Properties

Label 605.2.e.b.483.14
Level $605$
Weight $2$
Character 605.483
Analytic conductor $4.831$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(362,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.362"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 483.14
Character \(\chi\) \(=\) 605.483
Dual form 605.2.e.b.362.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07485 + 1.07485i) q^{2} +(0.563723 + 0.563723i) q^{3} +0.310591i q^{4} +(2.23083 - 0.152980i) q^{5} +1.21183i q^{6} +(-0.135390 - 0.135390i) q^{7} +(1.81586 - 1.81586i) q^{8} -2.36443i q^{9} +(2.56223 + 2.23337i) q^{10} +(-0.175087 + 0.175087i) q^{12} +(-2.18892 + 2.18892i) q^{13} -0.291048i q^{14} +(1.34381 + 1.17133i) q^{15} +4.52471 q^{16} +(2.62090 + 2.62090i) q^{17} +(2.54140 - 2.54140i) q^{18} +0.743791 q^{19} +(0.0475140 + 0.692874i) q^{20} -0.152646i q^{21} +(-1.14886 - 1.14886i) q^{23} +2.04728 q^{24} +(4.95319 - 0.682543i) q^{25} -4.70551 q^{26} +(3.02406 - 3.02406i) q^{27} +(0.0420510 - 0.0420510i) q^{28} -9.54720 q^{29} +(0.185386 + 2.70339i) q^{30} +0.350920 q^{31} +(1.23166 + 1.23166i) q^{32} +5.63413i q^{34} +(-0.322745 - 0.281321i) q^{35} +0.734370 q^{36} +(-3.82216 + 3.82216i) q^{37} +(0.799462 + 0.799462i) q^{38} -2.46789 q^{39} +(3.77307 - 4.32865i) q^{40} +6.69597i q^{41} +(0.164071 - 0.164071i) q^{42} +(-3.72708 + 3.72708i) q^{43} +(-0.361710 - 5.27464i) q^{45} -2.46969i q^{46} +(-8.74273 + 8.74273i) q^{47} +(2.55069 + 2.55069i) q^{48} -6.96334i q^{49} +(6.05755 + 4.59030i) q^{50} +2.95493i q^{51} +(-0.679858 - 0.679858i) q^{52} +(6.38540 + 6.38540i) q^{53} +6.50079 q^{54} -0.491699 q^{56} +(0.419293 + 0.419293i) q^{57} +(-10.2618 - 10.2618i) q^{58} -9.62609i q^{59} +(-0.363805 + 0.417374i) q^{60} +5.89303i q^{61} +(0.377185 + 0.377185i) q^{62} +(-0.320122 + 0.320122i) q^{63} -6.40173i q^{64} +(-4.54825 + 5.21797i) q^{65} +(4.13426 - 4.13426i) q^{67} +(-0.814027 + 0.814027i) q^{68} -1.29528i q^{69} +(-0.0445244 - 0.649278i) q^{70} -11.4617 q^{71} +(-4.29347 - 4.29347i) q^{72} +(1.69838 - 1.69838i) q^{73} -8.21648 q^{74} +(3.17700 + 2.40747i) q^{75} +0.231015i q^{76} +(-2.65261 - 2.65261i) q^{78} -0.670485 q^{79} +(10.0939 - 0.692189i) q^{80} -3.68383 q^{81} +(-7.19714 + 7.19714i) q^{82} +(11.7967 - 11.7967i) q^{83} +0.0474103 q^{84} +(6.24773 + 5.44584i) q^{85} -8.01208 q^{86} +(-5.38198 - 5.38198i) q^{87} +7.92190i q^{89} +(5.28065 - 6.05821i) q^{90} +0.592718 q^{91} +(0.356824 - 0.356824i) q^{92} +(0.197822 + 0.197822i) q^{93} -18.7942 q^{94} +(1.65927 - 0.113785i) q^{95} +1.38863i q^{96} +(0.975091 - 0.975091i) q^{97} +(7.48452 - 7.48452i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{3} + 8 q^{5} + 12 q^{12} - 36 q^{15} - 8 q^{16} - 64 q^{20} - 24 q^{23} + 16 q^{25} - 16 q^{27} - 8 q^{31} + 24 q^{36} + 32 q^{37} - 40 q^{38} + 60 q^{42} - 28 q^{45} - 28 q^{47} + 56 q^{48}+ \cdots + 92 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07485 + 1.07485i 0.760031 + 0.760031i 0.976328 0.216296i \(-0.0693978\pi\)
−0.216296 + 0.976328i \(0.569398\pi\)
\(3\) 0.563723 + 0.563723i 0.325466 + 0.325466i 0.850859 0.525394i \(-0.176082\pi\)
−0.525394 + 0.850859i \(0.676082\pi\)
\(4\) 0.310591i 0.155295i
\(5\) 2.23083 0.152980i 0.997657 0.0684146i
\(6\) 1.21183i 0.494728i
\(7\) −0.135390 0.135390i −0.0511728 0.0511728i 0.681057 0.732230i \(-0.261520\pi\)
−0.732230 + 0.681057i \(0.761520\pi\)
\(8\) 1.81586 1.81586i 0.642002 0.642002i
\(9\) 2.36443i 0.788144i
\(10\) 2.56223 + 2.23337i 0.810248 + 0.706253i
\(11\) 0 0
\(12\) −0.175087 + 0.175087i −0.0505433 + 0.0505433i
\(13\) −2.18892 + 2.18892i −0.607098 + 0.607098i −0.942186 0.335089i \(-0.891234\pi\)
0.335089 + 0.942186i \(0.391234\pi\)
\(14\) 0.291048i 0.0777859i
\(15\) 1.34381 + 1.17133i 0.346970 + 0.302437i
\(16\) 4.52471 1.13118
\(17\) 2.62090 + 2.62090i 0.635662 + 0.635662i 0.949482 0.313820i \(-0.101609\pi\)
−0.313820 + 0.949482i \(0.601609\pi\)
\(18\) 2.54140 2.54140i 0.599014 0.599014i
\(19\) 0.743791 0.170637 0.0853187 0.996354i \(-0.472809\pi\)
0.0853187 + 0.996354i \(0.472809\pi\)
\(20\) 0.0475140 + 0.692874i 0.0106245 + 0.154931i
\(21\) 0.152646i 0.0333100i
\(22\) 0 0
\(23\) −1.14886 1.14886i −0.239553 0.239553i 0.577112 0.816665i \(-0.304180\pi\)
−0.816665 + 0.577112i \(0.804180\pi\)
\(24\) 2.04728 0.417899
\(25\) 4.95319 0.682543i 0.990639 0.136509i
\(26\) −4.70551 −0.922826
\(27\) 3.02406 3.02406i 0.581980 0.581980i
\(28\) 0.0420510 0.0420510i 0.00794689 0.00794689i
\(29\) −9.54720 −1.77287 −0.886436 0.462852i \(-0.846826\pi\)
−0.886436 + 0.462852i \(0.846826\pi\)
\(30\) 0.185386 + 2.70339i 0.0338466 + 0.493569i
\(31\) 0.350920 0.0630271 0.0315136 0.999503i \(-0.489967\pi\)
0.0315136 + 0.999503i \(0.489967\pi\)
\(32\) 1.23166 + 1.23166i 0.217729 + 0.217729i
\(33\) 0 0
\(34\) 5.63413i 0.966246i
\(35\) −0.322745 0.281321i −0.0545539 0.0475519i
\(36\) 0.734370 0.122395
\(37\) −3.82216 + 3.82216i −0.628360 + 0.628360i −0.947655 0.319295i \(-0.896554\pi\)
0.319295 + 0.947655i \(0.396554\pi\)
\(38\) 0.799462 + 0.799462i 0.129690 + 0.129690i
\(39\) −2.46789 −0.395179
\(40\) 3.77307 4.32865i 0.596576 0.684420i
\(41\) 6.69597i 1.04573i 0.852414 + 0.522867i \(0.175138\pi\)
