(680\) 0.234037 0.720292i 0.00897491 0.0276219i
\(681\) 37.6274 1.44189
\(682\) 0 0
\(683\) −46.6274 −1.78415 −0.892074 0.451889i \(-0.850750\pi\)
−0.892074 + 0.451889i \(0.850750\pi\)
\(684\) 5.30631 16.3311i 0.202892 0.624437i
\(685\) 7.32171 + 1.55628i 0.279748 + 0.0594623i
\(686\) −38.5314 27.9947i −1.47114 1.06884i
\(687\) 13.8640 + 24.0131i 0.528943 + 0.916156i
\(688\) −13.3492 + 23.1216i −0.508935 + 0.881501i
\(689\) 0.286587 0.127597i 0.0109181 0.00486105i
\(690\) 18.8612 13.7035i 0.718033 0.521682i
\(691\) 12.8546 + 5.72322i 0.489011 + 0.217722i 0.636403 0.771357i \(-0.280421\pi\)
−0.147393 + 0.989078i \(0.547088\pi\)
\(692\) 53.6015 11.3934i 2.03762 0.433110i
\(693\) 3.74201 35.6029i 0.142147 1.35244i
\(694\) −36.4381 40.4686i −1.38317 1.53617i
\(695\) 0 0
\(696\) 1.30507 + 12.4169i 0.0494684 + 0.470661i
\(697\) −0.502900 1.54777i −0.0190487 0.0586258i
\(698\) −26.1952 80.6206i −0.991504 3.05154i
\(699\) −3.74201 35.6029i −0.141536 1.34662i
\(700\) −24.7381 + 27.4745i −0.935014 + 1.03844i
\(701\) 2.33211 + 2.59007i 0.0880825 + 0.0978255i 0.785575 0.618767i \(-0.212367\pi\)
−0.697492 + 0.716592i \(0.745701\pi\)
\(702\) 0.191123 1.81841i 0.00721346 0.0686315i
\(703\) −1.55113 + 0.329704i −0.0585021 + 0.0124350i
\(704\) 47.0722 + 20.9579i 1.77410 + 0.789880i
\(705\) −3.23607 + 2.35114i −0.121877 + 0.0885491i
\(706\) −6.61648 + 2.94585i −0.249015 + 0.110868i
\(707\) −10.2426 + 17.7408i −0.385214 + 0.667210i
\(708\) −46.5416 80.6125i −1.74914 3.02960i
\(709\) 4.29888 + 3.12332i 0.161448 + 0.117299i 0.665576 0.746330i \(-0.268186\pi\)
−0.504128 + 0.863629i \(0.668186\pi\)
\(710\) −33.2282 7.06288i −1.24703 0.265065i
\(711\) −13.3226 + 41.0026i −0.499635 + 1.53772i
\(712\) 55.1127 2.06544
\(713\) 0 0
\(714\) −2.41421 −0.0903497
\(715\) −2.96217 + 9.11662i −0.110779 + 0.340942i
\(716\) 25.3047 + 5.37869i 0.945682 + 0.201011i
\(717\) −24.9169 18.1032i −0.930539 0.676076i
\(718\) 32.4706 + 56.2407i 1.21179 + 2.09888i
\(719\) −3.03553 + 5.25770i −0.113206 + 0.196079i −0.917061 0.398746i \(-0.869445\pi\)
0.803855 + 0.594825i \(0.202779\pi\)
\(720\) 7.75169 3.45127i 0.288888 0.128621i
\(721\) 23.5765 17.1293i 0.878034 0.637929i
\(722\) 36.3582 + 16.1877i 1.35311 + 0.602444i
\(723\) 58.2261 12.3763i 2.16545 0.460281i
\(724\) 4.12734 39.2690i 0.153391 1.45942i
\(725\) 3.13574 + 3.48259i 0.116458 + 0.129340i
\(726\) 64.2923 71.4038i 2.38611 2.65004i
\(727\) 4.89618 + 46.5840i 0.181589 + 1.72771i 0.583574 + 0.812060i \(0.301654\pi\)
−0.401985 + 0.915646i \(0.631680\pi\)
