Properties

Label 605.2.m.d.578.1
Level $605$
Weight $2$
Character 605.578
Analytic conductor $4.831$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(112,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.112"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,6,0,-2,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 578.1
Character \(\chi\) \(=\) 605.578
Dual form 605.2.m.d.112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.690094 + 1.35439i) q^{2} +(-0.124714 - 0.787410i) q^{3} +(-0.182561 - 0.251273i) q^{4} +(0.543872 - 2.16892i) q^{5} +(1.15252 + 0.374477i) q^{6} +(0.189114 + 0.0299527i) q^{7} +(-2.53639 + 0.401725i) q^{8} +(2.24871 - 0.730650i) q^{9} +(2.56223 + 2.23337i) q^{10} +(-0.175087 + 0.175087i) q^{12} +(-2.75820 - 1.40537i) q^{13} +(-0.171074 + 0.235463i) q^{14} +(-1.77566 - 0.157757i) q^{15} +(1.39821 - 4.30326i) q^{16} +(3.30253 - 1.68272i) q^{17} +(-0.562239 + 3.54984i) q^{18} +(-0.601740 - 0.437190i) q^{19} +(-0.644280 + 0.259299i) q^{20} -0.152646i q^{21} +(-1.14886 - 1.14886i) q^{23} +(0.632645 + 1.94708i) q^{24} +(-4.40841 - 2.35923i) q^{25} +(3.80684 - 2.76583i) q^{26} +(-1.94156 - 3.81053i) q^{27} +(-0.0269984 - 0.0529874i) q^{28} +(7.72385 - 5.61170i) q^{29} +(1.43903 - 2.29606i) q^{30} +(0.108440 + 0.333745i) q^{31} +(1.23166 + 1.23166i) q^{32} +5.63413i q^{34} +(0.167819 - 0.393882i) q^{35} +(-0.594118 - 0.431652i) q^{36} +(0.845584 - 5.33881i) q^{37} +(1.00738 - 0.513286i) q^{38} +(-0.762621 + 2.34710i) q^{39} +(-0.508163 + 5.71971i) q^{40} +(3.93579 - 5.41715i) q^{41} +(0.206741 + 0.105340i) q^{42} +(-3.72708 + 3.72708i) q^{43} +(-0.361710 - 5.27464i) q^{45} +(2.34882 - 0.763176i) q^{46} +(12.2119 - 1.93417i) q^{47} +(-3.56281 - 0.564293i) q^{48} +(-6.62253 - 2.15179i) q^{49} +(6.23752 - 4.34260i) q^{50} +(-1.73686 - 2.39059i) q^{51} +(0.150406 + 0.949628i) q^{52} +(-4.09968 + 8.04607i) q^{53} +6.50079 q^{54} -0.491699 q^{56} +(-0.269202 + 0.528339i) q^{57} +(2.27023 + 14.3337i) q^{58} +(5.65807 + 7.78767i) q^{59} +(0.284525 + 0.474975i) q^{60} +(5.60460 + 1.82105i) q^{61} +(-0.526853 - 0.0834454i) q^{62} +(0.447147 - 0.0708211i) q^{63} +(6.08841 - 1.97824i) q^{64} +(-4.54825 + 5.21797i) q^{65} +(4.13426 - 4.13426i) q^{67} +(-1.02573 - 0.522638i) q^{68} +(-0.761344 + 1.04790i) q^{69} +(0.417657 + 0.499106i) q^{70} +(-3.54186 + 10.9007i) q^{71} +(-5.41009 + 2.75658i) q^{72} +(-0.375734 + 2.37229i) q^{73} +(6.64727 + 4.82953i) q^{74} +(-1.30789 + 3.76545i) q^{75} +0.231015i q^{76} +(-2.65261 - 2.65261i) q^{78} +(-0.207191 - 0.637669i) q^{79} +(-8.57297 - 5.37303i) q^{80} +(2.98028 - 2.16530i) q^{81} +(4.62085 + 9.06892i) q^{82} +(-7.57393 - 14.8647i) q^{83} +(-0.0383557 + 0.0278671i) q^{84} +(-1.85353 - 8.07810i) q^{85} +(-2.47587 - 7.61994i) q^{86} +(-5.38198 - 5.38198i) q^{87} +7.92190i q^{89} +(7.39352 + 3.15010i) q^{90} +(-0.479519 - 0.348391i) q^{91} +(-0.0789408 + 0.498413i) q^{92} +(0.249270 - 0.127009i) q^{93} +(-5.80772 + 17.8743i) q^{94} +(-1.27550 + 1.06735i) q^{95} +(0.816218 - 1.12343i) q^{96} +(1.22869 + 0.626047i) q^{97} +(7.48452 - 7.48452i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{3} - 2 q^{5} + 20 q^{7} - 20 q^{8} + 12 q^{12} - 20 q^{13} + 4 q^{15} + 12 q^{16} + 30 q^{18} + 16 q^{20} - 24 q^{23} - 24 q^{25} - 20 q^{26} + 24 q^{27} - 20 q^{28} + 40 q^{30} + 32 q^{31}+ \cdots - 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.690094 + 1.35439i −0.487970 + 0.957695i 0.507412 + 0.861704i \(0.330602\pi\)
−0.995382 + 0.0959918i \(0.969398\pi\)
\(3\) −0.124714 0.787410i −0.0720034 0.454611i −0.997178 0.0750703i \(-0.976082\pi\)
0.925175 0.379541i \(-0.123918\pi\)
\(4\) −0.182561 0.251273i −0.0912803 0.125637i
\(5\) 0.543872 2.16892i 0.243227 0.969969i
\(6\) 1.15252 + 0.374477i 0.470515 + 0.152880i
\(7\) 0.189114 + 0.0299527i 0.0714783 + 0.0113210i 0.192071 0.981381i \(-0.438480\pi\)
−0.120593 + 0.992702i \(0.538480\pi\)
\(8\) −2.53639 + 0.401725i −0.896750 + 0.142031i
\(9\) 2.24871 0.730650i 0.749569 0.243550i
\(10\) 2.56223 + 2.23337i 0.810248 + 0.706253i
\(11\) 0 0
\(12\) −0.175087 + 0.175087i −0.0505433 + 0.0505433i
\(13\) −2.75820 1.40537i −0.764988 0.389781i 0.0275369 0.999621i \(-0.491234\pi\)
−0.792524 + 0.609840i \(0.791234\pi\)
\(14\) −0.171074 + 0.235463i −0.0457214 + 0.0629301i
\(15\) −1.77566 0.157757i −0.458472 0.0407326i
\(16\) 1.39821 4.30326i 0.349553 1.07581i
\(17\) 3.30253 1.68272i 0.800981 0.408120i −0.00505476 0.999987i \(-0.501609\pi\)
0.806036 + 0.591867i \(0.201609\pi\)
\(18\) −0.562239 + 3.54984i −0.132521 + 0.836704i
\(19\) −0.601740 0.437190i −0.138049 0.100298i 0.516618 0.856216i \(-0.327191\pi\)
−0.654666 + 0.755918i \(0.727191\pi\)
\(20\) −0.644280 + 0.259299i −0.144065 + 0.0579809i
\(21\) 0.152646i 0.0333100i
\(22\) 0 0
\(23\) −1.14886 1.14886i −0.239553 0.239553i 0.577112 0.816665i \(-0.304180\pi\)
−0.816665 + 0.577112i \(0.804180\pi\)
\(24\) 0.632645 + 1.94708i 0.129138 + 0.397446i
\(25\) −4.40841 2.35923i −0.881681 0.471845i
\(26\) 3.80684 2.76583i 0.746582 0.542424i
\(27\) −1.94156 3.81053i −0.373654 0.733337i
\(28\) −0.0269984 0.0529874i −0.00510222 0.0100137i
\(29\) 7.72385 5.61170i 1.43428 1.04207i 0.445084 0.895489i \(-0.353174\pi\)
0.989199 0.146578i \(-0.0468261\pi\)
\(30\) 1.43903 2.29606i 0.262730 0.419201i
\(31\) 0.108440 + 0.333745i 0.0194765 + 0.0599424i 0.960322 0.278892i \(-0.0899673\pi\)
−0.940846 + 0.338835i \(0.889967\pi\)
\(32\) 1.23166 + 1.23166i 0.217729 + 0.217729i
\(33\) 0 0
\(34\) 5.63413i 0.966246i
\(35\) 0.167819 0.393882i 0.0283665 0.0665782i
\(36\) −0.594118 0.431652i −0.0990197 0.0719420i
\(37\) 0.845584 5.33881i 0.139013 0.877694i −0.815333 0.578992i \(-0.803446\pi\)
0.954346 0.298702i \(-0.0965538\pi\)
\(38\) 1.00738 0.513286i 0.163419 0.0832660i
\(39\) −0.762621 + 2.34710i −0.122117 + 0.375838i
\(40\) −0.508163 + 5.71971i −0.0803477 + 0.904366i
\(41\) 3.93579 5.41715i 0.614667 0.846017i −0.382284 0.924045i \(-0.624862\pi\)
0.996951 + 0.0780281i \(0.0248624\pi\)
\(42\) 0.206741 + 0.105340i 0.0319008 + 0.0162543i
\(43\) −3.72708 + 3.72708i −0.568374 + 0.568374i −0.931673 0.363299i \(-0.881650\pi\)
0.363299 + 0.931673i \(0.381650\pi\)
\(44\) 0 0
\(45\) −0.361710 5.27464i −0.0539205 0.786297i
\(46\) 2.34882 0.763176i 0.346314 0.112524i
\(47\) 12.2119 1.93417i 1.78128 0.282128i 0.823020 0.568013i \(-0.192287\pi\)
0.958264 + 0.285885i \(0.0922875\pi\)
\(48\) −3.56281 0.564293i −0.514247 0.0814487i
\(49\) −6.62253 2.15179i −0.946076 0.307399i
\(50\) 6.23752 4.34260i 0.882118 0.614136i
\(51\) −1.73686 2.39059i −0.243209 0.334749i
\(52\) 0.150406 + 0.949628i 0.0208576 + 0.131690i
\(53\) −4.09968 + 8.04607i −0.563134 + 1.10521i 0.417374 + 0.908735i \(0.362950\pi\)
−0.980508 + 0.196478i \(0.937050\pi\)
\(54\) 6.50079 0.884646
\(55\) 0 0
\(56\) −0.491699 −0.0657061
\(57\) −0.269202 + 0.528339i −0.0356567 + 0.0699803i
\(58\) 2.27023 + 14.3337i 0.298096 + 1.88210i
\(59\) 5.65807 + 7.78767i 0.736618 + 1.01387i 0.998806 + 0.0488514i \(0.0155561\pi\)
−0.262188 + 0.965017i \(0.584444\pi\)
\(60\) 0.284525 + 0.474975i 0.0367320 + 0.0613190i
\(61\) 5.60460 + 1.82105i 0.717596 + 0.233161i 0.644980 0.764199i \(-0.276866\pi\)
0.0726152 + 0.997360i \(0.476866\pi\)
\(62\) −0.526853 0.0834454i −0.0669104 0.0105976i
\(63\) 0.447147 0.0708211i 0.0563352 0.00892261i
\(64\) 6.08841 1.97824i 0.761051 0.247281i
\(65\) −4.54825 + 5.21797i −0.564141 + 0.647209i
\(66\) 0 0
\(67\) 4.13426 4.13426i 0.505081 0.505081i −0.407932 0.913012i \(-0.633750\pi\)
0.913012 + 0.407932i \(0.133750\pi\)
\(68\) −1.02573 0.522638i −0.124389 0.0633791i
\(69\) −0.761344 + 1.04790i −0.0916550 + 0.126152i
\(70\) 0.417657 + 0.499106i 0.0499196 + 0.0596546i