−0.852414 + 0.522867i \(0.824862\pi\)
\(42\) 0.164071 0.164071i 0.0253166 0.0253166i
\(43\) −3.72708 + 3.72708i −0.568374 + 0.568374i −0.931673 0.363299i \(-0.881650\pi\)
0.363299 + 0.931673i \(0.381650\pi\)
\(44\) 0 0
\(45\) −0.361710 5.27464i −0.0539205 0.786297i
\(46\) 2.46969i 0.364136i
\(47\) −8.74273 + 8.74273i −1.27526 + 1.27526i −0.331968 + 0.943291i \(0.607713\pi\)
−0.943291 + 0.331968i \(0.892287\pi\)
\(48\) 2.55069 + 2.55069i 0.368160 + 0.368160i
\(49\) 6.96334i 0.994763i
\(50\) 6.05755 + 4.59030i 0.856667 + 0.649166i
\(51\) 2.95493i 0.413772i
\(52\) −0.679858 0.679858i −0.0942794 0.0942794i
\(53\) 6.38540 + 6.38540i 0.877102 + 0.877102i 0.993234 0.116132i \(-0.0370495\pi\)
−0.116132 + 0.993234i \(0.537050\pi\)
\(54\) 6.50079 0.884646
\(55\) 0 0
\(56\) −0.491699 −0.0657061
\(57\) 0.419293 + 0.419293i 0.0555367 + 0.0555367i
\(58\) −10.2618 10.2618i −1.34744 1.34744i
\(59\) 9.62609i 1.25321i −0.779337 0.626605i \(-0.784444\pi\)
0.779337 0.626605i \(-0.215556\pi\)
\(60\) −0.363805 + 0.417374i −0.0469670 + 0.0538828i
\(61\) 5.89303i 0.754525i 0.926106 + 0.377262i \(0.123134\pi\)
−0.926106 + 0.377262i \(0.876866\pi\)
\(62\) 0.377185 + 0.377185i 0.0479026 + 0.0479026i
\(63\) −0.320122 + 0.320122i −0.0403315 + 0.0403315i
\(64\) 6.40173i 0.800217i
\(65\) −4.54825 + 5.21797i −0.564141 + 0.647209i
\(66\) 0 0
\(67\) 4.13426 4.13426i 0.505081 0.505081i −0.407932 0.913012i \(-0.633750\pi\)
0.913012 + 0.407932i \(0.133750\pi\)
\(68\) −0.814027 + 0.814027i −0.0987153 + 0.0987153i
\(69\) 1.29528i 0.155933i
\(70\) −0.0445244 0.649278i −0.00532169 0.0776036i
\(71\) −11.4617 −1.36025 −0.680127 0.733094i \(-0.738075\pi\)
−0.680127 + 0.733094i \(0.738075\pi\)
\(72\) −4.29347 4.29347i −0.505990 0.505990i
\(73\) 1.69838 1.69838i 0.198780 0.198780i −0.600697 0.799477i \(-0.705110\pi\)
0.799477 + 0.600697i \(0.205110\pi\)
\(74\) −8.21648 −0.955146
\(75\) 3.17700 + 2.40747i 0.366848 + 0.277990i
\(76\) 0.231015i 0.0264992i
\(77\) 0 0
\(78\) −2.65261 2.65261i −0.300348 0.300348i
\(79\) −0.670485 −0.0754355 −0.0377177 0.999288i \(-0.512009\pi\)
−0.0377177 + 0.999288i \(0.512009\pi\)
\(80\) 10.0939 0.692189i 1.12853 0.0773891i
\(81\) −3.68383 −0.409315
\(82\) −7.19714 + 7.19714i −0.794791 + 0.794791i
\(83\) 11.7967 11.7967i 1.29485 1.29485i 0.363106 0.931748i \(-0.381716\pi\)
0.931748 0.363106i \(-0.118284\pi\)
\(84\) 0.0474103 0.00517289
\(85\) 6.24773 + 5.44584i 0.677661 + 0.590684i
\(86\) −8.01208 −0.863964
\(87\) −5.38198 5.38198i −0.577009 0.577009i
\(88\) 0 0
\(89\) 7.92190i 0.839720i 0.907589 + 0.419860i \(0.137921\pi\)
−0.907589 + 0.419860i \(0.862079\pi\)
\(90\) 5.28065 6.05821i 0.556629 0.638592i
\(91\) 0.592718 0.0621338
\(92\) 0.356824 0.356824i 0.0372015 0.0372015i
\(93\) 0.197822 + 0.197822i 0.0205132 + 0.0205132i
\(94\) −18.7942 −1.93847
\(95\) 1.65927 0.113785i 0.170238 0.0116741i
\(96\) 1.38863i 0.141727i
\(97\) 0.975091 0.975091i 0.0990055 0.0990055i −0.655869 0.754875i \(-0.727698\pi\)
0.754875 + 0.655869i \(0.227698\pi\)
\(98\) 7.48452 7.48452i 0.756051 0.756051i
\(99\) 0 0
\(100\) 0.211991 + 1.53842i 0.0211991 + 0.153842i
\(101\) 4.82544i 0.480150i −0.970754 0.240075i \(-0.922828\pi\)
0.970754 0.240075i \(-0.0771720\pi\)
\(102\) −3.17609 + 3.17609i −0.314480 + 0.314480i
\(103\) 2.28914 + 2.28914i 0.225556 + 0.225556i 0.810833 0.585277i \(-0.199014\pi\)
−0.585277 + 0.810833i \(0.699014\pi\)
\(104\) 7.94953i 0.779516i
\(105\) −0.0233517 0.340526i −0.00227889 0.0332319i
\(106\) 13.7266i 1.33325i
\(107\) −7.81744 7.81744i −0.755741 0.755741i 0.219803 0.975544i \(-0.429458\pi\)
−0.975544 + 0.219803i \(0.929458\pi\)
\(108\) 0.939243 + 0.939243i 0.0903787 + 0.0903787i
\(109\) −9.54212 −0.913969 −0.456985 0.889475i \(-0.651071\pi\)
−0.456985 + 0.889475i \(0.651071\pi\)
\(110\) 0 0
\(111\) −4.30929 −0.409019
\(112\) −0.612603 0.612603i −0.0578856 0.0578856i
\(113\) 2.93286 + 2.93286i 0.275900 + 0.275900i 0.831470 0.555570i \(-0.187500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(114\) 0.901350i 0.0844192i
\(115\) −2.73866 2.38715i −0.255381 0.222603i
\(116\) 2.96527i 0.275319i
\(117\) 5.17556 + 5.17556i 0.478480 + 0.478480i
\(118\) 10.3466 10.3466i 0.952479 0.952479i
\(119\) 0.709690i 0.0650572i
\(120\) 4.56713 0.313192i 0.416920 0.0285904i
\(121\) 0 0
\(122\) −6.33410 + 6.33410i −0.573462 + 0.573462i
\(123\) −3.77467 + 3.77467i −0.340351 + 0.340351i
\(124\) 0.108993i 0.00978782i
\(125\) 10.9453 2.28037i 0.978979 0.203963i
\(126\) −0.688163 −0.0613065
\(127\) −10.3006 10.3006i −0.914027 0.914027i 0.0825589 0.996586i \(-0.473691\pi\)
−0.996586 + 0.0825589i \(0.973691\pi\)
\(128\) 9.34421 9.34421i 0.825919 0.825919i
\(129\) −4.20208 −0.369973
\(130\) −10.4972 + 0.719847i −0.920664 + 0.0631348i
\(131\) 9.76926i 0.853544i −0.904359 0.426772i \(-0.859651\pi\)
0.904359 0.426772i \(-0.140349\pi\)
\(132\) 0 0
\(133\) −0.100702 0.100702i −0.00873200 0.00873200i
\(134\) 8.88740 0.767754
\(135\) 6.28353 7.20877i 0.540800 0.620432i
\(136\) 9.51836 0.816193
\(137\) −3.06186 + 3.06186i −0.261592 + 0.261592i −0.825701 0.564109i \(-0.809220\pi\)
0.564109 + 0.825701i \(0.309220\pi\)
\(138\) 1.39222 1.39222i 0.118514 0.118514i