\(728\) −6.02128 18.5316i −0.223164 0.686827i
\(729\) −7.36339 22.6622i −0.272718 0.839340i
\(730\) 0.966119 + 9.19201i 0.0357577 + 0.340211i
\(731\) −1.02170 + 1.13472i −0.0377891 + 0.0419690i
\(732\) −17.4925 19.4274i −0.646542 0.718057i
\(733\) 3.09691 29.4651i 0.114387 1.08832i −0.775251 0.631653i \(-0.782377\pi\)
0.889638 0.456666i \(-0.150957\pi\)
\(734\) 43.0097 9.14199i 1.58752 0.337437i
\(735\) 2.58390 + 1.15042i 0.0953085 + 0.0424341i
\(736\) 5.13171 3.72841i 0.189157 0.137431i
\(737\) 25.1091 11.1793i 0.924904 0.411794i
\(738\) 32.3848 56.0921i 1.19210 2.06478i
\(739\) 3.93503 + 6.81567i 0.144752 + 0.250718i 0.929281 0.369375i \(-0.120428\pi\)
−0.784528 + 0.620093i \(0.787095\pi\)
\(740\) −3.09726 2.25029i −0.113858 0.0827224i
\(741\) 6.84703 + 1.45538i 0.251532 + 0.0534648i
\(742\) −0.309017 + 0.951057i −0.0113444 + 0.0349144i
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) −7.46033 + 22.9605i −0.273142 + 0.840645i
\(747\) −11.2631 2.39404i −0.412095 0.0875935i
\(748\) −2.78597 2.02413i −0.101865 0.0740094i
\(749\) −11.5711 20.0417i −0.422798 0.732307i
\(750\) 26.2279 45.4281i 0.957708 1.65880i
\(751\) −1.13521 + 0.505428i −0.0414244 + 0.0184433i −0.427344 0.904089i \(-0.640551\pi\)
0.385920 + 0.922532i \(0.373884\pi\)
\(752\) 4.02127 2.92162i 0.146641 0.106541i
\(753\) −7.90843 3.52106i −0.288199 0.128315i
\(754\) −5.05856 + 1.07523i −0.184222 + 0.0391576i
\(755\) 1.80978 17.2189i 0.0658645 0.626659i
\(756\) 2.56172 + 2.84508i 0.0931688 + 0.103474i
\(757\) 23.1900 25.7551i 0.842854 0.936084i −0.155809 0.987787i \(-0.549798\pi\)
0.998662 + 0.0517036i \(0.0164651\pi\)
\(758\) −7.41537 70.5525i −0.269338 2.56258i
\(759\) −15.6447 48.1495i −0.567868 1.74772i
\(760\) −2.16312 6.65740i −0.0784646 0.241489i
\(761\) 2.13822 + 20.3438i 0.0775103 + 0.737462i 0.962395 + 0.271652i \(0.0875701\pi\)
−0.884885 + 0.465809i \(0.845763\pi\)
\(762\) −42.5078 + 47.2097i −1.53990 + 1.71023i
\(763\) −8.35428 9.27837i −0.302445 0.335900i
\(764\) 0.440400 4.19012i 0.0159331 0.151593i
\(765\) 0.474677 0.100896i 0.0171620 0.00364789i
\(766\) −54.9157 24.4500i −1.98418 0.883416i
\(767\) 14.8974 10.8236i 0.537914 0.390818i
\(768\) 66.0999 29.4296i 2.38517 1.06195i
\(769\) 13.0563 22.6143i 0.470824 0.815491i −0.528619 0.848859i \(-0.677290\pi\)
0.999443 + 0.0333680i \(0.0106233\pi\)
\(770\) −15.2782 26.4626i −0.550587 0.953645i
\(771\) −0.612717 0.445165i −0.0220664 0.0160322i
\(772\) 79.1724 + 16.8286i 2.84948 + 0.605675i
\(773\) 5.56231 17.1190i 0.200062 0.615728i −0.799818 0.600243i \(-0.795071\pi\)