\(71\) −3.54186 + 10.9007i −0.420342 + 1.29368i 0.487043 + 0.873378i \(0.338075\pi\)
−0.907385 + 0.420301i \(0.861925\pi\)
\(72\) −5.41009 + 2.75658i −0.637585 + 0.324866i
\(73\) −0.375734 + 2.37229i −0.0439764 + 0.277656i −0.999871 0.0160534i \(-0.994890\pi\)
0.955895 + 0.293709i \(0.0948898\pi\)
\(74\) 6.64727 + 4.82953i 0.772730 + 0.561421i
\(75\) −1.30789 + 3.76545i −0.151022 + 0.434797i
\(76\) 0.231015i 0.0264992i
\(77\) 0 0
\(78\) −2.65261 2.65261i −0.300348 0.300348i
\(79\) −0.207191 0.637669i −0.0233108 0.0717434i 0.938724 0.344669i \(-0.112009\pi\)
−0.962035 + 0.272925i \(0.912009\pi\)
\(80\) −8.57297 5.37303i −0.958487 0.600723i
\(81\) 2.98028 2.16530i 0.331143 0.240589i
\(82\) 4.62085 + 9.06892i 0.510287 + 1.00149i
\(83\) −7.57393 14.8647i −0.831347 1.63161i −0.773939 0.633260i \(-0.781716\pi\)
−0.0574083 0.998351i \(-0.518284\pi\)
\(84\) −0.0383557 + 0.0278671i −0.00418495 + 0.00304055i
\(85\) −1.85353 8.07810i −0.201044 0.876193i
\(86\) −2.47587 7.61994i −0.266980 0.821679i
\(87\) −5.38198 5.38198i −0.577009 0.577009i
\(88\) 0 0
\(89\) 7.92190i 0.839720i 0.907589 + 0.419860i \(0.137921\pi\)
−0.907589 + 0.419860i \(0.862079\pi\)
\(90\) 7.39352 + 3.15010i 0.779345 + 0.332050i
\(91\) −0.479519 0.348391i −0.0502673 0.0365213i
\(92\) −0.0789408 + 0.498413i −0.00823015 + 0.0519631i
\(93\) 0.249270 0.127009i 0.0258481 0.0131703i
\(94\) −5.80772 + 17.8743i −0.599021 + 1.84360i
\(95\) −1.27550 + 1.06735i −0.130863 + 0.109508i
\(96\) 0.816218 1.12343i 0.0833049 0.114659i
\(97\) 1.22869 + 0.626047i 0.124754 + 0.0635655i 0.515254 0.857038i \(-0.327698\pi\)
−0.390500 + 0.920603i \(0.627698\pi\)
\(98\) 7.48452 7.48452i 0.756051 0.756051i
\(99\) 0 0
\(100\) 0.211991 + 1.53842i 0.0211991 + 0.153842i
\(101\) 4.58927 1.49114i 0.456649 0.148374i −0.0716549 0.997429i \(-0.522828\pi\)
0.528304 + 0.849055i \(0.322828\pi\)
\(102\) 4.43637 0.702653i 0.439266 0.0695730i
\(103\) −3.19748 0.506431i −0.315057 0.0499001i −0.00309638 0.999995i \(-0.500986\pi\)
−0.311960 + 0.950095i \(0.600986\pi\)
\(104\) 7.56045 + 2.45654i 0.741364 + 0.240884i
\(105\) −0.331076 0.0830196i −0.0323097 0.00810188i
\(106\) −8.06832 11.1051i −0.783665 1.07862i
\(107\) 1.72947 + 10.9194i 0.167194 + 1.05562i 0.918429 + 0.395586i \(0.129458\pi\)
−0.751235 + 0.660035i \(0.770542\pi\)
\(108\) −0.603031 + 1.18352i −0.0580267 + 0.113884i
\(109\) −9.54212 −0.913969 −0.456985 0.889475i \(-0.651071\pi\)
−0.456985 + 0.889475i \(0.651071\pi\)
\(110\) 0 0
\(111\) −4.30929 −0.409019
\(112\) 0.393316 0.771925i 0.0371648 0.0729401i
\(113\) −0.648841 4.09662i −0.0610378 0.385378i −0.999229 0.0392603i \(-0.987500\pi\)
0.938191 0.346117i \(-0.112500\pi\)
\(114\) −0.529801 0.729208i −0.0496204 0.0682966i
\(115\) −3.11661 + 1.86695i −0.290625 + 0.174094i
\(116\) −2.82014 0.916319i −0.261843 0.0850781i
\(117\) −7.22923 1.14500i −0.668342 0.105855i
\(118\) −14.4521 + 2.28899i −1.33042 + 0.210719i
\(119\) 0.674956 0.219306i 0.0618731 0.0201038i
\(120\) 4.56713 0.313192i 0.416920 0.0285904i
\(121\) 0 0
\(122\) −6.33410 + 6.33410i −0.573462 + 0.573462i
\(123\) −4.75636 2.42349i −0.428867 0.218519i
\(124\) 0.0640642 0.0881768i 0.00575313 0.00791851i
\(125\) −7.51457 + 8.27836i −0.672124 + 0.740439i
\(126\) −0.212654 + 0.654482i −0.0189447 + 0.0583059i
\(127\) −12.9795 + 6.61337i −1.15174 + 0.586842i −0.922298 0.386480i \(-0.873691\pi\)
−0.229444 + 0.973322i \(0.573691\pi\)
\(128\) −2.06723 + 13.0520i −0.182719 + 1.15365i
\(129\) 3.39956 + 2.46992i 0.299314 + 0.217465i
\(130\) −3.92842 9.76097i −0.344546 0.856094i
\(131\) 9.76926i 0.853544i −0.904359 0.426772i \(-0.859651\pi\)
0.904359 0.426772i \(-0.140349\pi\)
\(132\) 0 0
\(133\) −0.100702 0.100702i −0.00873200 0.00873200i
\(134\) 2.74636 + 8.45242i 0.237249 + 0.730178i
\(135\) −9.32069 + 2.13865i −0.802197 + 0.184066i
\(136\) −7.70051 + 5.59475i −0.660314 + 0.479746i
\(137\) 1.96583 + 3.85816i 0.167952 + 0.329625i 0.959607 0.281344i \(-0.0907801\pi\)
−0.791655 + 0.610969i \(0.790780\pi\)
\(138\) −0.893862 1.75430i −0.0760906 0.149336i
\(139\) 8.50321 6.17795i 0.721233 0.524007i −0.165545 0.986202i \(-0.552938\pi\)
0.886778 + 0.462196i \(0.152938\pi\)
\(140\) −0.129609 + 0.0297390i −0.0109540 + 0.00251340i
\(141\) −3.04597 9.37453i −0.256517 0.789478i
\(142\) −12.3196 12.3196i −1.03384 1.03384i
\(143\) 0 0
\(144\) 10.6984i 0.891532i
\(145\) −7.97054 19.8044i −0.661918 1.64467i
\(146\) −2.95371 2.14600i −0.244451 0.177604i
\(147\) −0.868422 + 5.48300i −0.0716263 + 0.452230i
\(148\) −1.49587 + 0.762183i −0.122960 + 0.0626511i
\(149\) 1.78068 5.48038i 0.145879 0.448970i −0.851244 0.524771i \(-0.824151\pi\)
0.997123 + 0.0758003i \(0.0241511\pi\)
\(150\) −4.19731 4.36990i −0.342709 0.356801i
\(151\) −8.79574 + 12.1063i −0.715787 + 0.985196i 0.283866 + 0.958864i \(0.408383\pi\)
−0.999653 + 0.0263324i \(0.991617\pi\)
\(152\) 1.70188 + 0.867150i 0.138041 + 0.0703352i
\(153\) 6.19694 6.19694i 0.500993 0.500993i
\(154\) 0 0
\(155\) 0.782843 0.0536836i 0.0628795 0.00431197i
\(156\) 0.728989 0.236863i 0.0583658 0.0189642i
\(157\) −4.88720 + 0.774057i −0.390041 + 0.0617765i −0.348375 0.937355i \(-0.613267\pi\)
−0.0416659 + 0.999132i \(0.513267\pi\)
\(158\) 1.00663 + 0.159435i 0.0800833 + 0.0126839i
\(159\) 6.84684 + 2.22467i 0.542990 + 0.176428i
\(160\) 3.34124 2.00151i 0.264148 0.158233i
\(161\) −0.182853 0.251676i −0.0144109 0.0198349i
\(162\) 0.875980 + 5.53072i 0.0688235 + 0.434534i
\(163\) −4.54748 + 8.92492i −0.356186 + 0.699054i −0.997680 0.0680736i \(-0.978315\pi\)
0.641494 + 0.767128i \(0.278315\pi\)
\(164\) −2.07970 −0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) −5.47615 + 10.7475i −0.423757 + 0.831670i 0.576140 + 0.817351i \(0.304558\pi\)
−0.999897 + 0.0143193i \(0.995442\pi\)
\(168\) 0.0613215 + 0.387169i 0.00473106 + 0.0298707i
\(169\) −2.00861 2.76461i −0.154508 0.212662i
\(170\) 12.2200 + 3.06425i 0.937229 + 0.235017i
\(171\) −1.67257 0.543451i −0.127905 0.0415587i
\(172\) 1.61693 + 0.256097i 0.123290 + 0.0195272i
\(173\) −12.3116 + 1.94997i −0.936035 + 0.148253i −0.605775 0.795636i \(-0.707137\pi\)
−0.330261 + 0.943890i \(0.607137\pi\)
\(174\) 11.0034 3.57521i 0.834162 0.271036i
\(175\) −0.763025 0.578206i −0.0576793 0.0437082i
\(176\) 0 0
\(177\) 5.42645 5.42645i 0.407877 0.407877i
\(178\) −10.7293 5.46686i −0.804196 0.409758i
\(179\) 11.8607 16.3248i 0.886507 1.22017i −0.0880691 0.996114i \(-0.528070\pi\)
0.974576 0.224058i \(-0.0719304\pi\)
\(180\) −1.25934 + 1.05383i −0.0938658 + 0.0785478i
\(181\) 1.42448 4.38411i 0.105881 0.325868i −0.884055 0.467383i \(-0.845197\pi\)
0.989936 + 0.141514i \(0.0451971\pi\)
\(182\) 0.802769 0.409031i 0.0595052 0.0303194i
\(183\) 0.734940 4.64023i 0.0543283 0.343016i
\(184\) 3.37548 + 2.45243i 0.248843 + 0.180795i
\(185\) −11.1195 4.73763i −0.817525 0.348317i
\(186\) 0.425256i 0.0311813i
\(187\) 0 0
\(188\) −2.71541 2.71541i −0.198042 0.198042i
\(189\) −0.253041 0.778779i −0.0184060 0.0566478i
\(190\) −0.565389 2.46409i −0.0410176 0.178764i
\(191\) −5.11808 + 3.71850i −0.370331 + 0.269062i −0.757348 0.653011i \(-0.773505\pi\)
0.387017 + 0.922073i \(0.373505\pi\)
\(192\) −2.31700 4.54736i −0.167215 0.328178i
\(193\) −2.69302 5.28534i −0.193848 0.380447i 0.773540 0.633747i \(-0.218484\pi\)
−0.967388 + 0.253300i \(0.918484\pi\)
\(194\) −1.69582 + 1.23208i −0.121753 + 0.0884585i
\(195\) 4.67591 + 2.93059i 0.334849 + 0.209864i
\(196\) 0.668326 + 2.05690i 0.0477376 + 0.146921i
\(197\) 9.90515 + 9.90515i 0.705713 + 0.705713i 0.965631 0.259918i \(-0.0836955\pi\)
−0.259918 + 0.965631i \(0.583696\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(200\) 12.1292 + 4.21295i 0.857664 + 0.297901i
\(201\) −3.77096 2.73976i −0.265983 0.193248i