\(139\) −10.5105 −0.891493 −0.445747 0.895159i \(-0.647062\pi\)
−0.445747 + 0.895159i \(0.647062\pi\)
\(140\) 0.0873757 0.100242i 0.00738459 0.00847196i
\(141\) −9.85696 −0.830106
\(142\) −12.3196 12.3196i −1.03384 1.03384i
\(143\) 0 0
\(144\) 10.6984i 0.891532i
\(145\) −21.2982 + 1.46053i −1.76872 + 0.121290i
\(146\) 3.65099 0.302158
\(147\) 3.92540 3.92540i 0.323761 0.323761i
\(148\) −1.18713 1.18713i −0.0975813 0.0975813i
\(149\) 5.76241 0.472075 0.236038 0.971744i \(-0.424151\pi\)
0.236038 + 0.971744i \(0.424151\pi\)
\(150\) 0.827127 + 6.00244i 0.0675347 + 0.490097i
\(151\) 14.9642i 1.21777i −0.793259 0.608885i \(-0.791617\pi\)
0.793259 0.608885i \(-0.208383\pi\)
\(152\) 1.35062 1.35062i 0.109550 0.109550i
\(153\) 6.19694 6.19694i 0.500993 0.500993i
\(154\) 0 0
\(155\) 0.782843 0.0536836i 0.0628795 0.00431197i
\(156\) 0.766504i 0.0613694i
\(157\) 3.49885 3.49885i 0.279239 0.279239i −0.553566 0.832805i \(-0.686733\pi\)
0.832805 + 0.553566i \(0.186733\pi\)
\(158\) −0.720669 0.720669i −0.0573333 0.0573333i
\(159\) 7.19920i 0.570933i
\(160\) 2.93605 + 2.55921i 0.232115 + 0.202323i
\(161\) 0.311089i 0.0245172i
\(162\) −3.95956 3.95956i −0.311092 0.311092i
\(163\) 7.08286 + 7.08286i 0.554772 + 0.554772i 0.927814 0.373042i \(-0.121685\pi\)
−0.373042 + 0.927814i \(0.621685\pi\)
\(164\) −2.07970 −0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) 8.52930 + 8.52930i 0.660017 + 0.660017i 0.955384 0.295367i \(-0.0954419\pi\)
−0.295367 + 0.955384i \(0.595442\pi\)
\(168\) −0.277182 0.277182i −0.0213851 0.0213851i
\(169\) 3.41725i 0.262865i
\(170\) 0.861908 + 12.5688i 0.0661053 + 0.963982i
\(171\) 1.75864i 0.134487i
\(172\) −1.15760 1.15760i −0.0882658 0.0882658i
\(173\) 8.81415 8.81415i 0.670127 0.670127i −0.287618 0.957745i \(-0.592863\pi\)
0.957745 + 0.287618i \(0.0928634\pi\)
\(174\) 11.5696i 0.877090i
\(175\) −0.763025 0.578206i −0.0576793 0.0437082i
\(176\) 0 0
\(177\) 5.42645 5.42645i 0.407877 0.407877i
\(178\) −8.51483 + 8.51483i −0.638214 + 0.638214i
\(179\) 20.1785i 1.50822i 0.656751 + 0.754108i \(0.271930\pi\)
−0.656751 + 0.754108i \(0.728070\pi\)
\(180\) 1.63825 0.112344i 0.122108 0.00837361i
\(181\) 4.60973 0.342638 0.171319 0.985216i \(-0.445197\pi\)
0.171319 + 0.985216i \(0.445197\pi\)
\(182\) 0.637081 + 0.637081i 0.0472236 + 0.0472236i
\(183\) −3.32204 + 3.32204i −0.245572 + 0.245572i
\(184\) −4.17232 −0.307587
\(185\) −7.94188 + 9.11131i −0.583899 + 0.669877i
\(186\) 0.425256i 0.0311813i
\(187\) 0 0
\(188\) −2.71541 2.71541i −0.198042 0.198042i
\(189\) −0.818857 −0.0595631
\(190\) 1.90576 + 1.66116i 0.138259 + 0.120513i
\(191\) 6.32630 0.457755 0.228877 0.973455i \(-0.426495\pi\)
0.228877 + 0.973455i \(0.426495\pi\)
\(192\) 3.60881 3.60881i 0.260443 0.260443i
\(193\) 4.19447 4.19447i 0.301925 0.301925i −0.539842 0.841767i \(-0.681516\pi\)
0.841767 + 0.539842i \(0.181516\pi\)
\(194\) 2.09615 0.150495
\(195\) −5.50545 + 0.377537i −0.394253 + 0.0270360i
\(196\) 2.16275 0.154482
\(197\) 9.90515 + 9.90515i 0.705713 + 0.705713i 0.965631 0.259918i \(-0.0836955\pi\)
−0.259918 + 0.965631i \(0.583696\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(200\) 7.75489 10.2337i 0.548353 0.723631i
\(201\) 4.66116 0.328773
\(202\) 5.18661 5.18661i 0.364929 0.364929i
\(203\) 1.29260 + 1.29260i 0.0907228 + 0.0907228i
\(204\) −0.917772 −0.0642569
\(205\) 1.02435 + 14.9376i 0.0715435 + 1.04328i
\(206\) 4.92095i 0.342859i
\(207\) −2.71639 + 2.71639i −0.188802 + 0.188802i
\(208\) −9.90424 + 9.90424i −0.686736 + 0.686736i
\(209\) 0 0
\(210\) 0.340914 0.391113i 0.0235253 0.0269893i
\(211\) 5.93238i 0.408402i 0.978929 + 0.204201i \(0.0654596\pi\)
−0.978929 + 0.204201i \(0.934540\pi\)
\(212\) −1.98324 + 1.98324i −0.136210 + 0.136210i
\(213\) −6.46123 6.46123i −0.442716 0.442716i
\(214\) 16.8051i 1.14877i
\(215\) −7.74431 + 8.88464i −0.528157 + 0.605928i
\(216\) 10.9825i 0.747264i
\(217\) −0.0475113 0.0475113i −0.00322527 0.00322527i
\(218\) −10.2563 10.2563i −0.694645 0.694645i
\(219\) 1.91483 0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) −4.63182 4.63182i −0.310867 0.310867i
\(223\) −15.0300 15.0300i −1.00648 1.00648i −0.999979 0.00650292i \(-0.997930\pi\)
−0.00650292 0.999979i \(-0.502070\pi\)
\(224\) 0.333511i 0.0222836i
\(225\) −1.61383 11.7115i −0.107588 0.780766i
\(226\) 6.30474i 0.419385i
\(227\) −9.24199 9.24199i −0.613412 0.613412i 0.330421 0.943834i \(-0.392809\pi\)
−0.943834 + 0.330421i \(0.892809\pi\)
\(228\) −0.130228 + 0.130228i −0.00862458 + 0.00862458i
\(229\) 16.4311i 1.08580i 0.839798 + 0.542899i \(0.182673\pi\)
−0.839798 + 0.542899i \(0.817327\pi\)
\(230\) −0.377812 5.50946i −0.0249122 0.363283i
\(231\) 0 0
\(232\) −17.3363 + 17.3363i −1.13819 + 1.13819i
\(233\) 11.0617 11.0617i 0.724676 0.724676i −0.244878 0.969554i \(-0.578748\pi\)
0.969554 + 0.244878i \(0.0787480\pi\)
\(234\) 11.1259i 0.727320i
\(235\) −18.1661 + 20.8410i −1.18502 + 1.35952i
\(236\) 2.98977 0.194618
\(237\) −0.377968 0.377968i −0.0245517 0.0245517i
\(238\) 0.762808 0.762808i 0.0494455 0.0494455i
\(239\) −5.28173 −0.341647 −0.170823 0.985302i \(-0.554643\pi\)
−0.170823 + 0.985302i \(0.554643\pi\)