0.999880 0.0154855i \(-0.00492938\pi\)
\(774\) −60.7696 −2.18432
\(775\) 0 0
\(776\) −47.7990 −1.71588
\(777\) −1.80108 + 5.54316i −0.0646135 + 0.198860i
\(778\) 40.4804 + 8.60438i 1.45129 + 0.308482i
\(779\) −12.1689 8.84125i −0.435997 0.316771i
\(780\) 8.44975 + 14.6354i 0.302549 + 0.524031i
\(781\) −36.8848 + 63.8863i −1.31984 + 2.28603i
\(782\) −1.51361 + 0.673903i −0.0541266 + 0.0240987i
\(783\) 0.392601 0.285241i 0.0140304 0.0101937i
\(784\) −3.21086 1.42956i −0.114673 0.0510559i
\(785\) −14.5044 + 3.08300i −0.517684 + 0.110037i
\(786\) 2.89836 27.5760i 0.103381 0.983604i
\(787\) 26.4881 + 29.4180i 0.944197 + 1.04864i 0.998743 + 0.0501262i \(0.0159623\pi\)
−0.0545455 + 0.998511i \(0.517371\pi\)
\(788\) 8.92831 9.91589i 0.318058 0.353239i
\(789\) −0.173188 1.64778i −0.00616567 0.0586624i
\(790\) 11.3715 + 34.9979i 0.404580 + 1.24517i
\(791\) 3.98616 + 12.2681i 0.141732 + 0.436205i
\(792\) −6.84200 65.0973i −0.243120 2.31313i
\(793\) 3.46046 3.84323i 0.122884 0.136477i
\(794\) 26.6783 + 29.6292i 0.946777 + 1.05150i
\(795\) 0.0432971 0.411944i 0.00153559 0.0146102i
\(796\) −58.3651 + 12.4059i −2.06870 + 0.439715i
\(797\) −20.5144 9.13361i −0.726659 0.323529i 0.00985554 0.999951i \(-0.496863\pi\)
−0.736514 + 0.676422i \(0.763529\pi\)
\(798\) −18.0522 + 13.1157i −0.639040 + 0.464290i
\(799\) 0.259695 0.115624i 0.00918734 0.00409047i
\(800\) 3.17157 5.49333i 0.112132 0.194218i
\(801\) 17.6569 + 30.5826i 0.623874 + 1.08058i
\(802\) −41.3510 30.0433i −1.46016 1.06087i
\(803\) 19.6325 + 4.17301i 0.692815 + 0.147262i
\(804\) 14.9737 46.0842i 0.528081 1.62527i
\(805\) −9.65685 −0.340359
\(806\) 0 0
\(807\) 76.8406 2.70492
\(808\) −11.5745 + 35.6226i −0.407189 + 1.25320i
\(809\) 44.9660 + 9.55782i 1.58092 + 0.336035i 0.912924 0.408130i \(-0.133819\pi\)
0.667996 + 0.744165i \(0.267152\pi\)
\(810\) −18.5261 13.4600i −0.650940 0.472936i
\(811\) −5.86396 10.1567i −0.205912 0.356649i 0.744511 0.667610i \(-0.232683\pi\)
−0.950423 + 0.310961i \(0.899349\pi\)
\(812\) 5.41421 9.37769i 0.190002 0.329093i
\(813\) 51.4182 22.8929i 1.80332 0.802888i
\(814\) −10.2396 + 7.43951i −0.358898 + 0.260755i
\(815\) −11.8492 5.27560i −0.415059 0.184796i
\(816\) −1.21549 + 0.258360i −0.0425505 + 0.00904439i
\(817\) −1.47518 + 14.0354i −0.0516100 + 0.491036i
\(818\) −15.0931 16.7626i −0.527719 0.586092i
\(819\) 8.35428 9.27837i 0.291922 0.324213i
\(820\) −3.79582 36.1148i −0.132556 1.26118i
\(821\) −2.62210 8.06998i −0.0915118 0.281644i 0.894817 0.446433i \(-0.147306\pi\)
−0.986329 + 0.164789i \(0.947306\pi\)