\(202\) −1.14744 + 7.24467i −0.0807338 + 0.509733i
\(203\) 1.62877 0.829901i 0.114317 0.0582476i
\(204\) −0.283607 + 0.872853i −0.0198565 + 0.0611120i
\(205\) −9.60879 11.4826i −0.671107 0.801982i
\(206\) 2.89246 3.98113i 0.201527 0.277379i
\(207\) −3.42286 1.74403i −0.237905 0.121219i
\(208\) −9.90424 + 9.90424i −0.686736 + 0.686736i
\(209\) 0 0
\(210\) 0.340914 0.391113i 0.0235253 0.0269893i
\(211\) −5.64203 + 1.83321i −0.388413 + 0.126203i −0.496712 0.867915i \(-0.665460\pi\)
0.108299 + 0.994118i \(0.465460\pi\)
\(212\) 2.77020 0.438757i 0.190258 0.0301339i
\(213\) 9.02506 + 1.42943i 0.618387 + 0.0979429i
\(214\) −15.9826 5.19306i −1.09255 0.354990i
\(215\) 6.05667 + 10.1108i 0.413062 + 0.689549i
\(216\) 6.45535 + 8.88503i 0.439231 + 0.604550i
\(217\) 0.0105110 + 0.0663638i 0.000713533 + 0.00450507i
\(218\) 6.58496 12.9237i 0.445990 0.875304i
\(219\) 1.91483 0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) 2.97381 5.83644i 0.199589 0.391716i
\(223\) 3.32511 + 20.9939i 0.222666 + 1.40586i 0.805178 + 0.593034i \(0.202070\pi\)
−0.582512 + 0.812822i \(0.697930\pi\)
\(224\) 0.196033 + 0.269816i 0.0130980 + 0.0180278i
\(225\) −11.6370 2.08421i −0.775799 0.138947i
\(226\) 5.99617 + 1.94827i 0.398859 + 0.129597i
\(227\) 12.9092 + 2.04462i 0.856816 + 0.135706i 0.569361 0.822088i \(-0.307191\pi\)
0.287455 + 0.957794i \(0.407191\pi\)
\(228\) 0.181903 0.0288106i 0.0120468 0.00190803i
\(229\) −15.6269 + 5.07749i −1.03265 + 0.335530i −0.775839 0.630931i \(-0.782673\pi\)
−0.256816 + 0.966460i \(0.582673\pi\)
\(230\) −0.377812 5.50946i −0.0249122 0.363283i
\(231\) 0 0
\(232\) −17.3363 + 17.3363i −1.13819 + 1.13819i
\(233\) 13.9385 + 7.10204i 0.913144 + 0.465270i 0.846429 0.532502i \(-0.178748\pi\)
0.0667155 + 0.997772i \(0.478748\pi\)
\(234\) 6.53961 9.00101i 0.427508 0.588414i
\(235\) 2.44663 27.5385i 0.159601 1.79641i
\(236\) 0.923891 2.84344i 0.0601402 0.185092i
\(237\) −0.476268 + 0.242670i −0.0309369 + 0.0157631i
\(238\) −0.168757 + 1.06549i −0.0109389 + 0.0690656i
\(239\) 4.27301 + 3.10452i 0.276398 + 0.200815i 0.717345 0.696718i \(-0.245357\pi\)
−0.440947 + 0.897533i \(0.645357\pi\)
\(240\) −3.16161 + 7.42053i −0.204081 + 0.478993i
\(241\) 16.1676i 1.04144i 0.853726 + 0.520722i \(0.174337\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(242\) 0 0
\(243\) −11.1488 11.1488i −0.715198 0.715198i
\(244\) −0.565599 1.74074i −0.0362088 0.111439i
\(245\) −8.26886 + 13.1934i −0.528278 + 0.842897i
\(246\) 6.56468 4.76952i 0.418549 0.304093i
\(247\) 1.04531 + 2.05153i 0.0665112 + 0.130536i
\(248\) −0.409121 0.802945i −0.0259792 0.0509870i
\(249\) −10.7600 + 7.81762i −0.681889 + 0.495421i
\(250\) −6.02632 15.8905i −0.381138 1.00500i
\(251\) 5.97722 + 18.3960i 0.377279 + 1.16114i 0.941928 + 0.335814i \(0.109011\pi\)
−0.564649 + 0.825331i \(0.690989\pi\)
\(252\) −0.0994268 0.0994268i −0.00626330 0.00626330i
\(253\) 0 0
\(254\) 22.1431i 1.38938i
\(255\) −6.12961 + 2.46694i −0.383851 + 0.154486i
\(256\) −5.89265 4.28126i −0.368290 0.267579i
\(257\) 0.736199 4.64818i 0.0459228 0.289945i −0.954029 0.299713i \(-0.903109\pi\)
0.999952 + 0.00976747i \(0.00310913\pi\)
\(258\) −5.69124 + 2.89983i −0.354321 + 0.180536i
\(259\) 0.319823 0.984314i 0.0198728 0.0611623i
\(260\) 2.14147 + 0.190257i 0.132808 + 0.0117992i
\(261\) 13.2685 18.2625i 0.821299 1.13042i
\(262\) 13.2313 + 6.74170i 0.817435 + 0.416504i
\(263\) 11.2218 11.2218i 0.691964 0.691964i −0.270700 0.962664i \(-0.587255\pi\)
0.962664 + 0.270700i \(0.0872550\pi\)
\(264\) 0 0
\(265\) 15.2216 + 13.2679i 0.935053 + 0.815040i
\(266\) 0.205884 0.0668957i 0.0126235 0.00410164i
\(267\) 6.23779 0.987968i 0.381746 0.0604627i
\(268\) −1.79358 0.284076i −0.109560 0.0173527i
\(269\) 10.7587 + 3.49572i 0.655971 + 0.213138i 0.618045 0.786143i \(-0.287925\pi\)
0.0379260 + 0.999281i \(0.487925\pi\)
\(270\) 3.53560 14.0997i 0.215170 0.858079i
\(271\) 10.4791 + 14.4233i 0.636563 + 0.876153i 0.998426 0.0560778i \(-0.0178595\pi\)
−0.361864 + 0.932231i \(0.617859\pi\)
\(272\) −2.62355 16.5644i −0.159076 1.00437i
\(273\) −0.214524 + 0.421027i −0.0129836 + 0.0254817i
\(274\) −6.58205 −0.397636
\(275\) 0 0
\(276\) 0.402300 0.0242156
\(277\) 2.12539 4.17132i 0.127703 0.250630i −0.818299 0.574793i \(-0.805083\pi\)
0.946001 + 0.324163i \(0.105083\pi\)
\(278\) 2.49931 + 15.7800i 0.149898 + 0.946421i
\(279\) 0.487701 + 0.671263i 0.0291979 + 0.0401875i
\(280\) −0.267421 + 1.06646i −0.0159815 + 0.0637329i
\(281\) 12.5438 + 4.07572i 0.748298 + 0.243137i 0.658249 0.752800i \(-0.271297\pi\)
0.0900496 + 0.995937i \(0.471297\pi\)
\(282\) 14.7987 + 2.34389i 0.881252 + 0.139577i
\(283\) 22.5060 3.56460i 1.33784 0.211893i 0.553825 0.832633i \(-0.313168\pi\)
0.784017 + 0.620740i \(0.213168\pi\)
\(284\) 3.38566 1.10007i 0.200902 0.0652771i
\(285\) 0.999513 + 0.871227i 0.0592061 + 0.0516070i
\(286\) 0 0
\(287\) 0.906570 0.906570i 0.0535131 0.0535131i
\(288\) 3.66956 + 1.86974i 0.216231 + 0.110175i
\(289\) −1.91721 + 2.63881i −0.112777 + 0.155224i
\(290\) 32.3233 + 2.87174i 1.89809 + 0.168634i
\(291\) 0.339722 1.04556i 0.0199149 0.0612916i
\(292\) 0.664688 0.338675i 0.0388979 0.0198195i
\(293\) 1.13067 7.13875i 0.0660543 0.417050i −0.932398 0.361433i \(-0.882287\pi\)
0.998452 0.0556168i \(-0.0177125\pi\)
\(294\) −6.82681 4.95997i −0.398148 0.289271i
\(295\) 19.9681 8.03640i 1.16259 0.467897i
\(296\) 13.8810i 0.806817i
\(297\) 0 0
\(298\) 6.19371 + 6.19371i 0.358792 + 0.358792i
\(299\) 1.55421 + 4.78335i 0.0898821 + 0.276629i
\(300\) 1.18493 0.358785i 0.0684117 0.0207145i
\(301\) −0.816478 + 0.593206i −0.0470610 + 0.0341918i
\(302\) −10.3267 20.2673i −0.594235 1.16625i
\(303\) −1.74649 3.42767i −0.100333 0.196915i
\(304\) −2.72270 + 1.97816i −0.156158 + 0.113455i
\(305\) 6.99788 11.1655i 0.400697 0.639335i
\(306\) 4.11658 + 12.6695i 0.235329 + 0.724269i
\(307\) 20.1272 + 20.1272i 1.14872 + 1.14872i 0.986804 + 0.161918i \(0.0517681\pi\)
0.161918 + 0.986804i \(0.448232\pi\)
\(308\) 0 0
\(309\) 2.58088i 0.146821i
\(310\) −0.467527 + 1.09732i −0.0265537 + 0.0623235i
\(311\) 6.08048 + 4.41772i 0.344792 + 0.250506i 0.746681 0.665182i \(-0.231646\pi\)
−0.401889 + 0.915688i \(0.631646\pi\)
\(312\) 0.991414 6.25954i 0.0561278 0.354377i
\(313\) 1.19937 0.611109i 0.0677923 0.0345419i −0.419766 0.907632i \(-0.637888\pi\)
0.487558 + 0.873091i \(0.337888\pi\)
\(314\) 2.32426 7.15333i 0.131165 0.403686i
\(315\) 0.0895853 1.00834i 0.00504756 0.0568136i
\(316\) −0.122404 + 0.168475i −0.00688577 + 0.00947745i
\(317\) 10.0968 + 5.14460i 0.567095 + 0.288949i 0.713936 0.700211i \(-0.246911\pi\)
−0.146841 + 0.989160i \(0.546911\pi\)
\(318\) −7.73803 + 7.73803i −0.433927 + 0.433927i
\(319\) 0 0
\(320\) −0.979335 14.2812i −0.0547465 0.798342i
\(321\) 8.38237 2.72360i 0.467859 0.152016i
\(322\) 0.467052 0.0739738i 0.0260278 0.00412240i
\(323\) −2.72293 0.431270i −0.151508 0.0239965i
\(324\) −1.08816 0.353566i −0.0604536 0.0196426i
\(325\) 8.84368 + 12.7027i 0.490559 + 0.704618i
\(326\) −8.94960 12.3181i −0.495673 0.682235i
\(327\) 1.19003 + 7.51356i 0.0658089 + 0.415501i
\(328\) −7.80650 + 15.3211i −0.431042 + 0.845967i
\(329\) 2.36737 0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) −2.35239 + 4.61683i −0.129104 + 0.253381i
\(333\) −1.99933 12.6232i −0.109562 0.691750i
\(334\) −10.7773 14.8336i −0.589706 0.811660i
\(335\) −6.71837 11.2154i −0.367064 0.612762i
\(336\) −0.656873 0.213431i −0.0358354 0.0116436i
\(337\) 7.52627 + 1.19204i 0.409982 + 0.0649348i 0.358019 0.933714i \(-0.383452\pi\)
0.0519628 + 0.998649i \(0.483452\pi\)
\(338\) 5.13048 0.812588i 0.279061 0.0441989i
\(339\) −3.14480 + 1.02181i −0.170802 + 0.0554970i
\(340\) −1.69143 + 1.94049i −0.0917305 + 0.105238i