\(240\) 6.08035 + 5.29994i 0.392485 + 0.342110i
\(241\) 16.1676i 1.04144i 0.853726 + 0.520722i \(0.174337\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(242\) 0 0
\(243\) −11.1488 11.1488i −0.715198 0.715198i
\(244\) −1.83032 −0.117174
\(245\) −1.06525 15.5340i −0.0680563 0.992432i
\(246\) −8.11439 −0.517354
\(247\) −1.62810 + 1.62810i −0.103594 + 0.103594i
\(248\) 0.637221 0.637221i 0.0404635 0.0404635i
\(249\) 13.3001 0.842861
\(250\) 14.2156 + 9.31348i 0.899073 + 0.589036i
\(251\) 19.3427 1.22090 0.610450 0.792055i \(-0.290989\pi\)
0.610450 + 0.792055i \(0.290989\pi\)
\(252\) −0.0994268 0.0994268i −0.00626330 0.00626330i
\(253\) 0 0
\(254\) 22.1431i 1.38938i
\(255\) 0.452044 + 6.59194i 0.0283081 + 0.412803i
\(256\) 7.28371 0.455232
\(257\) −3.32773 + 3.32773i −0.207578 + 0.207578i −0.803237 0.595659i \(-0.796891\pi\)
0.595659 + 0.803237i \(0.296891\pi\)
\(258\) −4.51659 4.51659i −0.281191 0.281191i
\(259\) 1.03497 0.0643099
\(260\) −1.62065 1.41264i −0.100509 0.0876084i
\(261\) 22.5737i 1.39728i
\(262\) 10.5005 10.5005i 0.648720 0.648720i
\(263\) 11.2218 11.2218i 0.691964 0.691964i −0.270700 0.962664i \(-0.587255\pi\)
0.962664 + 0.270700i \(0.0872550\pi\)
\(264\) 0 0
\(265\) 15.2216 + 13.2679i 0.935053 + 0.815040i
\(266\) 0.216479i 0.0132732i
\(267\) −4.46576 + 4.46576i −0.273300 + 0.273300i
\(268\) 1.28406 + 1.28406i 0.0784366 + 0.0784366i
\(269\) 11.3124i 0.689729i 0.938653 + 0.344864i \(0.112075\pi\)
−0.938653 + 0.344864i \(0.887925\pi\)
\(270\) 14.5022 0.994489i 0.882573 0.0605227i
\(271\) 17.8282i 1.08298i −0.840706 0.541492i \(-0.817859\pi\)
0.840706 0.541492i \(-0.182141\pi\)
\(272\) 11.8588 + 11.8588i 0.719047 + 0.719047i
\(273\) 0.334129 + 0.334129i 0.0202224 + 0.0202224i
\(274\) −6.58205 −0.397636
\(275\) 0 0
\(276\) 0.402300 0.0242156
\(277\) −3.31038 3.31038i −0.198901 0.198901i 0.600628 0.799529i \(-0.294917\pi\)
−0.799529 + 0.600628i \(0.794917\pi\)
\(278\) −11.2972 11.2972i −0.677563 0.677563i
\(279\) 0.829727i 0.0496744i
\(280\) −1.09690 + 0.0752200i −0.0655521 + 0.00449525i
\(281\) 13.1893i 0.786808i 0.919366 + 0.393404i \(0.128703\pi\)
−0.919366 + 0.393404i \(0.871297\pi\)
\(282\) −10.5947 10.5947i −0.630907 0.630907i
\(283\) −16.1125 + 16.1125i −0.957789 + 0.957789i −0.999145 0.0413554i \(-0.986832\pi\)
0.0413554 + 0.999145i \(0.486832\pi\)
\(284\) 3.55990i 0.211241i
\(285\) 0.999513 + 0.871227i 0.0592061 + 0.0516070i
\(286\) 0 0
\(287\) 0.906570 0.906570i 0.0535131 0.0535131i
\(288\) 2.91218 2.91218i 0.171602 0.171602i
\(289\) 3.26175i 0.191868i
\(290\) −24.4621 21.3224i −1.43646 1.25210i
\(291\) 1.09936 0.0644458
\(292\) 0.527499 + 0.527499i 0.0308696 + 0.0308696i
\(293\) −5.11078 + 5.11078i −0.298575 + 0.298575i −0.840456 0.541881i \(-0.817713\pi\)
0.541881 + 0.840456i \(0.317713\pi\)
\(294\) 8.43840 0.492137
\(295\) −1.47260 21.4742i −0.0857378 1.25027i
\(296\) 13.8810i 0.806817i
\(297\) 0 0
\(298\) 6.19371 + 6.19371i 0.358792 + 0.358792i
\(299\) 5.02952 0.290864
\(300\) −0.747736 + 0.986745i −0.0431706 + 0.0569698i
\(301\) 1.00922 0.0581706
\(302\) 16.0842 16.0842i 0.925543 0.925543i
\(303\) 2.72022 2.72022i 0.156272 0.156272i
\(304\) 3.36544 0.193021
\(305\) 0.901513 + 13.1463i 0.0516205 + 0.752757i
\(306\) 13.3215 0.761541
\(307\) 20.1272 + 20.1272i 1.14872 + 1.14872i 0.986804 + 0.161918i \(0.0517681\pi\)
0.161918 + 0.986804i \(0.448232\pi\)
\(308\) 0 0
\(309\) 2.58088i 0.146821i
\(310\) 0.899138 + 0.783734i 0.0510676 + 0.0445131i
\(311\) −7.51588 −0.426187 −0.213093 0.977032i \(-0.568354\pi\)
−0.213093 + 0.977032i \(0.568354\pi\)
\(312\) −4.48134 + 4.48134i −0.253706 + 0.253706i
\(313\) 0.951824 + 0.951824i 0.0538003 + 0.0538003i 0.733495 0.679695i \(-0.237888\pi\)
−0.679695 + 0.733495i \(0.737888\pi\)
\(314\) 7.52146 0.424460
\(315\) −0.665164 + 0.763109i −0.0374778 + 0.0429963i
\(316\) 0.208246i 0.0117148i
\(317\) 8.01290 8.01290i 0.450049 0.450049i −0.445322 0.895371i \(-0.646911\pi\)
0.895371 + 0.445322i \(0.146911\pi\)
\(318\) −7.73803 + 7.73803i −0.433927 + 0.433927i
\(319\) 0 0
\(320\) −0.979335 14.2812i −0.0547465 0.798342i
\(321\) 8.81375i 0.491936i
\(322\) −0.334373 + 0.334373i −0.0186339 + 0.0186339i
\(323\) 1.94940 + 1.94940i 0.108468 + 0.108468i
\(324\) 1.14416i 0.0635647i
\(325\) −9.34812 + 12.3362i −0.518540 + 0.684288i
\(326\) 15.2260i 0.843289i
\(327\) −5.37912 5.37912i −0.297466 0.297466i
\(328\) 12.1589 + 12.1589i 0.671364 + 0.671364i
\(329\) 2.36737 0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) 3.66394 + 3.66394i 0.201085 + 0.201085i
\(333\) 9.03725 + 9.03725i 0.495238 + 0.495238i
\(334\) 18.3354i 1.00327i
\(335\) 8.59037 9.85529i 0.469342 0.538452i
\(336\) 0.690678i 0.0376796i
\(337\) −5.38821 5.38821i −0.293515 0.293515i 0.544952 0.838467i \(-0.316548\pi\)
−0.838467 + 0.544952i \(0.816548\pi\)
\(338\) −3.67302 + 3.67302i −0.199786 + 0.199786i
\(339\) 3.30664i 0.179592i
\(340\) −1.69143 + 1.94049i −0.0917305 + 0.105238i
\(341\) 0 0
\(342\) 1.89027 1.89027i 0.102214 0.102214i
\(343\) −1.89050 + 1.89050i −0.102078 + 0.102078i
\(344\) 13.5357i 0.729795i
\(345\) −0.198151 2.88954i −0.0106681 0.155567i
\(346\) 18.9477 1.01864