\(822\) −13.4816 41.4921i −0.470225 1.44720i
\(823\) 0.649457 + 6.17917i 0.0226386 + 0.215392i 0.999993 + 0.00378233i \(0.00120396\pi\)
−0.977354 + 0.211610i \(0.932129\pi\)
\(824\) 35.6541 39.5979i 1.24207 1.37946i
\(825\) −33.8764 37.6235i −1.17942 1.30988i
\(826\) −6.13566 + 58.3769i −0.213487 + 2.03119i
\(827\) −16.7268 + 3.55539i −0.581648 + 0.123633i −0.489334 0.872097i \(-0.662760\pi\)
−0.0923148 + 0.995730i \(0.529427\pi\)
\(828\) −39.5690 17.6173i −1.37512 0.612243i
\(829\) 37.5598 27.2888i 1.30450 0.947778i 0.304515 0.952507i \(-0.401506\pi\)
0.999989 + 0.00472973i \(0.00150553\pi\)
\(830\) −8.97871 + 3.99758i −0.311656 + 0.138758i
\(831\) −17.0711 + 29.5680i −0.592189 + 1.02570i
\(832\) 8.98528 + 15.5630i 0.311509 + 0.539549i
\(833\) −0.162621 0.118151i −0.00563447 0.00409368i
\(834\) 0 0
\(835\) −2.64406 + 8.13757i −0.0915014 + 0.281612i
\(836\) −31.8284 −1.10081
\(837\) 0 0
\(838\) −67.5980 −2.33513
\(839\) 9.46439 29.1284i 0.326747 1.00562i −0.643899 0.765111i \(-0.722684\pi\)
0.970646 0.240513i \(-0.0773158\pi\)
\(840\) −25.1657 5.34914i −0.868299 0.184563i
\(841\) 22.3510 + 16.2390i 0.770726 + 0.559965i
\(842\) −3.44975 5.97514i −0.118886 0.205917i
\(843\) 2.41421 4.18154i 0.0831499 0.144020i
\(844\) 26.5308 11.8123i 0.913230 0.406596i
\(845\) 7.81256 5.67616i 0.268760 0.195266i
\(846\) 10.3356 + 4.60170i 0.355345 + 0.158210i
\(847\) −38.9293 + 8.27468i −1.33763 + 0.284321i
\(848\) −0.0538027 + 0.511899i −0.00184759 + 0.0175787i
\(849\) 3.78517 + 4.20386i 0.129907 + 0.144276i
\(850\) −1.10865 + 1.23128i −0.0380264 + 0.0422326i
\(851\) 0.418114 + 3.97809i 0.0143328 + 0.136367i
\(852\) 40.1888 + 123.689i 1.37685 + 4.23750i
\(853\) −10.0385 30.8953i −0.343712 1.05784i −0.962270 0.272097i \(-0.912283\pi\)
0.618558 0.785739i \(-0.287717\pi\)
\(854\) 1.72318 + 16.3950i 0.0589660 + 0.561024i
\(855\) 3.00124 3.33321i 0.102640 0.113994i
\(856\) −28.3134 31.4452i −0.967732 1.07478i
\(857\) 0.262860 2.50094i 0.00897912 0.0854306i −0.989115 0.147147i \(-0.952991\pi\)
0.998094 + 0.0617167i \(0.0196575\pi\)
\(858\) 54.6492 11.6160i 1.86569 0.396565i
\(859\) −11.5246 5.13107i −0.393214 0.175070i 0.200599 0.979673i \(-0.435711\pi\)
−0.593812 + 0.804603i \(0.702378\pi\)
\(860\) −27.5641 + 20.0265i −0.939927 + 0.682897i
\(861\) −50.5047 + 22.4861i −1.72120 + 0.766326i
\(862\) −30.4706 + 52.7766i −1.03783 + 1.79758i
\(863\) 19.6924 + 34.1082i 0.670337 + 1.16106i 0.977809 + 0.209500i \(0.0671836\pi\)
−0.307472 + 0.951557i \(0.599483\pi\)
\(864\) −0.531406 0.386089i −0.0180788 0.0131350i