\(341\) 0 0
\(342\) 1.89027 1.89027i 0.102214 0.102214i
\(343\) −2.38217 1.21378i −0.128625 0.0655378i
\(344\) 7.95607 10.9506i 0.428963 0.590416i
\(345\) 1.85873 + 2.22121i 0.100071 + 0.119586i
\(346\) 5.85517 18.0203i 0.314776 0.968780i
\(347\) 8.31639 4.23741i 0.446447 0.227476i −0.216289 0.976329i \(-0.569395\pi\)
0.662736 + 0.748853i \(0.269395\pi\)
\(348\) −0.369809 + 2.33488i −0.0198239 + 0.125163i
\(349\) −1.21496 0.882720i −0.0650353 0.0472509i 0.554793 0.831989i \(-0.312798\pi\)
−0.619828 + 0.784738i \(0.712798\pi\)
\(350\) 1.30967 0.634414i 0.0700049 0.0339109i
\(351\) 13.2388i 0.706637i
\(352\) 0 0
\(353\) 4.40229 + 4.40229i 0.234310 + 0.234310i 0.814489 0.580179i \(-0.197017\pi\)
−0.580179 + 0.814489i \(0.697017\pi\)
\(354\) 3.60475 + 11.0943i 0.191590 + 0.589654i
\(355\) 21.7165 + 13.6106i 1.15259 + 0.722376i
\(356\) 1.99056 1.44623i 0.105500 0.0766499i
\(357\) −0.256860 0.504116i −0.0135945 0.0266807i
\(358\) 13.9251 + 27.3295i 0.735964 + 1.44441i
\(359\) −21.2806 + 15.4612i −1.12315 + 0.816013i −0.984683 0.174355i \(-0.944216\pi\)
−0.138463 + 0.990368i \(0.544216\pi\)
\(360\) 3.03639 + 13.2333i 0.160032 + 0.697454i
\(361\) −5.70037 17.5439i −0.300019 0.923364i
\(362\) 4.95475 + 4.95475i 0.260416 + 0.260416i
\(363\) 0 0
\(364\) 0.184093i 0.00964908i
\(365\) 4.94096 + 2.10516i 0.258622 + 0.110189i
\(366\) 5.77748 + 4.19759i 0.301994 + 0.219411i
\(367\) −1.27793 + 8.06852i −0.0667073 + 0.421173i 0.931624 + 0.363424i \(0.118392\pi\)
−0.998331 + 0.0577492i \(0.981608\pi\)
\(368\) −6.55018 + 3.33748i −0.341452 + 0.173978i
\(369\) 4.89241 15.0573i 0.254688 0.783850i
\(370\) 14.0901 11.7907i 0.732510 0.612971i
\(371\) −1.01631 + 1.39883i −0.0527640 + 0.0726234i
\(372\) −0.0774210 0.0394479i −0.00401409 0.00204528i
\(373\) 6.12473 6.12473i 0.317126 0.317126i −0.530536 0.847662i \(-0.678009\pi\)
0.847662 + 0.530536i \(0.178009\pi\)
\(374\) 0 0
\(375\) 7.45563 + 4.88463i 0.385007 + 0.252241i
\(376\) −30.1971 + 9.81162i −1.55730 + 0.505996i
\(377\) −29.1905 + 4.62332i −1.50339 + 0.238113i
\(378\) 1.22939 + 0.194716i 0.0632330 + 0.0100151i
\(379\) 0.588124 + 0.191093i 0.0302099 + 0.00981580i 0.324083 0.946029i \(-0.394944\pi\)
−0.293873 + 0.955844i \(0.594944\pi\)
\(380\) 0.501052 + 0.125642i 0.0257034 + 0.00644531i
\(381\) 6.82615 + 9.39539i 0.349714 + 0.481340i
\(382\) −1.50433 9.49797i −0.0769683 0.485959i
\(383\) 4.71192 9.24766i 0.240768 0.472533i −0.738726 0.674005i \(-0.764572\pi\)
0.979494 + 0.201472i \(0.0645725\pi\)
\(384\) 10.5351 0.537617
\(385\) 0 0
\(386\) 9.01683 0.458945
\(387\) −5.65792 + 11.1043i −0.287608 + 0.564463i
\(388\) −0.0670010 0.423027i −0.00340146 0.0214760i
\(389\) −13.0176 17.9172i −0.660020 0.908440i 0.339462 0.940620i \(-0.389755\pi\)
−0.999482 + 0.0321799i \(0.989755\pi\)
\(390\) −7.19596 + 4.31061i −0.364382 + 0.218276i
\(391\) −5.72734 1.86093i −0.289644 0.0941111i
\(392\) 17.6618 + 2.79735i 0.892053 + 0.141287i
\(393\) −7.69241 + 1.21836i −0.388031 + 0.0614580i
\(394\) −20.2509 + 6.57991i −1.02022 + 0.331491i
\(395\) −1.49574 + 0.102571i −0.0752587 + 0.00516089i
\(396\) 0 0
\(397\) 10.7769 10.7769i 0.540876 0.540876i −0.382910 0.923786i \(-0.625078\pi\)
0.923786 + 0.382910i \(0.125078\pi\)
\(398\) −18.1254 9.23538i −0.908547 0.462928i
\(399\) −0.0667351 + 0.0918529i −0.00334093 + 0.00459840i
\(400\) −16.3163 + 15.6718i −0.815813 + 0.783591i
\(401\) −1.32312 + 4.07216i −0.0660737 + 0.203354i −0.978643 0.205569i \(-0.934096\pi\)
0.912569 + 0.408923i \(0.134096\pi\)
\(402\) 6.31301 3.21664i 0.314864 0.160431i
\(403\) 0.169936 1.07294i 0.00846513 0.0534467i
\(404\) −1.21250 0.880936i −0.0603243 0.0438282i
\(405\) −3.07547 7.64164i −0.152821 0.379716i
\(406\) 2.77869i 0.137904i
\(407\) 0 0
\(408\) 5.36572 + 5.36572i 0.265643 + 0.265643i
\(409\) −1.32742 4.08538i −0.0656367 0.202009i 0.912859 0.408274i \(-0.133869\pi\)
−0.978496 + 0.206265i \(0.933869\pi\)
\(410\) 22.1829 5.08990i 1.09553 0.251372i
\(411\) 2.79279 2.02908i 0.137758 0.100087i
\(412\) 0.456481 + 0.895894i 0.0224892 + 0.0441375i
\(413\) 0.836758 + 1.64223i 0.0411742 + 0.0808088i
\(414\) 4.72419 3.43232i 0.232181 0.168689i
\(415\) −36.3595 + 8.34276i −1.78482 + 0.409530i
\(416\) −1.66623 5.12812i −0.0816935 0.251427i
\(417\) −5.92504 5.92504i −0.290151 0.290151i
\(418\) 0 0
\(419\) 1.20241i 0.0587414i −0.999569 0.0293707i \(-0.990650\pi\)
0.999569 0.0293707i \(-0.00935032\pi\)
\(420\) 0.0395808 + 0.0983465i 0.00193134 + 0.00479882i
\(421\) −25.3293 18.4028i −1.23447 0.896898i −0.237257 0.971447i \(-0.576248\pi\)
−0.997217 + 0.0745484i \(0.976248\pi\)
\(422\) 1.41066 8.90656i 0.0686699 0.433565i
\(423\) 26.0477 13.2720i 1.26648 0.645306i
\(424\) 7.16608 22.0549i 0.348016 1.07108i
\(425\) −18.5288 0.373286i −0.898779 0.0181070i
\(426\) −8.16414 + 11.2370i −0.395554 + 0.544433i
\(427\) 1.00536 + 0.512257i 0.0486529 + 0.0247899i
\(428\) 2.42802 2.42802i 0.117363 0.117363i
\(429\) 0 0
\(430\) −17.8736 + 1.22568i −0.861940 + 0.0591078i
\(431\) 9.40717 3.05658i 0.453128 0.147230i −0.0735568 0.997291i \(-0.523435\pi\)
0.526684 + 0.850061i \(0.323435\pi\)
\(432\) −19.1124 + 3.02711i −0.919547 + 0.145642i
\(433\) 26.6501 + 4.22096i 1.28072 + 0.202846i 0.759462 0.650552i \(-0.225462\pi\)
0.521260 + 0.853398i \(0.325462\pi\)
\(434\) −0.0971358 0.0315613i −0.00466267 0.00151499i
\(435\) −14.6002 + 8.74597i −0.700025 + 0.419337i
\(436\) 1.74201 + 2.39768i 0.0834274 + 0.114828i
\(437\) 0.189045 + 1.19358i 0.00904324 + 0.0570968i
\(438\) −1.32141 + 2.59342i −0.0631395 + 0.123918i
\(439\) −24.5862 −1.17344 −0.586718 0.809791i \(-0.699580\pi\)
−0.586718 + 0.809791i \(0.699580\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) 7.91807 15.5401i 0.376624 0.739166i
\(443\) −4.81773 30.4180i −0.228897 1.44520i −0.787781 0.615955i \(-0.788770\pi\)
0.558884 0.829246i \(-0.311230\pi\)
\(444\) 0.786706 + 1.08281i 0.0373354 + 0.0513878i
\(445\) 17.1820 + 4.30850i 0.814503 + 0.204242i
\(446\) −30.7285 9.98429i −1.45504 0.472770i
\(447\) −4.53738 0.718651i −0.214611 0.0339910i
\(448\) 1.21066 0.191749i 0.0571981 0.00905929i
\(449\) 6.96621 2.26346i 0.328756 0.106819i −0.139988 0.990153i \(-0.544707\pi\)
0.468744 + 0.883334i \(0.344707\pi\)
\(450\) 10.8534 14.3227i 0.511636 0.675177i
\(451\) 0 0
\(452\) −0.910918 + 0.910918i −0.0428460 + 0.0428460i
\(453\) 10.6296 + 5.41603i 0.499421 + 0.254467i
\(454\) −11.6778 + 16.0731i −0.548066 + 0.754348i
\(455\) −1.01643 + 0.850557i −0.0476509 + 0.0398747i
\(456\) 0.470556 1.44822i 0.0220358 0.0678192i
\(457\) 6.00144 3.05789i 0.280736 0.143042i −0.307954 0.951401i \(-0.599644\pi\)
0.588689 + 0.808359i \(0.299644\pi\)
\(458\) 3.90715 24.6688i 0.182569 1.15270i
\(459\) −12.8241 9.31728i −0.598579 0.434893i
\(460\) 1.03808 + 0.442289i 0.0484009 + 0.0206218i
\(461\) 29.0801i 1.35440i −0.735801 0.677198i \(-0.763194\pi\)
0.735801 0.677198i \(-0.236806\pi\)
\(462\) 0 0
\(463\) 17.5146 + 17.5146i 0.813970 + 0.813970i 0.985227 0.171256i \(-0.0547826\pi\)
−0.171256 + 0.985227i \(0.554783\pi\)
\(464\) −13.3490 41.0841i −0.619713 1.90728i
\(465\) −0.139902 0.609723i −0.00648781 0.0282752i
\(466\) −19.2378 + 13.9771i −0.891174 + 0.647476i
\(467\) −12.0115 23.5740i −0.555828 1.09087i −0.982464 0.186451i \(-0.940302\pi\)
0.426636 0.904423i \(-0.359698\pi\)
\(468\) 1.03206 + 2.02554i 0.0477072 + 0.0936307i
\(469\) 0.905678 0.658014i 0.0418203 0.0303842i
\(470\) 35.6093 + 22.3178i 1.64253 + 1.02944i
\(471\) 1.21900 + 3.75170i 0.0561686 + 0.172869i
\(472\) −17.4796 17.4796i −0.804563 0.804563i
\(473\) 0 0
\(474\) 0.812515i 0.0373201i
\(475\) 1.62129 + 3.34695i 0.0743897 + 0.153569i
\(476\) −0.178326 0.129561i −0.00817356 0.00593844i