\(347\) 6.59993 + 6.59993i 0.354303 + 0.354303i 0.861708 0.507405i \(-0.169395\pi\)
−0.507405 + 0.861708i \(0.669395\pi\)
\(348\) 1.67159 1.67159i 0.0896068 0.0896068i
\(349\) 1.50177 0.0803880 0.0401940 0.999192i \(-0.487202\pi\)
0.0401940 + 0.999192i \(0.487202\pi\)
\(350\) −0.198653 1.44162i −0.0106184 0.0770577i
\(351\) 13.2388i 0.706637i
\(352\) 0 0
\(353\) 4.40229 + 4.40229i 0.234310 + 0.234310i 0.814489 0.580179i \(-0.197017\pi\)
−0.580179 + 0.814489i \(0.697017\pi\)
\(354\) 11.6652 0.619999
\(355\) −25.5691 + 1.75341i −1.35707 + 0.0930612i
\(356\) −2.46047 −0.130405
\(357\) 0.400069 0.400069i 0.0211739 0.0211739i
\(358\) −21.6888 + 21.6888i −1.14629 + 1.14629i
\(359\) 26.3042 1.38828 0.694142 0.719838i \(-0.255784\pi\)
0.694142 + 0.719838i \(0.255784\pi\)
\(360\) −10.2348 8.92118i −0.539422 0.470187i
\(361\) −18.4468 −0.970883
\(362\) 4.95475 + 4.95475i 0.260416 + 0.260416i
\(363\) 0 0
\(364\) 0.184093i 0.00964908i
\(365\) 3.52897 4.04860i 0.184715 0.211913i
\(366\) −7.14136 −0.373285
\(367\) 5.77642 5.77642i 0.301527 0.301527i −0.540084 0.841611i \(-0.681608\pi\)
0.841611 + 0.540084i \(0.181608\pi\)
\(368\) −5.19825 5.19825i −0.270978 0.270978i
\(369\) 15.8322 0.824189
\(370\) −18.3296 + 1.25695i −0.952908 + 0.0653459i
\(371\) 1.72904i 0.0897675i
\(372\) −0.0614416 + 0.0614416i −0.00318560 + 0.00318560i
\(373\) 6.12473 6.12473i 0.317126 0.317126i −0.530536 0.847662i \(-0.678009\pi\)
0.847662 + 0.530536i \(0.178009\pi\)
\(374\) 0 0
\(375\) 7.45563 + 4.88463i 0.385007 + 0.252241i
\(376\) 31.7511i 1.63744i
\(377\) 20.8981 20.8981i 1.07631 1.07631i
\(378\) −0.880145 0.880145i −0.0452698 0.0452698i
\(379\) 0.618390i 0.0317646i 0.999874 + 0.0158823i \(0.00505570\pi\)
−0.999874 + 0.0158823i \(0.994944\pi\)
\(380\) 0.0353405 + 0.515354i 0.00181293 + 0.0264371i
\(381\) 11.6133i 0.594969i
\(382\) 6.79980 + 6.79980i 0.347908 + 0.347908i
\(383\) −7.33899 7.33899i −0.375005 0.375005i 0.494292 0.869296i \(-0.335428\pi\)
−0.869296 + 0.494292i \(0.835428\pi\)
\(384\) 10.5351 0.537617
\(385\) 0 0
\(386\) 9.01683 0.458945
\(387\) 8.81242 + 8.81242i 0.447961 + 0.447961i
\(388\) 0.302854 + 0.302854i 0.0153751 + 0.0153751i
\(389\) 22.1469i 1.12289i 0.827513 + 0.561447i \(0.189755\pi\)
−0.827513 + 0.561447i \(0.810245\pi\)
\(390\) −6.32330 5.51171i −0.320193 0.279097i
\(391\) 6.02208i 0.304550i
\(392\) −12.6444 12.6444i −0.638640 0.638640i
\(393\) 5.50716 5.50716i 0.277799 0.277799i
\(394\) 21.2930i 1.07273i
\(395\) −1.49574 + 0.102571i −0.0752587 + 0.00516089i
\(396\) 0 0
\(397\) 10.7769 10.7769i 0.540876 0.540876i −0.382910 0.923786i \(-0.625078\pi\)
0.923786 + 0.382910i \(0.125078\pi\)
\(398\) −14.3844 + 14.3844i −0.721027 + 0.721027i
\(399\) 0.113536i 0.00568393i
\(400\) 22.4118 3.08831i 1.12059 0.154416i
\(401\) −4.28172 −0.213819 −0.106909 0.994269i \(-0.534096\pi\)
−0.106909 + 0.994269i \(0.534096\pi\)
\(402\) 5.01003 + 5.01003i 0.249878 + 0.249878i
\(403\) −0.768137 + 0.768137i −0.0382636 + 0.0382636i
\(404\) 1.49874 0.0745650
\(405\) −8.21800 + 0.563552i −0.408356 + 0.0280031i
\(406\) 2.77869i 0.137904i
\(407\) 0 0
\(408\) 5.36572 + 5.36572i 0.265643 + 0.265643i
\(409\) −4.29562 −0.212405 −0.106202 0.994345i \(-0.533869\pi\)
−0.106202 + 0.994345i \(0.533869\pi\)
\(410\) −14.9546 + 17.1566i −0.738553 + 0.847304i
\(411\) −3.45208 −0.170279
\(412\) −0.710985 + 0.710985i −0.0350277 + 0.0350277i
\(413\) −1.30328 + 1.30328i −0.0641303 + 0.0641303i
\(414\) −5.83942 −0.286992
\(415\) 24.5117 28.1210i 1.20323 1.38041i
\(416\) −5.39202 −0.264366
\(417\) −5.92504 5.92504i −0.290151 0.290151i
\(418\) 0 0
\(419\) 1.20241i 0.0587414i −0.999569 0.0293707i \(-0.990650\pi\)
0.999569 0.0293707i \(-0.00935032\pi\)
\(420\) 0.105764 0.00725281i 0.00516077 0.000353901i
\(421\) 31.3087 1.52589 0.762947 0.646461i \(-0.223752\pi\)
0.762947 + 0.646461i \(0.223752\pi\)
\(422\) −6.37639 + 6.37639i −0.310398 + 0.310398i
\(423\) 20.6716 + 20.6716i 1.00509 + 1.00509i
\(424\) 23.1899 1.12620
\(425\) 14.7707 + 11.1930i 0.716485 + 0.542938i
\(426\) 13.8897i 0.672957i
\(427\) 0.797860 0.797860i 0.0386111 0.0386111i
\(428\) 2.42802 2.42802i 0.117363 0.117363i
\(429\) 0 0
\(430\) −17.8736 + 1.22568i −0.861940 + 0.0591078i
\(431\) 9.89129i 0.476446i −0.971210 0.238223i \(-0.923435\pi\)
0.971210 0.238223i \(-0.0765650\pi\)
\(432\) 13.6830 13.6830i 0.658323 0.658323i
\(433\) −19.0794 19.0794i −0.916896 0.916896i 0.0799066 0.996802i \(-0.474538\pi\)
−0.996802 + 0.0799066i \(0.974538\pi\)
\(434\) 0.102135i 0.00490262i
\(435\) −12.8296 11.1829i −0.615133 0.536181i
\(436\) 2.96369i 0.141935i
\(437\) −0.854510 0.854510i −0.0408768 0.0408768i
\(438\) 2.05815 + 2.05815i 0.0983420 + 0.0983420i
\(439\) −24.5862 −1.17344 −0.586718 0.809791i \(-0.699580\pi\)
−0.586718 + 0.809791i \(0.699580\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) −12.3327 12.3327i −0.586606 0.586606i
\(443\) 21.7769 + 21.7769i 1.03465 + 1.03465i 0.999378 + 0.0352717i \(0.0112296\pi\)
0.0352717 + 0.999378i \(0.488770\pi\)
\(444\) 1.33842i 0.0635188i
\(445\) 1.21189 + 17.6724i 0.0574491 + 0.837753i
\(446\) 32.3098i 1.52992i
\(447\) 3.24841 + 3.24841i 0.153644 + 0.153644i
\(448\) −0.866734 + 0.866734i −0.0409493 + 0.0409493i