\(865\) 14.0009 + 2.97599i 0.476046 + 0.101187i
\(866\) 26.1952 80.6206i 0.890150 2.73960i
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) 79.9117 2.71082
\(870\) −2.11010 + 6.49422i −0.0715391 + 0.220175i
\(871\) 9.37631 + 1.99300i 0.317704 + 0.0675301i
\(872\) −18.4686 13.4182i −0.625425 0.454398i
\(873\) −15.3137 26.5241i −0.518291 0.897705i
\(874\) −7.65685 + 13.2621i −0.258997 + 0.448596i
\(875\) −19.8494 + 8.83754i −0.671034 + 0.298763i
\(876\) 28.6269 20.7986i 0.967213 0.702721i
\(877\) 44.0069 + 19.5931i 1.48601 + 0.661613i 0.979651 0.200710i \(-0.0643250\pi\)
0.506357 + 0.862324i \(0.330992\pi\)
\(878\) −28.5053 + 6.05899i −0.962008 + 0.204481i
\(879\) −6.25813 + 59.5421i −0.211081 + 2.00830i
\(880\) −10.5240 11.6881i −0.354765 0.394007i
\(881\) 22.9604 25.5001i 0.773554 0.859119i −0.219641 0.975581i \(-0.570489\pi\)
0.993195 + 0.116462i \(0.0371553\pi\)
\(882\) −0.836228 7.95618i −0.0281573 0.267898i
\(883\) 8.12229 + 24.9978i 0.273337 + 0.841244i 0.989655 + 0.143470i \(0.0458260\pi\)
−0.716318 + 0.697774i \(0.754174\pi\)
\(884\) −0.371133 1.14223i −0.0124825 0.0384173i
\(885\) −2.54147 24.1805i −0.0854307 0.812819i
\(886\) 21.3925 23.7588i 0.718694 0.798191i
\(887\) 35.6820 + 39.6289i 1.19808 + 1.33061i 0.930154 + 0.367169i \(0.119673\pi\)
0.267930 + 0.963438i \(0.413661\pi\)
\(888\) −1.11394 + 10.5985i −0.0373815 + 0.355662i
\(889\) 25.7387 5.47093i 0.863248 0.183489i
\(890\) 27.5362 + 12.2599i 0.923016 + 0.410953i
\(891\) −40.2307 + 29.2293i −1.34778 + 0.979220i
\(892\) 6.04331 2.69065i 0.202345 0.0900898i
\(893\) 1.31371 2.27541i 0.0439616 0.0761437i
\(894\) −2.91421 5.04757i −0.0974659 0.168816i
\(895\) 5.46682 + 3.97188i 0.182736 + 0.132765i
\(896\) −48.5429 10.3181i −1.62171 0.344704i
\(897\) 5.45627 16.7927i 0.182179 0.560691i
\(898\) −11.1716 −0.372800
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) −0.00909661 + 0.0279965i −0.000303052 + 0.000932698i
\(902\) −117.430 24.9606i −3.91000 0.831097i
\(903\) 41.9638 + 30.4885i 1.39647 + 1.01459i
\(904\) 11.7929 + 20.4259i 0.392226 + 0.679355i
\(905\) 5.15685 8.93193i 0.171420 0.296908i
\(906\) −92.1874 + 41.0445i −3.06272 + 1.36361i
\(907\) −44.7497 + 32.5126i −1.48589 + 1.07956i −0.510292 + 0.860001i \(0.670463\pi\)
−0.975599 + 0.219561i \(0.929537\pi\)
\(908\) −54.5104 24.2696i −1.80899 0.805415i
\(909\) −23.4755 + 4.98988i −0.778635 + 0.165504i
\(910\) 1.11394 10.5985i 0.0369269 0.351336i
\(911\) 32.8153 + 36.4450i 1.08722 + 1.20748i 0.976926 + 0.213579i \(0.0685120\pi\)
0.110292 + 0.993899i \(0.464821\pi\)