\(477\) −3.34012 + 21.0887i −0.152934 + 0.965585i
\(478\) −7.15350 + 3.64489i −0.327194 + 0.166713i
\(479\) −8.11328 + 24.9701i −0.370705 + 1.14091i 0.575625 + 0.817714i \(0.304759\pi\)
−0.946331 + 0.323200i \(0.895241\pi\)
\(480\) −1.99271 2.38131i −0.0909541 0.108691i
\(481\) −9.83531 + 13.5371i −0.448452 + 0.617241i
\(482\) −21.8971 11.1571i −0.997386 0.508193i
\(483\) −0.175368 + 0.175368i −0.00797952 + 0.00797952i
\(484\) 0 0
\(485\) 2.02609 2.32443i 0.0920001 0.105547i
\(486\) 22.7936 7.40608i 1.03394 0.335946i
\(487\) 23.0478 3.65041i 1.04440 0.165416i 0.389416 0.921062i \(-0.372677\pi\)
0.654980 + 0.755646i \(0.272677\pi\)
\(488\) −14.9470 2.36738i −0.676620 0.107166i
\(489\) 7.59471 + 2.46767i 0.343445 + 0.111592i
\(490\) −12.1627 20.3039i −0.549454 0.917238i
\(491\) 10.7845 + 14.8436i 0.486697 + 0.669881i 0.979775 0.200104i \(-0.0641280\pi\)
−0.493077 + 0.869985i \(0.664128\pi\)
\(492\) 0.259367 + 1.63758i 0.0116932 + 0.0738278i
\(493\) 16.0653 31.5299i 0.723544 1.42004i
\(494\) −3.49992 −0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) −0.996321 + 1.95539i −0.0446911 + 0.0877112i
\(498\) −3.16264 19.9681i −0.141721 0.894793i
\(499\) 6.91112 + 9.51235i 0.309384 + 0.425831i 0.935189 0.354149i \(-0.115229\pi\)
−0.625805 + 0.779980i \(0.715229\pi\)
\(500\) 3.45199 + 0.376909i 0.154378 + 0.0168559i
\(501\) 9.14567 + 2.97161i 0.408599 + 0.132762i
\(502\) −29.0401 4.59950i −1.29612 0.205286i
\(503\) −5.27489 + 0.835461i −0.235196 + 0.0372514i −0.272920 0.962037i \(-0.587989\pi\)
0.0377237 + 0.999288i \(0.487989\pi\)
\(504\) −1.10569 + 0.359260i −0.0492513 + 0.0160027i
\(505\) −0.738195 10.7647i −0.0328492 0.479025i
\(506\) 0 0
\(507\) −1.92638 + 1.92638i −0.0855536 + 0.0855536i
\(508\) 4.03130 + 2.05405i 0.178860 + 0.0911337i
\(509\) −11.5130 + 15.8462i −0.510303 + 0.702371i −0.983970 0.178332i \(-0.942930\pi\)
0.473668 + 0.880704i \(0.342930\pi\)
\(510\) 0.888823 10.0043i 0.0393577 0.442997i
\(511\) −0.142113 + 0.437379i −0.00628671 + 0.0193485i
\(512\) −13.6838 + 6.97225i −0.604745 + 0.308133i
\(513\) −0.497609 + 3.14178i −0.0219700 + 0.138713i
\(514\) 5.78738 + 4.20478i 0.255270 + 0.185465i
\(515\) −2.83742 + 6.65963i −0.125032 + 0.293458i
\(516\) 1.30513i 0.0574550i
\(517\) 0 0
\(518\) 1.11243 + 1.11243i 0.0488775 + 0.0488775i
\(519\) 3.07085 + 9.45111i 0.134795 + 0.414858i
\(520\) 9.43995 15.0620i 0.413969 0.660511i
\(521\) −15.1561 + 11.0116i −0.664003 + 0.482426i −0.868012 0.496543i \(-0.834603\pi\)
0.204010 + 0.978969i \(0.434603\pi\)
\(522\) 15.5780 + 30.5735i 0.681830 + 1.33817i
\(523\) 1.17234 + 2.30085i 0.0512628 + 0.100609i 0.915217 0.402962i \(-0.132019\pi\)
−0.863954 + 0.503571i \(0.832019\pi\)
\(524\) −2.45475 + 1.78348i −0.107236 + 0.0779117i
\(525\) −0.360125 + 0.672924i −0.0157172 + 0.0293688i
\(526\) 7.45453 + 22.9427i 0.325033 + 1.00035i
\(527\) 0.919727 + 0.919727i 0.0400639 + 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) −28.4742 + 11.4598i −1.23684 + 0.497781i
\(531\) 18.4134 + 13.3781i 0.799074 + 0.580561i
\(532\) −0.00691951 + 0.0436880i −0.000299999 + 0.00189412i
\(533\) −18.4688 + 9.41034i −0.799974 + 0.407607i
\(534\) −2.96657 + 9.13016i −0.128376 + 0.395101i
\(535\) 24.6239 + 2.18769i 1.06459 + 0.0945823i
\(536\) −8.82527 + 12.1469i −0.381194 + 0.524668i
\(537\) −14.3335 7.30328i −0.618536 0.315160i
\(538\) −12.1591 + 12.1591i −0.524216 + 0.524216i
\(539\) 0 0
\(540\) 2.23898 + 1.95161i 0.0963502 + 0.0839837i
\(541\) −8.78315 + 2.85382i −0.377617 + 0.122695i −0.491675 0.870779i \(-0.663615\pi\)
0.114058 + 0.993474i \(0.463615\pi\)
\(542\) −26.7663 + 4.23937i −1.14971 + 0.182096i
\(543\) −3.62974 0.574895i −0.155767 0.0246711i
\(544\) 6.14015 + 1.99505i 0.263257 + 0.0855372i
\(545\) −5.18969 + 20.6961i −0.222302 + 0.886522i
\(546\) −0.422192 0.581097i −0.0180681 0.0248686i
\(547\) −0.167546 1.05784i −0.00716375 0.0452301i 0.983848 0.179009i \(-0.0572890\pi\)
−0.991011 + 0.133778i \(0.957289\pi\)
\(548\) 0.610569 1.19831i 0.0260822 0.0511892i
\(549\) 13.9337 0.594674
\(550\) 0 0
\(551\) −7.10113 −0.302518
\(552\) 1.51010 2.96374i 0.0642741 0.126145i
\(553\) −0.0200828 0.126798i −0.000854008 0.00539200i
\(554\) 4.18286 + 5.75721i 0.177713 + 0.244600i
\(555\) −2.34370 + 9.34649i −0.0994845 + 0.396736i
\(556\) −3.10470 1.00878i −0.131669 0.0427818i
\(557\) −42.5071 6.73247i −1.80108 0.285264i −0.836294 0.548282i \(-0.815282\pi\)
−0.964791 + 0.263018i \(0.915282\pi\)
\(558\) −1.24571 + 0.197301i −0.0527351 + 0.00835241i
\(559\) 15.5180 5.04210i 0.656340 0.213258i
\(560\) −1.46033 1.27290i −0.0617102 0.0537897i
\(561\) 0 0
\(562\) −14.1765 + 14.1765i −0.597998 + 0.597998i
\(563\) 23.0435 + 11.7412i 0.971166 + 0.494834i 0.866230 0.499645i \(-0.166536\pi\)
0.104936 + 0.994479i \(0.466536\pi\)
\(564\) −1.79949 + 2.47679i −0.0757723 + 0.104292i
\(565\) −9.23812 0.820754i −0.388651 0.0345294i
\(566\) −10.7034 + 32.9417i −0.449898 + 1.38464i
\(567\) 0.628469 0.320221i 0.0263932 0.0134480i
\(568\) 4.60445 29.0714i 0.193199 1.21981i
\(569\) −21.9823 15.9711i −0.921548 0.669544i 0.0223611 0.999750i \(-0.492882\pi\)
−0.943909 + 0.330206i \(0.892882\pi\)
\(570\) −1.86974 + 0.752498i −0.0783146 + 0.0315187i
\(571\) 40.5475i 1.69686i −0.529308 0.848430i \(-0.677549\pi\)
0.529308 0.848430i \(-0.322451\pi\)
\(572\) 0 0
\(573\) 3.56628 + 3.56628i 0.148984 + 0.148984i
\(574\) 0.602227 + 1.85346i 0.0251365 + 0.0773621i
\(575\) 2.35422 + 7.77504i 0.0981776 + 0.324242i
\(576\) 12.2457 8.89699i 0.510236 0.370708i
\(577\) 15.3485 + 30.1231i 0.638965 + 1.25404i 0.952522 + 0.304470i \(0.0984795\pi\)
−0.313556 + 0.949570i \(0.601521\pi\)
\(578\) −2.25092 4.41767i −0.0936257 0.183751i
\(579\) −3.82588 + 2.77966i −0.158998 + 0.115519i
\(580\) −3.52122 + 5.61829i −0.146211 + 0.233287i
\(581\) −0.987098 3.03798i −0.0409517 0.126036i
\(582\) 1.18165 + 1.18165i 0.0489808 + 0.0489808i
\(583\) 0 0
\(584\) 6.16801i 0.255234i
\(585\) −6.41518 + 15.0569i −0.265235 + 0.622525i
\(586\) 8.88835 + 6.45777i 0.367175 + 0.266768i
\(587\) −1.51493 + 9.56487i −0.0625277 + 0.394784i 0.936499 + 0.350671i \(0.114046\pi\)
−0.999027 + 0.0441136i \(0.985954\pi\)
\(588\) 1.53627 0.782769i 0.0633547 0.0322808i
\(589\) 0.0806570 0.248237i 0.00332341 0.0102284i
\(590\) −2.89547 + 32.5904i −0.119204 + 1.34172i
\(591\) 6.56411 9.03472i 0.270011 0.371639i
\(592\) −21.7920 11.1036i −0.895644 0.456353i
\(593\) −14.0452 + 14.0452i −0.576769 + 0.576769i −0.934012 0.357243i \(-0.883717\pi\)
0.357243 + 0.934012i \(0.383717\pi\)
\(594\) 0 0
\(595\) −0.108568 1.58320i −0.00445086 0.0649048i
\(596\) −1.70215 + 0.553064i −0.0697230 + 0.0226544i
\(597\) 10.5377 1.66901i 0.431281 0.0683082i
\(598\) −7.55106 1.19597i −0.308786 0.0489068i
\(599\) −4.29480 1.39547i −0.175481 0.0570172i 0.219959 0.975509i \(-0.429408\pi\)
−0.395440 + 0.918492i \(0.629408\pi\)
\(600\) 1.80465 10.0761i 0.0736744 0.411354i
\(601\) −4.92416 6.77753i −0.200861 0.276461i 0.696690 0.717372i \(-0.254655\pi\)
−0.897551 + 0.440911i \(0.854655\pi\)
\(602\) −0.239983 1.51519i −0.00978098 0.0617547i
\(603\) 6.27605 12.3174i 0.255581 0.501605i
\(604\) 4.64774 0.189114
\(605\) 0 0
\(606\) 5.84763 0.237544
\(607\) 3.48610 6.84185i 0.141496 0.277702i −0.809373 0.587295i \(-0.800193\pi\)
0.950869 + 0.309593i \(0.100193\pi\)
\(608\) −0.202670 1.27961i −0.00821937 0.0518950i
\(609\) −0.856602 1.17901i −0.0347113 0.0477760i
\(610\) 10.2932 + 17.1831i 0.416760 + 0.695722i
\(611\) −36.4010 11.8274i −1.47263 0.478486i
\(612\) −2.68844 0.425807i −0.108674 0.0172122i
\(613\) 42.3979 6.71517i 1.71243 0.271223i 0.778235 0.627973i \(-0.216115\pi\)
0.934200 + 0.356750i \(0.116115\pi\)
\(614\) −41.1497 + 13.3704i −1.66067 + 0.539584i