\(449\) 7.32471i 0.345674i −0.984950 0.172837i \(-0.944707\pi\)
0.984950 0.172837i \(-0.0552935\pi\)
\(450\) 10.8534 14.3227i 0.511636 0.675177i
\(451\) 0 0
\(452\) −0.910918 + 0.910918i −0.0428460 + 0.0428460i
\(453\) 8.43567 8.43567i 0.396342 0.396342i
\(454\) 19.8674i 0.932425i
\(455\) 1.32225 0.0906738i 0.0619882 0.00425085i
\(456\) 1.52275 0.0713093
\(457\) 4.76277 + 4.76277i 0.222793 + 0.222793i 0.809674 0.586880i \(-0.199644\pi\)
−0.586880 + 0.809674i \(0.699644\pi\)
\(458\) −17.6609 + 17.6609i −0.825240 + 0.825240i
\(459\) 15.8515 0.739885
\(460\) 0.741427 0.850601i 0.0345692 0.0396595i
\(461\) 29.0801i 1.35440i −0.735801 0.677198i \(-0.763194\pi\)
0.735801 0.677198i \(-0.236806\pi\)
\(462\) 0 0
\(463\) 17.5146 + 17.5146i 0.813970 + 0.813970i 0.985227 0.171256i \(-0.0547826\pi\)
−0.171256 + 0.985227i \(0.554783\pi\)
\(464\) −43.1984 −2.00543
\(465\) 0.471570 + 0.411044i 0.0218685 + 0.0190617i
\(466\) 23.7792 1.10155
\(467\) 18.7084 18.7084i 0.865723 0.865723i −0.126273 0.991996i \(-0.540302\pi\)
0.991996 + 0.126273i \(0.0403015\pi\)
\(468\) −1.60748 + 1.60748i −0.0743057 + 0.0743057i
\(469\) −1.11948 −0.0516928
\(470\) −41.9266 + 2.87513i −1.93393 + 0.132620i
\(471\) 3.94477 0.181765
\(472\) −17.4796 17.4796i −0.804563 0.804563i
\(473\) 0 0
\(474\) 0.812515i 0.0373201i
\(475\) 3.68414 0.507669i 0.169040 0.0232935i
\(476\) 0.220423 0.0101031
\(477\) 15.0978 15.0978i 0.691283 0.691283i
\(478\) −5.67705 5.67705i −0.259662 0.259662i
\(479\) −26.2551 −1.19963 −0.599814 0.800140i \(-0.704759\pi\)
−0.599814 + 0.800140i \(0.704759\pi\)
\(480\) 0.212433 + 3.09780i 0.00969618 + 0.141395i
\(481\) 16.7328i 0.762951i
\(482\) −17.3776 + 17.3776i −0.791530 + 0.791530i
\(483\) −0.175368 + 0.175368i −0.00797952 + 0.00797952i
\(484\) 0 0
\(485\) 2.02609 2.32443i 0.0920001 0.105547i
\(486\) 23.9666i 1.08715i
\(487\) −16.5004 + 16.5004i −0.747705 + 0.747705i −0.974048 0.226343i \(-0.927323\pi\)
0.226343 + 0.974048i \(0.427323\pi\)
\(488\) 10.7009 + 10.7009i 0.484406 + 0.484406i
\(489\) 7.98555i 0.361119i
\(490\) 15.5517 17.8417i 0.702554 0.806004i
\(491\) 18.3477i 0.828019i −0.910273 0.414009i \(-0.864128\pi\)
0.910273 0.414009i \(-0.135872\pi\)
\(492\) −1.17238 1.17238i −0.0528549 0.0528549i
\(493\) −25.0223 25.0223i −1.12695 1.12695i
\(494\) −3.49992 −0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) 1.55181 + 1.55181i 0.0696080 + 0.0696080i
\(498\) 14.2956 + 14.2956i 0.640601 + 0.640601i
\(499\) 11.7579i 0.526356i −0.964747 0.263178i \(-0.915229\pi\)
0.964747 0.263178i \(-0.0847707\pi\)
\(500\) 0.708263 + 3.39951i 0.0316745 + 0.152031i
\(501\) 9.61633i 0.429626i
\(502\) 20.7904 + 20.7904i 0.927922 + 0.927922i
\(503\) 3.77641 3.77641i 0.168382 0.168382i −0.617886 0.786268i \(-0.712011\pi\)
0.786268 + 0.617886i \(0.212011\pi\)
\(504\) 1.16259i 0.0517859i
\(505\) −0.738195 10.7647i −0.0328492 0.479025i
\(506\) 0 0
\(507\) −1.92638 + 1.92638i −0.0855536 + 0.0855536i
\(508\) 3.19926 3.19926i 0.141944 0.141944i
\(509\) 19.5870i 0.868179i −0.900870 0.434089i \(-0.857070\pi\)
0.900870 0.434089i \(-0.142930\pi\)
\(510\) −6.59944 + 7.57120i −0.292228 + 0.335258i
\(511\) −0.459888 −0.0203442
\(512\) −10.8595 10.8595i −0.479928 0.479928i
\(513\) 2.24927 2.24927i 0.0993075 0.0993075i
\(514\) −7.15359 −0.315532
\(515\) 5.45687 + 4.75649i 0.240459 + 0.209596i
\(516\) 1.30513i 0.0574550i
\(517\) 0 0
\(518\) 1.11243 + 1.11243i 0.0488775 + 0.0488775i
\(519\) 9.93748 0.436207
\(520\) 1.21612 + 17.7340i 0.0533302 + 0.777689i
\(521\) 18.7340 0.820752 0.410376 0.911916i \(-0.365397\pi\)
0.410376 + 0.911916i \(0.365397\pi\)
\(522\) −24.2633 + 24.2633i −1.06197 + 1.06197i
\(523\) −1.82596 + 1.82596i −0.0798437 + 0.0798437i −0.745901 0.666057i \(-0.767981\pi\)
0.666057 + 0.745901i \(0.267981\pi\)
\(524\) 3.03424 0.132551
\(525\) −0.104187 0.756083i −0.00454710 0.0329982i
\(526\) 24.1234 1.05183
\(527\) 0.919727 + 0.919727i 0.0400639 + 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) 2.09990 + 30.6218i 0.0912137 + 1.33013i
\(531\) −22.7602 −0.987710
\(532\) 0.0312772 0.0312772i 0.00135604 0.00135604i
\(533\) −14.6569 14.6569i −0.634863 0.634863i
\(534\) −9.60002 −0.415433
\(535\) −18.6353 16.2435i −0.805674 0.702266i
\(536\) 15.0145i 0.648526i
\(537\) −11.3751 + 11.3751i −0.490873 + 0.490873i
\(538\) −12.1591 + 12.1591i −0.524216 + 0.524216i
\(539\) 0 0
\(540\) 2.23898 + 1.95161i 0.0963502 + 0.0839837i
\(541\) 9.23515i 0.397050i 0.980096 + 0.198525i \(0.0636151\pi\)
−0.980096 + 0.198525i \(0.936385\pi\)
\(542\) 19.1626 19.1626i 0.823102 0.823102i
\(543\) 2.59861 + 2.59861i 0.111517 + 0.111517i
\(544\) 6.45613i 0.276804i
\(545\) −21.2868 + 1.45975i −0.911828 + 0.0625288i
\(546\) 0.718275i 0.0307393i
\(547\) 0.757332 + 0.757332i 0.0323812 + 0.0323812i 0.723112 0.690731i \(-0.242711\pi\)
−0.690731 + 0.723112i \(0.742711\pi\)
\(548\) −0.950984 0.950984i −0.0406240 0.0406240i
\(549\) 13.9337 0.594674
\(550\) 0 0
\(551\) −7.10113 −0.302518
\(552\) −2.35203 2.35203i −0.100109 0.100109i
\(553\) 0.0907773 + 0.0907773i 0.00386024 + 0.00386024i
\(554\) 7.11630i 0.302343i
\(555\) −9.61328 + 0.659233i −0.408061 + 0.0279829i
\(556\) 3.26448i 0.138445i