\(912\) −7.68515 + 8.53523i −0.254481 + 0.282630i
\(913\) 2.23097 + 21.2262i 0.0738342 + 0.702486i
\(914\) −23.2111 71.4364i −0.767755 2.36291i
\(915\) −2.11010 6.49422i −0.0697578 0.214692i
\(916\) −4.59618 43.7297i −0.151862 1.44487i
\(917\) −7.68515 + 8.53523i −0.253786 + 0.281858i
\(918\) 0.114805 + 0.127503i 0.00378912 + 0.00420824i
\(919\) 1.57843 15.0178i 0.0520677 0.495391i −0.937149 0.348930i \(-0.886545\pi\)
0.989216 0.146461i \(-0.0467883\pi\)
\(920\) −17.2710 + 3.67107i −0.569408 + 0.121031i
\(921\) 6.08134 + 2.70759i 0.200387 + 0.0892180i
\(922\) 51.0592 37.0967i 1.68155 1.22172i
\(923\) −23.5036 + 10.4645i −0.773631 + 0.344443i
\(924\) −58.4914 + 101.310i −1.92423 + 3.33286i
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) 48.7710 + 35.4342i 1.60271 + 1.16444i
\(927\) 33.3960 + 7.09855i 1.09687 + 0.233147i
\(928\) −0.574112 + 1.76693i −0.0188461 + 0.0580025i
\(929\) 24.4853 0.803336 0.401668 0.915785i \(-0.368431\pi\)
0.401668 + 0.915785i \(0.368431\pi\)
\(930\) 0 0
\(931\) −1.85786 −0.0608890
\(932\) −17.5428 + 53.9911i −0.574632 + 1.76854i
\(933\) −26.7168 5.67884i −0.874670 0.185917i
\(934\) −15.6251 11.3523i −0.511269 0.371459i
\(935\) −0.449747 0.778985i −0.0147083 0.0254755i
\(936\) 11.4142 19.7700i 0.373085 0.646203i
\(937\) 35.0013 15.5836i 1.14344 0.509094i 0.254483 0.967077i \(-0.418095\pi\)
0.888961 + 0.457984i \(0.151428\pi\)
\(938\) −24.7206 + 17.9606i −0.807156 + 0.586433i
\(939\) −8.44357 3.75932i −0.275546 0.122681i
\(940\) 6.20453 1.31881i 0.202370 0.0430150i
\(941\) 3.65850 34.8083i 0.119264 1.13472i −0.757178 0.653209i \(-0.773422\pi\)
0.876441 0.481508i \(-0.159911\pi\)
\(942\) 57.8306 + 64.2273i 1.88422 + 2.09264i
\(943\) −25.3876 + 28.1958i −0.826733 + 0.918180i
\(944\) 3.15814 + 30.0477i 0.102789 + 0.977969i
\(945\) 0.309017 + 0.951057i 0.0100523 + 0.0309379i
\(946\) 34.8076 + 107.127i 1.13169 + 3.48299i
\(947\) −4.06610 38.6864i −0.132131 1.25714i −0.836763 0.547566i \(-0.815555\pi\)
0.704632 0.709573i \(-0.251112\pi\)
\(948\) 94.2686 104.696i 3.06170 3.40037i
\(949\) 4.68391 + 5.20201i 0.152046 + 0.168865i
\(950\) −1.60072 + 15.2298i −0.0519342 + 0.494121i
\(951\) −5.12808 + 1.09001i −0.166289 + 0.0353459i
\(952\) 1.67035 + 0.743688i 0.0541364 + 0.0241031i
\(953\) −16.5729 + 12.0409i −0.536850 + 0.390045i −0.822914 0.568166i \(-0.807653\pi\)
0.286064 + 0.958211i \(0.407653\pi\)
\(954\) −1.07029 + 0.476522i −0.0346518 + 0.0154280i
\(955\) 0.550253 0.953065i 0.0178058 0.0308405i
\(956\) 24.4203 + 42.2972i 0.789809 + 1.36799i