\(615\) −7.84320 + 8.99810i −0.316268 + 0.362838i
\(616\) 0 0
\(617\) 33.4407 33.4407i 1.34627 1.34627i 0.456601 0.889671i \(-0.349067\pi\)
0.889671 0.456601i \(-0.150933\pi\)
\(618\) −3.49551 1.78105i −0.140610 0.0716444i
\(619\) −12.4023 + 17.0703i −0.498492 + 0.686115i −0.981926 0.189266i \(-0.939389\pi\)
0.483434 + 0.875381i \(0.339389\pi\)
\(620\) −0.156405 0.186907i −0.00628140 0.00750636i
\(621\) −2.14718 + 6.60834i −0.0861633 + 0.265183i
\(622\) −10.1794 + 5.18667i −0.408157 + 0.207966i
\(623\) −0.237282 + 1.49814i −0.00950651 + 0.0600217i
\(624\) 9.03389 + 6.56351i 0.361645 + 0.262751i
\(625\) 13.8681 + 20.8009i 0.554724 + 0.832034i
\(626\) 2.04613i 0.0817798i
\(627\) 0 0
\(628\) 1.08671 + 1.08671i 0.0433645 + 0.0433645i
\(629\) −6.19116 19.0544i −0.246858 0.759750i
\(630\) 1.30386 + 0.817184i 0.0519471 + 0.0325574i
\(631\) 22.8304 16.5872i 0.908863 0.660327i −0.0318642 0.999492i \(-0.510144\pi\)
0.940727 + 0.339165i \(0.110144\pi\)
\(632\) 0.781686 + 1.53414i 0.0310938 + 0.0610250i
\(633\) 2.14712 + 4.21396i 0.0853404 + 0.167490i
\(634\) −13.9355 + 10.1248i −0.553451 + 0.402106i
\(635\) 7.28469 + 31.7482i 0.289084 + 1.25989i
\(636\) −0.690963 2.12656i −0.0273985 0.0843238i
\(637\) 15.2422 + 15.2422i 0.603918 + 0.603918i
\(638\) 0 0
\(639\) 27.1004i 1.07208i
\(640\) 27.1844 + 11.5823i 1.07456 + 0.457830i
\(641\) 13.7037 + 9.95634i 0.541265 + 0.393252i 0.824554 0.565783i \(-0.191426\pi\)
−0.283290 + 0.959034i \(0.591426\pi\)
\(642\) −2.09582 + 13.2325i −0.0827156 + 0.522245i
\(643\) −5.59164 + 2.84908i −0.220513 + 0.112357i −0.560758 0.827980i \(-0.689490\pi\)
0.340245 + 0.940337i \(0.389490\pi\)
\(644\) −0.0298576 + 0.0918922i −0.00117655 + 0.00362106i
\(645\) 7.20598 6.03004i 0.283735 0.237432i
\(646\) 2.46318 3.39028i 0.0969127 0.133389i
\(647\) 38.7473 + 19.7428i 1.52331 + 0.776168i 0.997238 0.0742694i \(-0.0236625\pi\)
0.526077 + 0.850437i \(0.323662\pi\)
\(648\) −6.68931 + 6.68931i −0.262781 + 0.262781i
\(649\) 0 0
\(650\) −23.3073 + 3.21171i −0.914188 + 0.125974i
\(651\) 0.0509447 0.0165529i 0.00199668 0.000648761i
\(652\) 3.07278 0.486681i 0.120339 0.0190599i
\(653\) −9.61123 1.52227i −0.376117 0.0595710i −0.0344856 0.999405i \(-0.510979\pi\)
−0.341631 + 0.939834i \(0.610979\pi\)
\(654\) −10.9975 3.57330i −0.430036 0.139727i
\(655\) −21.1887 5.31322i −0.827911 0.207605i
\(656\) −17.8083 24.5111i −0.695298 0.956996i
\(657\) 0.888399 + 5.60913i 0.0346597 + 0.218833i
\(658\) −1.63370 + 3.20633i −0.0636884 + 0.124996i
\(659\) −3.37375 −0.131423 −0.0657113 0.997839i \(-0.520932\pi\)
−0.0657113 + 0.997839i \(0.520932\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) 12.2180 23.9792i 0.474866 0.931976i
\(663\) 1.43095 + 9.03466i 0.0555735 + 0.350877i
\(664\) 25.1820 + 34.6600i 0.977250 + 1.34507i
\(665\) −0.273184 + 0.163646i −0.0105936 + 0.00634591i
\(666\) 18.4765 + 6.00337i 0.715949 + 0.232626i
\(667\) −15.3206 2.42655i −0.593218 0.0939565i
\(668\) 3.70030 0.586069i 0.143169 0.0226757i
\(669\) 16.1161 5.23645i 0.623086 0.202453i
\(670\) 19.8263 1.35959i 0.765955 0.0525256i
\(671\) 0 0
\(672\) 0.188008 0.188008i 0.00725256 0.00725256i
\(673\) 34.0839 + 17.3666i 1.31384 + 0.669433i 0.963630 0.267239i \(-0.0861114\pi\)
0.350207 + 0.936672i \(0.386111\pi\)
\(674\) −6.80832 + 9.37085i −0.262247 + 0.360952i
\(675\) −0.430706 + 21.3790i −0.0165779 + 0.822877i
\(676\) −0.327980 + 1.00942i −0.0126146 + 0.0388238i
\(677\) 28.6832 14.6148i 1.10238 0.561693i 0.194495 0.980903i \(-0.437693\pi\)
0.907889 + 0.419211i \(0.137693\pi\)
\(678\) 0.786287 4.96442i 0.0301972 0.190657i
\(679\) 0.213610 + 0.155197i 0.00819759 + 0.00595590i
\(680\) 7.94646 + 19.7446i 0.304733 + 0.757171i
\(681\) 10.4198i 0.399289i
\(682\) 0 0
\(683\) −28.7223 28.7223i −1.09903 1.09903i −0.994524 0.104505i \(-0.966674\pi\)
−0.104505 0.994524i \(-0.533326\pi\)
\(684\) 0.168791 + 0.519484i 0.00645388 + 0.0198630i
\(685\) 9.43720 2.16538i 0.360577 0.0827350i
\(686\) 3.28785 2.38876i 0.125531 0.0912033i
\(687\) 5.94695 + 11.6715i 0.226890 + 0.445297i
\(688\) 10.8273 + 21.2498i 0.412788 + 0.810142i
\(689\) 22.6155 16.4311i 0.861581 0.625975i
\(690\) −4.29108 + 0.984597i −0.163359 + 0.0374830i
\(691\) −7.80728 24.0283i −0.297003 0.914081i −0.982541 0.186044i \(-0.940433\pi\)
0.685538 0.728036i \(-0.259567\pi\)
\(692\) 2.73759 + 2.73759i 0.104068 + 0.104068i
\(693\) 0 0
\(694\) 14.1878i 0.538562i
\(695\) −8.77480 21.8028i −0.332847 0.827027i
\(696\) 15.8129 + 11.4887i 0.599386 + 0.435479i
\(697\) 3.88250 24.5131i 0.147060 0.928501i
\(698\) 2.03398 1.03636i 0.0769873 0.0392270i
\(699\) 3.85390 11.8611i 0.145768 0.448627i
\(700\) −0.00598918 + 0.297285i −0.000226370 + 0.0112363i
\(701\) 16.5916 22.8364i 0.626657 0.862519i −0.371160 0.928569i \(-0.621040\pi\)
0.997816 + 0.0660500i \(0.0210397\pi\)
\(702\) −17.9305 9.13604i −0.676743 0.344818i
\(703\) −2.84289 + 2.84289i −0.107222 + 0.107222i
\(704\) 0 0
\(705\) −21.9892 + 1.50791i −0.828161 + 0.0567914i
\(706\) −9.00040 + 2.92441i −0.338735 + 0.110062i
\(707\) 0.912558 0.144535i 0.0343203 0.00543580i
\(708\) −2.35418 0.372865i −0.0884754 0.0140131i
\(709\) −7.76034 2.52149i −0.291446 0.0946964i 0.159645 0.987174i \(-0.448965\pi\)
−0.451091 + 0.892478i \(0.648965\pi\)
\(710\) −33.4204 + 20.0199i −1.25425 + 0.751333i
\(711\) −0.931826 1.28255i −0.0349462 0.0480993i
\(712\) −3.18243 20.0930i −0.119266 0.753019i
\(713\) 0.258843 0.508008i 0.00969374 0.0190250i
\(714\) 0.860026 0.0321856
\(715\) 0 0
\(716\) −6.26727 −0.234219
\(717\) 1.91163 3.75179i 0.0713912 0.140113i
\(718\) −6.25489 39.4918i −0.233430 1.47382i
\(719\) 0.609910 + 0.839469i 0.0227458 + 0.0313069i 0.820238 0.572022i \(-0.193841\pi\)
−0.797493 + 0.603329i \(0.793841\pi\)
\(720\) −23.2039 5.81855i −0.864758 0.216844i
\(721\) −0.589518 0.191546i −0.0219548 0.00713354i
\(722\) 27.6950 + 4.38646i 1.03070 + 0.163247i
\(723\) 12.7305 2.01631i 0.473452 0.0749875i
\(724\) −1.36166 + 0.442431i −0.0506058 + 0.0164428i
\(725\) −47.2892 + 6.51637i −1.75627 + 0.242012i
\(726\) 0 0
\(727\) −3.27903 + 3.27903i −0.121612 + 0.121612i −0.765294 0.643681i \(-0.777406\pi\)
0.643681 + 0.765294i \(0.277406\pi\)
\(728\) 1.35621 + 0.691021i 0.0502643 + 0.0256110i
\(729\) −0.892381 + 1.22826i −0.0330512 + 0.0454910i
\(730\) −6.26093 + 5.23921i −0.231727 + 0.193912i
\(731\) −6.03714 + 18.5804i −0.223292 + 0.687222i
\(732\) −1.30014 + 0.662452i −0.0480544 + 0.0244849i
\(733\) −7.14516 + 45.1128i −0.263912 + 1.66628i 0.398523 + 0.917158i \(0.369523\pi\)
−0.662435 + 0.749119i \(0.730477\pi\)
\(734\) −10.0460 7.29884i −0.370805 0.269405i
\(735\) 11.4199 + 4.86559i 0.421228 + 0.179470i
\(736\) 2.83001i 0.104315i
\(737\) 0 0
\(738\) 17.0171 + 17.0171i 0.626410 + 0.626410i
\(739\) 1.17326 + 3.61092i 0.0431591 + 0.132830i 0.970314 0.241848i \(-0.0777534\pi\)
−0.927155 + 0.374678i \(0.877753\pi\)
\(740\) 0.839552 + 3.65895i 0.0308625 + 0.134506i
\(741\) 1.48503 1.07894i 0.0545539 0.0396357i
\(742\) −1.19320 2.34179i −0.0438039 0.0859699i
\(743\) 19.2624 + 37.8046i 0.706668 + 1.38691i 0.912807 + 0.408392i \(0.133910\pi\)
−0.206138 + 0.978523i \(0.566090\pi\)
\(744\) −0.581224 + 0.422284i −0.0213087 + 0.0154817i
\(745\) −10.9180 6.84278i −0.400006 0.250700i
\(746\) 4.06860 + 12.5219i 0.148962 + 0.458459i
\(747\) −27.8924 27.8924i −1.02053 1.02053i
\(748\) 0 0
\(749\) 2.11681i 0.0773467i
\(750\) −11.7608 + 6.72694i −0.429442 + 0.245633i
\(751\) 8.08383 + 5.87325i 0.294983 + 0.214318i 0.725426 0.688300i \(-0.241643\pi\)
−0.430443 + 0.902618i \(0.641643\pi\)
\(752\) 8.75157 55.2552i 0.319137 2.01495i
\(753\) 13.7398 7.00075i 0.500704 0.255122i
\(754\) 13.8824 42.7257i 0.505568 1.55598i
\(755\) 21.4738 + 25.6615i 0.781512 + 0.933918i