\(557\) 30.4317 + 30.4317i 1.28943 + 1.28943i 0.935130 + 0.354304i \(0.115282\pi\)
0.354304 + 0.935130i \(0.384718\pi\)
\(558\) 0.891829 0.891829i 0.0377541 0.0377541i
\(559\) 16.3166i 0.690117i
\(560\) −1.46033 1.27290i −0.0617102 0.0537897i
\(561\) 0 0
\(562\) −14.1765 + 14.1765i −0.597998 + 0.597998i
\(563\) 18.2874 18.2874i 0.770722 0.770722i −0.207511 0.978233i \(-0.566536\pi\)
0.978233 + 0.207511i \(0.0665362\pi\)
\(564\) 3.06148i 0.128912i
\(565\) 6.99137 + 6.09404i 0.294129 + 0.256378i
\(566\) −34.6369 −1.45590
\(567\) 0.498756 + 0.498756i 0.0209458 + 0.0209458i
\(568\) −20.8128 + 20.8128i −0.873286 + 0.873286i
\(569\) 27.1717 1.13910 0.569548 0.821958i \(-0.307118\pi\)
0.569548 + 0.821958i \(0.307118\pi\)
\(570\) 0.137888 + 2.01076i 0.00577550 + 0.0842214i
\(571\) 40.5475i 1.69686i −0.529308 0.848430i \(-0.677549\pi\)
0.529308 0.848430i \(-0.322451\pi\)
\(572\) 0 0
\(573\) 3.56628 + 3.56628i 0.148984 + 0.148984i
\(574\) 1.94885 0.0813433
\(575\) −6.47466 4.90637i −0.270012 0.204610i
\(576\) −15.1365 −0.630686
\(577\) −23.9058 + 23.9058i −0.995212 + 0.995212i −0.999989 0.00477680i \(-0.998479\pi\)
0.00477680 + 0.999989i \(0.498479\pi\)
\(578\) 3.50588 3.50588i 0.145826 0.145826i
\(579\) 4.72905 0.196532
\(580\) −0.453626 6.61501i −0.0188358 0.274673i
\(581\) −3.19432 −0.132523
\(582\) 1.18165 + 1.18165i 0.0489808 + 0.0489808i
\(583\) 0 0
\(584\) 6.16801i 0.255234i
\(585\) 12.3375 + 10.7540i 0.510094 + 0.444624i
\(586\) −10.9866 −0.453853
\(587\) 6.84769 6.84769i 0.282634 0.282634i −0.551524 0.834159i \(-0.685954\pi\)
0.834159 + 0.551524i \(0.185954\pi\)
\(588\) 1.21919 + 1.21919i 0.0502786 + 0.0502786i
\(589\) 0.261011 0.0107548
\(590\) 21.4986 24.6642i 0.885084 1.01541i
\(591\) 11.1675i 0.459371i
\(592\) −17.2942 + 17.2942i −0.710787 + 0.710787i
\(593\) −14.0452 + 14.0452i −0.576769 + 0.576769i −0.934012 0.357243i \(-0.883717\pi\)
0.357243 + 0.934012i \(0.383717\pi\)
\(594\) 0 0
\(595\) −0.108568 1.58320i −0.00445086 0.0649048i
\(596\) 1.78975i 0.0733111i
\(597\) −7.54419 + 7.54419i −0.308763 + 0.308763i
\(598\) 5.40596 + 5.40596i 0.221066 + 0.221066i
\(599\) 4.51582i 0.184512i −0.995735 0.0922558i \(-0.970592\pi\)
0.995735 0.0922558i \(-0.0294077\pi\)
\(600\) 10.1406 1.39736i 0.413987 0.0570469i
\(601\) 8.37748i 0.341725i 0.985295 + 0.170862i \(0.0546553\pi\)
−0.985295 + 0.170862i \(0.945345\pi\)
\(602\) 1.08476 + 1.08476i 0.0442115 + 0.0442115i
\(603\) −9.77518 9.77518i −0.398076 0.398076i
\(604\) 4.64774 0.189114
\(605\) 0 0
\(606\) 5.84763 0.237544
\(607\) −5.42972 5.42972i −0.220386 0.220386i 0.588275 0.808661i \(-0.299807\pi\)
−0.808661 + 0.588275i \(0.799807\pi\)
\(608\) 0.916100 + 0.916100i 0.0371528 + 0.0371528i
\(609\) 1.45734i 0.0590543i
\(610\) −13.1613 + 15.0993i −0.532886 + 0.611352i
\(611\) 38.2743i 1.54841i
\(612\) 1.92471 + 1.92471i 0.0778019 + 0.0778019i
\(613\) −30.3535 + 30.3535i −1.22597 + 1.22597i −0.260492 + 0.965476i \(0.583885\pi\)
−0.965476 + 0.260492i \(0.916115\pi\)
\(614\) 43.2674i 1.74613i
\(615\) −7.84320 + 8.99810i −0.316268 + 0.362838i
\(616\) 0 0
\(617\) 33.4407 33.4407i 1.34627 1.34627i 0.456601 0.889671i \(-0.349067\pi\)
0.889671 0.456601i \(-0.150933\pi\)
\(618\) −2.77405 + 2.77405i −0.111589 + 0.111589i
\(619\) 21.1001i 0.848084i −0.905642 0.424042i \(-0.860611\pi\)
0.905642 0.424042i \(-0.139389\pi\)
\(620\) 0.0166736 + 0.243144i 0.000669629 + 0.00976488i
\(621\) −6.94842 −0.278830
\(622\) −8.07842 8.07842i −0.323915 0.323915i
\(623\) 1.07255 1.07255i 0.0429708 0.0429708i
\(624\) −11.1665 −0.447018
\(625\) 24.0683 6.76153i 0.962731 0.270461i
\(626\) 2.04613i 0.0817798i
\(627\) 0 0
\(628\) 1.08671 + 1.08671i 0.0433645 + 0.0433645i
\(629\) −20.0350 −0.798849
\(630\) −1.53517 + 0.105275i −0.0611628 + 0.00419426i
\(631\) −28.2199 −1.12342 −0.561708 0.827335i \(-0.689856\pi\)
−0.561708 + 0.827335i \(0.689856\pi\)
\(632\) −1.21750 + 1.21750i −0.0484297 + 0.0484297i
\(633\) −3.34422 + 3.34422i −0.132921 + 0.132921i
\(634\) 17.2253 0.684103
\(635\) −24.5546 21.4030i −0.974418 0.849353i
\(636\) −2.23600 −0.0886633
\(637\) 15.2422 + 15.2422i 0.603918 + 0.603918i
\(638\) 0 0
\(639\) 27.1004i 1.07208i
\(640\) 19.4159 22.2748i 0.767479 0.880489i
\(641\) −16.9387 −0.669040 −0.334520 0.942389i \(-0.608574\pi\)
−0.334520 + 0.942389i \(0.608574\pi\)
\(642\) 9.47343 9.47343i 0.373886 0.373886i
\(643\) −4.43755 4.43755i −0.175000 0.175000i 0.614172 0.789172i \(-0.289490\pi\)
−0.789172 + 0.614172i \(0.789490\pi\)
\(644\) −0.0966212 −0.00380741
\(645\) −9.37413 + 0.642833i −0.369106 + 0.0253115i
\(646\) 4.19062i 0.164878i
\(647\) 30.7501 30.7501i 1.20891 1.20891i 0.237529 0.971380i \(-0.423662\pi\)
0.971380 0.237529i \(-0.0763375\pi\)
\(648\) −6.68931 + 6.68931i −0.262781 + 0.262781i
\(649\) 0 0
\(650\) −23.3073 + 3.21171i −0.914188 + 0.125974i
\(651\) 0.0535664i 0.00209943i
\(652\) −2.19987 + 2.19987i −0.0861535 + 0.0861535i
\(653\) 6.88088 + 6.88088i 0.269270 + 0.269270i 0.828806 0.559536i \(-0.189021\pi\)
−0.559536 + 0.828806i \(0.689021\pi\)
\(654\) 11.5634i 0.452167i
\(655\) −1.49450 21.7935i −0.0583948 0.851544i
\(656\) 30.2973i 1.18291i
\(657\) −4.01569 4.01569i −0.156667 0.156667i