\(957\) 11.9964 + 8.71593i 0.387790 + 0.281746i
\(958\) 22.9721 + 4.88286i 0.742194 + 0.157758i
\(959\) −5.58427 + 17.1866i −0.180325 + 0.554984i
\(960\) 23.7279 0.765815
\(961\) 0 0
\(962\) −4.41421 −0.142320
\(963\) 8.37828 25.7857i 0.269986 0.830933i
\(964\) −92.3342 19.6262i −2.97388 0.632118i
\(965\) 17.1043 + 12.4270i 0.550608 + 0.400040i
\(966\) 28.1421 + 48.7436i 0.905458 + 1.56830i
\(967\) 23.2782 40.3190i 0.748576 1.29657i −0.199930 0.979810i \(-0.564071\pi\)
0.948505 0.316761i \(-0.102595\pi\)
\(968\) −66.4783 + 29.5980i −2.13669 + 0.951317i
\(969\) −0.531406 + 0.386089i −0.0170712 + 0.0124030i
\(970\) −23.8820 10.6330i −0.766806 0.341404i
\(971\) −57.4158 + 12.2041i −1.84256 + 0.391648i −0.991138 0.132833i \(-0.957592\pi\)
−0.851422 + 0.524482i \(0.824259\pi\)
\(972\) −8.66663 + 82.4575i −0.277982 + 2.64483i
\(973\) 0 0
\(974\) 28.0838 31.1902i 0.899863 0.999399i
\(975\) −1.84564 17.5601i −0.0591079 0.562374i
\(976\) 2.62210 + 8.06998i 0.0839313 + 0.258314i
\(977\) 5.09423 + 15.6784i 0.162979 + 0.501598i 0.998882 0.0472800i \(-0.0150553\pi\)
−0.835903 + 0.548878i \(0.815055\pi\)
\(978\) 7.90214 + 75.1838i 0.252683 + 2.40411i
\(979\) 43.7985 48.6432i 1.39981 1.55464i
\(980\) −3.00124 3.33321i −0.0958711 0.106476i
\(981\) 1.52898 14.5473i 0.0488166 0.464459i
\(982\) 10.4240 2.21568i 0.332642 0.0707053i
\(983\) 44.6181 + 19.8653i 1.42310 + 0.633604i 0.966639 0.256141i \(-0.0824512\pi\)
0.456458 + 0.889745i \(0.349118\pi\)
\(984\) −81.7781 + 59.4153i −2.60699 + 1.89409i
\(985\) 3.18396 1.41759i 0.101449 0.0451682i
\(986\) 0.242641 0.420266i 0.00772725 0.0133840i
\(987\) −4.82843 8.36308i −0.153691 0.266200i
\(988\) −8.98050 6.52471i −0.285708 0.207579i
\(989\) 34.8201 + 7.40124i 1.10721 + 0.235346i
\(990\) 11.0625 34.0469i 0.351589 1.08208i
\(991\) −19.9411 −0.633451 −0.316725 0.948517i \(-0.602583\pi\)
−0.316725 + 0.948517i \(0.602583\pi\)
\(992\) 0 0
\(993\) −1.82843 −0.0580234
\(994\) 25.3432 77.9982i 0.803836 2.47395i
\(995\) −15.2452 3.24047i −0.483305 0.102730i
\(996\) 30.4412 + 22.1168i 0.964567 + 0.700799i
\(997\) 23.2990 + 40.3550i 0.737886 + 1.27806i 0.953445 + 0.301566i \(0.0975093\pi\)
−0.215559 + 0.976491i \(0.569157\pi\)
\(998\) 48.5416 84.0766i 1.53656 2.66140i
\(999\) 0.378403 0.168476i 0.0119721 0.00533034i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.o.846.1 16
31.2 even 5 31.2.c.a.5.1 4
31.3 odd 30 961.2.g.r.732.2 16
31.4 even 5 inner 961.2.g.o.547.1 16
31.5 even 3 961.2.d.l.628.1 8
31.6 odd 6 961.2.g.r.448.1 16
31.7 even 15 inner 961.2.g.o.844.1 16
31.8 even 5 inner 961.2.g.o.235.2 16