\(756\) −0.149491 + 0.205757i −0.00543693 + 0.00748330i
\(757\) −26.1808 13.3398i −0.951558 0.484843i −0.0919310 0.995765i \(-0.529304\pi\)
−0.859627 + 0.510922i \(0.829304\pi\)
\(758\) −0.664675 + 0.664675i −0.0241421 + 0.0241421i
\(759\) 0 0
\(760\) 2.80638 3.21961i 0.101798 0.116788i
\(761\) 28.8663 9.37924i 1.04640 0.339997i 0.265147 0.964208i \(-0.414579\pi\)
0.781256 + 0.624211i \(0.214579\pi\)
\(762\) −17.4357 + 2.76154i −0.631627 + 0.100040i
\(763\) −1.80455 0.285812i −0.0653289 0.0103471i
\(764\) 1.86872 + 0.607184i 0.0676079 + 0.0219671i
\(765\) −10.0703 16.8110i −0.364093 0.607803i
\(766\) 9.27323 + 12.7635i 0.335056 + 0.461164i
\(767\) −4.66152 29.4317i −0.168318 1.06272i
\(768\) −2.63621 + 5.17386i −0.0951261 + 0.186696i
\(769\) 37.6421 1.35741 0.678705 0.734411i \(-0.262542\pi\)
0.678705 + 0.734411i \(0.262542\pi\)
\(770\) 0 0
\(771\) −3.75184 −0.135119
\(772\) −0.836426 + 1.64158i −0.0301036 + 0.0590817i
\(773\) −4.03803 25.4951i −0.145238 0.916996i −0.947438 0.319941i \(-0.896337\pi\)
0.802200 0.597056i \(-0.203663\pi\)
\(774\) −11.1350 15.3260i −0.400240 0.550883i
\(775\) 0.309331 1.72712i 0.0111115 0.0620399i
\(776\) −3.36793 1.09431i −0.120902 0.0392833i
\(777\) −0.814945 0.129075i −0.0292360 0.00463053i
\(778\) 33.2502 5.26632i 1.19208 0.188807i
\(779\) −4.73664 + 1.53903i −0.169708 + 0.0551414i
\(780\) −0.117260 1.70994i −0.00419856 0.0612257i
\(781\) 0 0
\(782\) 6.47282 6.47282i 0.231467 0.231467i
\(783\) −36.3799 18.5365i −1.30011 0.662440i
\(784\) −18.5194 + 25.4898i −0.661408 + 0.910350i
\(785\) −0.979146 + 11.0209i −0.0349472 + 0.393354i
\(786\) 3.65836 11.2593i 0.130489 0.401605i
\(787\) 15.3923 7.84278i 0.548677 0.279565i −0.157597 0.987504i \(-0.550375\pi\)
0.706274 + 0.707939i \(0.250375\pi\)
\(788\) 0.680608 4.29719i 0.0242456 0.153081i
\(789\) −10.2356 7.43663i −0.364399 0.264751i
\(790\) 0.893279 2.09659i 0.0317815 0.0745933i
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 12.8994i −0.458070 0.458070i
\(794\) 7.15898 + 22.0331i 0.254063 + 0.781925i
\(795\) 8.54894 13.6403i 0.303200 0.483772i
\(796\) 3.36273 2.44317i 0.119189 0.0865958i
\(797\) −20.2339 39.7113i −0.716722 1.40665i −0.905380 0.424603i \(-0.860414\pi\)
0.188658 0.982043i \(-0.439586\pi\)
\(798\) −0.0783508 0.153772i −0.00277359 0.00544348i
\(799\) 37.0754 26.9368i 1.31163 0.952957i
\(800\) −2.52390 8.33544i −0.0892333 0.294702i
\(801\) 5.78814 + 17.8140i 0.204514 + 0.629428i
\(802\) −4.60219 4.60219i −0.162509 0.162509i
\(803\) 0 0
\(804\) 1.44771i 0.0510569i
\(805\) −0.645313 + 0.259714i −0.0227443 + 0.00915373i
\(806\) 1.33590 + 0.970585i 0.0470549 + 0.0341874i
\(807\) 1.41081 8.90749i 0.0496628 0.313559i
\(808\) −11.0412 + 5.62575i −0.388427 + 0.197913i
\(809\) −4.70791 + 14.4894i −0.165521 + 0.509422i −0.999074 0.0430175i \(-0.986303\pi\)
0.833553 + 0.552439i \(0.186303\pi\)
\(810\) 12.4721 + 1.10807i 0.438225 + 0.0389337i
\(811\) −26.7779 + 36.8566i −0.940299 + 1.29421i 0.0154047 + 0.999881i \(0.495096\pi\)
−0.955704 + 0.294330i \(0.904904\pi\)
\(812\) −0.505881 0.257759i −0.0177529 0.00904558i
\(813\) 10.0502 10.0502i 0.352475 0.352475i
\(814\) 0 0
\(815\) 16.8842 + 14.7171i 0.591427 + 0.515518i
\(816\) −12.7158 + 4.13162i −0.445143 + 0.144636i
\(817\) 3.87217 0.613292i 0.135470 0.0214564i
\(818\) 6.44923 + 1.02146i 0.225492 + 0.0357144i
\(819\) −1.33285 0.433069i −0.0465736 0.0151327i
\(820\) −1.13109 + 4.51071i −0.0394995 + 0.157521i
\(821\) −16.8767 23.2288i −0.589000 0.810690i 0.405646 0.914030i \(-0.367047\pi\)
−0.994646 + 0.103341i \(0.967047\pi\)
\(822\) 0.820871 + 5.18277i 0.0286312 + 0.180770i
\(823\) −12.2383 + 24.0189i −0.426599 + 0.837247i 0.573242 + 0.819386i \(0.305686\pi\)
−0.999840 + 0.0178607i \(0.994314\pi\)
\(824\) 8.31350 0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) −18.0157 + 35.3578i −0.626467 + 1.22951i 0.331722 + 0.943377i \(0.392370\pi\)
−0.958190 + 0.286134i \(0.907630\pi\)
\(828\) 0.186650 + 1.17846i 0.00648655 + 0.0409544i
\(829\) 6.38756 + 8.79172i 0.221849 + 0.305349i 0.905405 0.424549i \(-0.139567\pi\)
−0.683556 + 0.729898i \(0.739567\pi\)
\(830\) 13.7922 55.0021i 0.478733 1.90915i
\(831\) −3.54961 1.15334i −0.123134 0.0400088i
\(832\) −19.5732 3.10010i −0.678580 0.107476i
\(833\) −25.4920 + 4.03753i −0.883244 + 0.139892i
\(834\) 12.1136 3.93596i 0.419461 0.136291i
\(835\) 20.3322 + 17.7226i 0.703625 + 0.613316i
\(836\) 0 0
\(837\) 1.06120 1.06120i 0.0366805 0.0366805i
\(838\) 1.62852 + 0.829773i 0.0562563 + 0.0286640i
\(839\) −23.6970 + 32.6161i −0.818112 + 1.12603i 0.171909 + 0.985113i \(0.445007\pi\)
−0.990021 + 0.140922i \(0.954993\pi\)
\(840\) 0.873089 + 0.0775689i 0.0301244 + 0.00267638i
\(841\) 19.2051 59.1073i 0.662246 2.03818i
\(842\) 42.4041 21.6060i 1.46134 0.744591i
\(843\) 1.64488 10.3854i 0.0566528 0.357692i
\(844\) 1.49065 + 1.08302i 0.0513102 + 0.0372790i
\(845\) −7.08864 + 2.85291i −0.243857 + 0.0981431i
\(846\) 44.4376i 1.52780i
\(847\) 0 0
\(848\) 28.8921 + 28.8921i 0.992159 + 0.992159i
\(849\) −5.61360 17.2769i −0.192658 0.592941i
\(850\) 13.2922 24.8376i 0.455919 0.851921i
\(851\) −7.10498 + 5.16207i −0.243556 + 0.176954i
\(852\) −1.28844 2.52871i −0.0441414 0.0866323i
\(853\) −6.33606 12.4352i −0.216942 0.425774i 0.756729 0.653728i \(-0.226796\pi\)
−0.973672 + 0.227955i \(0.926796\pi\)
\(854\) −1.38759 + 1.00814i −0.0474823 + 0.0344979i
\(855\) −2.08836 + 3.33210i −0.0714205 + 0.113955i
\(856\) −8.77321 27.0012i −0.299862 0.922881i
\(857\) 26.9229 + 26.9229i 0.919668 + 0.919668i 0.997005 0.0773373i \(-0.0246418\pi\)
−0.0773373 + 0.997005i \(0.524642\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i −0.949906 0.312535i \(-0.898822\pi\)
0.949906 0.312535i \(-0.101178\pi\)
\(860\) 1.43486 3.36771i 0.0489282 0.114838i
\(861\) −0.826904 0.600781i −0.0281808 0.0204746i
\(862\) −2.35205 + 14.8503i −0.0801112 + 0.505802i
\(863\) 10.8283 5.51731i 0.368601 0.187812i −0.259872 0.965643i \(-0.583680\pi\)
0.628473 + 0.777832i \(0.283680\pi\)
\(864\) 2.30194 7.08464i 0.0783135 0.241024i
\(865\) −2.46662 + 27.7634i −0.0838676 + 0.943985i
\(866\) −24.1079 + 33.1817i −0.819219 + 1.12756i
\(867\) 2.31693 + 1.18053i 0.0786871 + 0.0400931i
\(868\) 0.0147565 0.0147565i 0.000500870 0.000500870i
\(869\) 0 0
\(870\) −1.76991 25.8098i −0.0600057 0.875035i
\(871\) −17.2133 + 5.59295i −0.583251 + 0.189510i
\(872\) 24.2026 3.83331i 0.819602 0.129812i
\(873\) 3.22038 + 0.510058i 0.108993 + 0.0172628i
\(874\) −1.74703 0.567644i −0.0590941 0.0192008i
\(875\) −1.66907 + 1.34047i −0.0564248 + 0.0453161i
\(876\) −0.349572 0.481145i −0.0118109 0.0162564i
\(877\) 2.00784 + 12.6770i 0.0677999 + 0.428072i 0.998118 + 0.0613187i \(0.0195306\pi\)
−0.930318 + 0.366753i \(0.880469\pi\)
\(878\) 16.9668 33.2992i 0.572602 1.12379i
\(879\) −5.76213 −0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) 11.3619 22.2991i 0.382577 0.750849i
\(883\) −6.81876 43.0520i −0.229470 1.44881i −0.786123 0.618069i \(-0.787915\pi\)
0.556654 0.830745i \(-0.312085\pi\)
\(884\) 2.09468 + 2.88308i 0.0704517 + 0.0969685i
\(885\) −8.81823 14.7208i −0.296422 0.494835i
\(886\) 44.5223 + 14.4662i 1.49576 + 0.486001i
\(887\) −10.2712 1.62679i −0.344872 0.0546224i −0.0184043 0.999831i \(-0.505859\pi\)
−0.326468 + 0.945208i \(0.605859\pi\)
\(888\) 10.9300 1.73115i 0.366788 0.0580935i
\(889\) −2.65268 + 0.861909i −0.0889682 + 0.0289075i
\(890\) −17.6925 + 20.2977i −0.593055 + 0.680381i
\(891\) 0 0
\(892\) 4.66817 4.66817i 0.156302 0.156302i
\(893\) −8.19397 4.17503i −0.274201 0.139712i
\(894\) 4.10455 5.64943i 0.137277 0.188945i
\(895\) −28.9564 34.6034i −0.967907 1.15666i
\(896\) −0.781885 + 2.40639i −0.0261209 + 0.0803920i