31.9 even 15 961.2.d.l.388.2 8
31.10 even 15 961.2.a.a.1.1 2
31.11 odd 30 961.2.d.i.531.1 8
31.12 odd 30 961.2.c.a.521.1 4
31.13 odd 30 961.2.d.i.374.2 8
31.14 even 15 inner 961.2.g.o.338.2 16
31.15 odd 10 961.2.g.r.816.2 16
31.16 even 5 inner 961.2.g.o.816.2 16
31.17 odd 30 961.2.g.r.338.2 16
31.18 even 15 961.2.d.l.374.2 8
31.19 even 15 31.2.c.a.25.1 yes 4
31.20 even 15 961.2.d.l.531.1 8
31.21 odd 30 961.2.a.c.1.1 2
31.22 odd 30 961.2.d.i.388.2 8
31.23 odd 10 961.2.g.r.235.2 16
31.24 odd 30 961.2.g.r.844.1 16
31.25 even 3 inner 961.2.g.o.448.1 16
31.26 odd 6 961.2.d.i.628.1 8
31.27 odd 10 961.2.g.r.547.1 16
31.28 even 15 inner 961.2.g.o.732.2 16
31.29 odd 10 961.2.c.a.439.1 4
31.30 odd 2 961.2.g.r.846.1 16
93.2 odd 10 279.2.h.c.253.2 4
93.41 odd 30 8649.2.a.l.1.2 2
93.50 odd 30 279.2.h.c.118.2 4
93.83 even 30 8649.2.a.k.1.2 2
124.19 odd 30 496.2.i.h.273.1 4
124.95 odd 10 496.2.i.h.129.1 4
155.2 odd 20 775.2.o.d.749.1 8
155.19 even 30 775.2.e.e.676.2 4
155.33 odd 20 775.2.o.d.749.4 8
155.64 even 10 775.2.e.e.501.2 4
155.112 odd 60 775.2.o.d.149.1 8
155.143 odd 60 775.2.o.d.149.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.c.a.5.1 4 31.2 even 5
31.2.c.a.25.1 yes 4 31.19 even 15
279.2.h.c.118.2 4 93.50 odd 30
279.2.h.c.253.2 4 93.2 odd 10
496.2.i.h.129.1 4 124.95 odd 10
496.2.i.h.273.1 4 124.19 odd 30
775.2.e.e.501.2 4 155.64 even 10
775.2.e.e.676.2 4 155.19 even 30
775.2.o.d.149.1 8 155.112 odd 60
775.2.o.d.149.4 8 155.143 odd 60
775.2.o.d.749.1 8 155.2 odd 20
775.2.o.d.749.4 8 155.33 odd 20
961.2.a.a.1.1 2 31.10 even 15
961.2.a.c.1.1 2 31.21 odd 30
961.2.c.a.439.1 4 31.29 odd 10
961.2.c.a.521.1 4 31.12 odd 30
961.2.d.i.374.2 8 31.13 odd 30
961.2.d.i.388.2 8 31.22 odd 30
961.2.d.i.531.1 8 31.11 odd 30
961.2.d.i.628.1 8 31.26 odd 6
961.2.d.l.374.2 8 31.18 even 15
961.2.d.l.388.2 8 31.9 even 15
961.2.d.l.531.1 8 31.20 even 15
961.2.d.l.628.1 8 31.5 even 3
961.2.g.o.235.2 16 31.8 even 5 inner
961.2.g.o.338.2 16 31.14 even 15 inner
961.2.g.o.448.1 16 31.25 even 3 inner
961.2.g.o.547.1 16 31.4 even 5 inner
961.2.g.o.732.2 16 31.28 even 15 inner
961.2.g.o.816.2 16 31.16 even 5 inner
961.2.g.o.844.1 16 31.7 even 15 inner
961.2.g.o.846.1 16 1.1 even 1 trivial
961.2.g.r.235.2 16 31.23 odd 10
961.2.g.r.338.2 16 31.17 odd 30
961.2.g.r.448.1 16 31.6 odd 6
961.2.g.r.547.1 16 31.27 odd 10
961.2.g.r.732.2 16 31.3 odd 30
961.2.g.r.816.2 16 31.15 odd 10
961.2.g.r.844.1 16 31.24 odd 30
961.2.g.r.846.1 16 31.30 odd 2
8649.2.a.k.1.2 2 93.83 even 30
8649.2.a.l.1.2 2 93.41 odd 30