\(897\) 3.57263 1.82035i 0.119287 0.0607796i
\(898\) −1.74174 + 10.9969i −0.0581228 + 0.366973i
\(899\) 2.71045 + 1.96926i 0.0903987 + 0.0656785i
\(900\) 1.60075 + 3.30456i 0.0533583 + 0.110152i
\(901\) 33.4710i 1.11508i
\(902\) 0 0
\(903\) 0.568922 + 0.568922i 0.0189325 + 0.0189325i
\(904\) 3.29143 + 10.1300i 0.109471 + 0.336918i
\(905\) −8.73404 5.47398i −0.290329 0.181961i
\(906\) −14.6708 + 10.6590i −0.487405 + 0.354120i
\(907\) 7.40321 + 14.5296i 0.245820 + 0.482448i 0.980641 0.195812i \(-0.0627343\pi\)
−0.734822 + 0.678260i \(0.762734\pi\)
\(908\) −1.84296 3.61701i −0.0611607 0.120035i
\(909\) 9.23043 6.70630i 0.306154 0.222434i
\(910\) −0.450552 1.96360i −0.0149356 0.0650927i
\(911\) −5.47283 16.8436i −0.181323 0.558055i 0.818543 0.574446i \(-0.194782\pi\)
−0.999866 + 0.0163910i \(0.994782\pi\)
\(912\) 1.89718 + 1.89718i 0.0628219 + 0.0628219i
\(913\) 0 0
\(914\) 10.2385i 0.338659i
\(915\) −9.66456 4.11771i −0.319500 0.136127i
\(916\) 4.12869 + 2.99967i 0.136416 + 0.0991119i
\(917\) 0.292615 1.84750i 0.00966301 0.0610098i
\(918\) 21.4691 10.9390i 0.708584 0.361042i
\(919\) 2.82132 8.68314i 0.0930669 0.286430i −0.893678 0.448708i \(-0.851884\pi\)
0.986745 + 0.162278i \(0.0518842\pi\)
\(920\) 7.15494 5.98732i 0.235891 0.197396i
\(921\) 13.3383 18.3585i 0.439510 0.604934i
\(922\) 39.3857 + 20.0680i 1.29710 + 0.660905i
\(923\) 25.0888 25.0888i 0.825807 0.825807i
\(924\) 0 0
\(925\) −16.3231 + 21.5407i −0.536701 + 0.708254i
\(926\) −35.8082 + 11.6348i −1.17673 + 0.382342i
\(927\) −7.56022 + 1.19742i −0.248310 + 0.0393284i
\(928\) 16.4249 + 2.60145i 0.539174 + 0.0853967i
\(929\) −1.72368 0.560057i −0.0565521 0.0183749i 0.280604 0.959824i \(-0.409465\pi\)
−0.337156 + 0.941449i \(0.609465\pi\)
\(930\) 0.922346 + 0.231285i 0.0302449 + 0.00758413i
\(931\) 3.04430 + 4.19012i 0.0997729 + 0.137326i
\(932\) −0.760076 4.79893i −0.0248971 0.157194i
\(933\) 2.72024 5.33878i 0.0890568 0.174784i
\(934\) 40.2174 1.31595
\(935\) 0 0
\(936\) 18.7961 0.614371
\(937\) −6.88215 + 13.5070i −0.224830 + 0.441254i −0.975674 0.219226i \(-0.929647\pi\)
0.750844 + 0.660479i \(0.229647\pi\)
\(938\) 0.266201 + 1.68073i 0.00869178 + 0.0548777i
\(939\) −0.630770 0.868181i −0.0205844 0.0283320i
\(940\) −7.36634 + 4.41267i −0.240263 + 0.143925i
\(941\) 20.7606 + 6.74553i 0.676777 + 0.219898i 0.627184 0.778871i \(-0.284208\pi\)
0.0495931 + 0.998770i \(0.484208\pi\)
\(942\) −5.92247 0.938027i −0.192965 0.0305626i
\(943\) −10.7452 + 1.70187i −0.349912 + 0.0554206i
\(944\) 41.4236 13.4593i 1.34822 0.438064i
\(945\) −1.82673 + 0.125268i −0.0594235 + 0.00407498i
\(946\) 0 0
\(947\) 6.90662 6.90662i 0.224435 0.224435i −0.585928 0.810363i \(-0.699270\pi\)
0.810363 + 0.585928i \(0.199270\pi\)
\(948\) 0.147924 + 0.0753712i 0.00480436 + 0.00244794i
\(949\) 4.37031 6.01522i 0.141866 0.195262i
\(950\) −5.65190 0.113865i −0.183372 0.00369425i
\(951\) 2.79170 8.59195i 0.0905269 0.278613i
\(952\) −1.62385 + 0.827393i −0.0526293 + 0.0268160i
\(953\) 2.04042 12.8827i 0.0660956 0.417311i −0.932349 0.361560i \(-0.882244\pi\)
0.998445 0.0557519i \(-0.0177556\pi\)
\(954\) −26.2572 19.0770i −0.850109 0.617641i
\(955\) 5.28155 + 13.1231i 0.170907 + 0.424653i
\(956\) 1.64046i 0.0530561i
\(957\) 0 0
\(958\) −28.2202 28.2202i −0.911755 0.911755i
\(959\) 0.256204 + 0.788514i 0.00827325 + 0.0254624i
\(960\) −11.1230 + 2.55219i −0.358993 + 0.0823717i
\(961\) 24.9799 18.1490i 0.805803 0.585450i
\(962\) −11.5472 22.6627i −0.372298 0.730675i
\(963\) 11.8673 + 23.2910i 0.382420 + 0.750541i
\(964\) 4.06247 2.95156i 0.130843 0.0950633i
\(965\) −12.9281 + 2.96638i −0.416171 + 0.0954913i
\(966\) −0.116495 0.358536i −0.00374818 0.0115357i
\(967\) −13.6319 13.6319i −0.438372 0.438372i 0.453092 0.891464i \(-0.350321\pi\)
−0.891464 + 0.453092i \(0.850321\pi\)
\(968\) 0 0
\(969\) 2.19785i 0.0706051i
\(970\) 1.74998 + 4.34819i 0.0561885 + 0.139612i
\(971\) −3.32405 2.41506i −0.106674 0.0775030i 0.533170 0.846008i \(-0.321001\pi\)
−0.639843 + 0.768505i \(0.721001\pi\)
\(972\) −0.766064 + 4.83674i −0.0245715 + 0.155138i
\(973\) 1.79312 0.913641i 0.0574848 0.0292900i
\(974\) −10.9611 + 33.7348i −0.351216 + 1.08093i
\(975\) 8.89929 8.54780i 0.285005 0.273749i
\(976\) 15.6729 21.5718i 0.501676 0.690498i
\(977\) −27.3623 13.9418i −0.875398 0.446038i −0.0422626 0.999107i \(-0.513457\pi\)
−0.833136 + 0.553069i \(0.813457\pi\)
\(978\) −8.58324 + 8.58324i −0.274462 + 0.274462i
\(979\) 0 0
\(980\) 4.82472 0.330856i 0.154120 0.0105688i
\(981\) −21.4574 + 6.97195i −0.685083 + 0.222597i
\(982\) −27.5462 + 4.36290i −0.879036 + 0.139226i
\(983\) −27.3840 4.33721i −0.873415 0.138335i −0.296395 0.955065i \(-0.595785\pi\)
−0.577020 + 0.816730i \(0.695785\pi\)
\(984\) 13.0376 + 4.23617i 0.415623 + 0.135044i
\(985\) 26.8706 16.0963i 0.856168 0.512872i
\(986\) 31.6171 + 43.5172i 1.00689 + 1.38587i
\(987\) −0.295242 1.86409i −0.00939767 0.0593346i
\(988\) 0.324662 0.637185i 0.0103289 0.0202716i
\(989\) 8.56376 0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) −0.277499 + 0.544623i −0.00881061 + 0.0172918i
\(993\) 2.20803 + 13.9410i 0.0700697 + 0.442403i
\(994\) −1.96080 2.69881i −0.0621927 0.0856009i
\(995\) 29.0261 + 7.27852i 0.920191 + 0.230744i
\(996\) 3.92871 + 1.27652i 0.124486 + 0.0404480i
\(997\) 28.5152 + 4.51636i 0.903085 + 0.143035i 0.590672 0.806912i \(-0.298863\pi\)
0.312413 + 0.949946i \(0.398863\pi\)
\(998\) −17.6527 + 2.79592i −0.558787 + 0.0885031i
\(999\) −21.9855 + 7.14351i −0.695589 + 0.226011i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.d.578.1 32
5.2 odd 4 inner 605.2.m.d.457.1 32
11.2 odd 10 inner 605.2.m.d.233.1 32
11.3 even 5 605.2.e.b.483.14 32
11.4 even 5 605.2.m.e.118.1 32
11.5 even 5 55.2.l.a.18.1 yes 32
11.6 odd 10 605.2.m.e.403.4 32
11.7 odd 10 55.2.l.a.8.4 yes 32
11.8 odd 10 605.2.e.b.483.3 32
11.9 even 5 605.2.m.c.233.4 32
11.10 odd 2 605.2.m.c.578.4 32
33.5 odd 10 495.2.bj.a.73.4 32
33.29 even 10 495.2.bj.a.118.1 32
44.7 even 10 880.2.cm.a.833.4 32
44.27 odd 10 880.2.cm.a.513.1 32
55.2 even 20 inner 605.2.m.d.112.1 32
55.7 even 20 55.2.l.a.52.1 yes 32
55.17 even 20 605.2.m.e.282.1 32
55.18 even 20 275.2.bm.b.107.4 32
55.27 odd 20 55.2.l.a.7.4 32
55.29 odd 10 275.2.bm.b.118.1 32
55.32 even 4 605.2.m.c.457.4 32
55.37 odd 20 605.2.m.e.602.4 32
55.38 odd 20 275.2.bm.b.7.1 32
55.42 odd 20 605.2.m.c.112.4 32
55.47 odd 20 605.2.e.b.362.3 32
55.49 even 10 275.2.bm.b.18.4 32
55.52 even 20 605.2.e.b.362.14 32
165.62 odd 20 495.2.bj.a.217.4 32
165.137 even 20 495.2.bj.a.172.1 32
220.7 odd 20 880.2.cm.a.657.1 32
220.27 even 20 880.2.cm.a.337.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 55.27 odd 20
55.2.l.a.8.4 yes 32 11.7 odd 10
55.2.l.a.18.1 yes 32 11.5 even 5
55.2.l.a.52.1 yes 32 55.7 even 20
275.2.bm.b.7.1 32 55.38 odd 20
275.2.bm.b.18.4 32 55.49 even 10
275.2.bm.b.107.4 32 55.18 even 20
275.2.bm.b.118.1 32 55.29 odd 10
495.2.bj.a.73.4 32 33.5 odd 10
495.2.bj.a.118.1 32 33.29 even 10
495.2.bj.a.172.1 32 165.137 even 20
495.2.bj.a.217.4 32 165.62 odd 20
605.2.e.b.362.3 32 55.47 odd 20
605.2.e.b.362.14 32 55.52 even 20
605.2.e.b.483.3 32 11.8 odd 10
605.2.e.b.483.14 32 11.3 even 5
605.2.m.c.112.4 32 55.42 odd 20
605.2.m.c.233.4 32 11.9 even 5
605.2.m.c.457.4 32 55.32 even 4
605.2.m.c.578.4 32 11.10 odd 2
605.2.m.d.112.1 32 55.2 even 20 inner
605.2.m.d.233.1 32 11.2 odd 10 inner
605.2.m.d.457.1 32 5.2 odd 4 inner
605.2.m.d.578.1 32 1.1 even 1 trivial
605.2.m.e.118.1 32 11.4 even 5
605.2.m.e.282.1 32 55.17 even 20
605.2.m.e.403.4 32 11.6 odd 10
605.2.m.e.602.4 32 55.37 odd 20
880.2.cm.a.337.4 32 220.27 even 20
880.2.cm.a.513.1 32 44.27 odd 10
880.2.cm.a.657.1 32 220.7 odd 20
880.2.cm.a.833.4 32 44.7 even 10