\(658\) 2.54455 + 2.54455i 0.0991971 + 0.0991971i
\(659\) −3.37375 −0.131423 −0.0657113 0.997839i \(-0.520932\pi\)
−0.0657113 + 0.997839i \(0.520932\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) −19.0300 19.0300i −0.739620 0.739620i
\(663\) −6.46810 6.46810i −0.251200 0.251200i
\(664\) 42.8421i 1.66260i
\(665\) −0.240055 0.209244i −0.00930893 0.00811414i
\(666\) 19.4273i 0.752793i
\(667\) 10.9684 + 10.9684i 0.424697 + 0.424697i
\(668\) −2.64912 + 2.64912i −0.102498 + 0.102498i
\(669\) 16.9455i 0.655151i
\(670\) 19.8263 1.35959i 0.765955 0.0525256i
\(671\) 0 0
\(672\) 0.188008 0.188008i 0.00725256 0.00725256i
\(673\) 27.0491 27.0491i 1.04267 1.04267i 0.0436186 0.999048i \(-0.486111\pi\)
0.999048 0.0436186i \(-0.0138886\pi\)
\(674\) 11.5830i 0.446161i
\(675\) 12.9147 17.0428i 0.497087 0.655977i
\(676\) −1.06136 −0.0408217
\(677\) 22.7631 + 22.7631i 0.874857 + 0.874857i 0.992997 0.118140i \(-0.0376931\pi\)
−0.118140 + 0.992997i \(0.537693\pi\)
\(678\) −3.55413 + 3.55413i −0.136496 + 0.136496i
\(679\) −0.264036 −0.0101328
\(680\) 21.2338 1.45612i 0.814280 0.0558395i
\(681\) 10.4198i 0.399289i
\(682\) 0 0
\(683\) −28.7223 28.7223i −1.09903 1.09903i −0.994524 0.104505i \(-0.966674\pi\)
−0.104505 0.994524i \(-0.533326\pi\)
\(684\) 0.546218 0.0208852
\(685\) −6.36208 + 7.29888i −0.243082 + 0.278876i
\(686\) −4.06400 −0.155164
\(687\) −9.26259 + 9.26259i −0.353390 + 0.353390i
\(688\) −16.8640 + 16.8640i −0.642933 + 0.642933i
\(689\) −27.9543 −1.06497
\(690\) 2.89283 3.31879i 0.110128 0.126344i
\(691\) −25.2649 −0.961122 −0.480561 0.876961i \(-0.659567\pi\)
−0.480561 + 0.876961i \(0.659567\pi\)
\(692\) 2.73759 + 2.73759i 0.104068 + 0.104068i
\(693\) 0 0
\(694\) 14.1878i 0.538562i
\(695\) −23.4472 + 1.60790i −0.889404 + 0.0609911i
\(696\) −19.5458 −0.740882
\(697\) −17.5495 + 17.5495i −0.664733 + 0.664733i
\(698\) 1.61418 + 1.61418i 0.0610974 + 0.0610974i
\(699\) 12.4715 0.471714
\(700\) 0.179585 0.236988i 0.00678768 0.00895732i
\(701\) 28.2273i 1.06613i 0.846074 + 0.533066i \(0.178960\pi\)
−0.846074 + 0.533066i \(0.821040\pi\)
\(702\) −14.2297 + 14.2297i −0.537066 + 0.537066i
\(703\) −2.84289 + 2.84289i −0.107222 + 0.107222i
\(704\) 0 0
\(705\) −21.9892 + 1.50791i −0.828161 + 0.0567914i
\(706\) 9.46358i 0.356167i
\(707\) −0.653319 + 0.653319i −0.0245706 + 0.0245706i
\(708\) 1.68540 + 1.68540i 0.0633414 + 0.0633414i
\(709\) 8.15970i 0.306444i −0.988192 0.153222i \(-0.951035\pi\)
0.988192 0.153222i \(-0.0489650\pi\)
\(710\) −29.3675 25.5982i −1.10214 0.960684i
\(711\) 1.58532i 0.0594540i
\(712\) 14.3850 + 14.3850i 0.539102 + 0.539102i
\(713\) −0.403157 0.403157i −0.0150984 0.0150984i
\(714\) 0.860026 0.0321856
\(715\) 0 0
\(716\) −6.26727 −0.234219
\(717\) −2.97744 2.97744i −0.111194 0.111194i
\(718\) 28.2730 + 28.2730i 1.05514 + 1.05514i
\(719\) 1.03764i 0.0386975i −0.999813 0.0193487i \(-0.993841\pi\)
0.999813 0.0193487i \(-0.00615928\pi\)
\(720\) −1.63663 23.8663i −0.0609938 0.889443i
\(721\) 0.619856i 0.0230846i
\(722\) −19.8275 19.8275i −0.737901 0.737901i
\(723\) −9.11403 + 9.11403i −0.338954 + 0.338954i
\(724\) 1.43174i 0.0532101i
\(725\) −47.2892 + 6.51637i −1.75627 + 0.242012i
\(726\) 0 0
\(727\) −3.27903 + 3.27903i −0.121612 + 0.121612i −0.765294 0.643681i \(-0.777406\pi\)
0.643681 + 0.765294i \(0.277406\pi\)
\(728\) 1.07629 1.07629i 0.0398900 0.0398900i
\(729\) 1.51821i 0.0562300i
\(730\) 8.14472 0.558526i 0.301450 0.0206720i
\(731\) −19.5366 −0.722588
\(732\) −1.03179 1.03179i −0.0381362 0.0381362i
\(733\) 32.2972 32.2972i 1.19292 1.19292i 0.216680 0.976243i \(-0.430477\pi\)
0.976243 0.216680i \(-0.0695229\pi\)
\(734\) 12.4175 0.458340
\(735\) 8.15638 9.35739i 0.300853 0.345153i
\(736\) 2.83001i 0.104315i
\(737\) 0 0
\(738\) 17.0171 + 17.0171i 0.626410 + 0.626410i
\(739\) 3.79675 0.139666 0.0698329 0.997559i \(-0.477753\pi\)
0.0698329 + 0.997559i \(0.477753\pi\)
\(740\) −2.82989 2.46667i −0.104029 0.0906767i
\(741\) −1.83560 −0.0674323
\(742\) 1.85846 1.85846i 0.0682261 0.0682261i
\(743\) −30.0019 + 30.0019i −1.10066 + 1.10066i −0.106331 + 0.994331i \(0.533910\pi\)
−0.994331 + 0.106331i \(0.966090\pi\)
\(744\) 0.718432 0.0263390
\(745\) 12.8550 0.881532i 0.470969 0.0322968i
\(746\) 13.1663 0.482052
\(747\) −27.8924 27.8924i −1.02053 1.02053i
\(748\) 0 0
\(749\) 2.11681i 0.0773467i
\(750\) 2.76343 + 13.2639i 0.100906 + 0.484329i
\(751\) −9.99217 −0.364619 −0.182310 0.983241i \(-0.558357\pi\)
−0.182310 + 0.983241i \(0.558357\pi\)
\(752\) −39.5584 + 39.5584i −1.44255 + 1.44255i
\(753\) 10.9039 + 10.9039i 0.397361 + 0.397361i
\(754\) 44.9245 1.63605
\(755\) −2.28922 33.3826i −0.0833132 1.21492i
\(756\) 0.254329i 0.00924986i
\(757\) −20.7772 + 20.7772i −0.755161 + 0.755161i −0.975437 0.220277i \(-0.929304\pi\)
0.220277 + 0.975437i \(0.429304\pi\)
\(758\) −0.664675 + 0.664675i −0.0241421 + 0.0241421i
\(759\) 0 0
\(760\) 2.80638 3.21961i 0.101798 0.116788i
\(761\) 30.3518i 1.10025i −0.835081 0.550127i \(-0.814579\pi\)
0.835081 0.550127i \(-0.185421\pi\)
\(762\) 12.4826 12.4826i 0.452195 0.452195i
\(763\) 1.29191 + 1.29191i 0.0467704 + 0.0467704i
\(764\) 1.96489i 0.0710872i
\(765\) 12.8763 14.7723i 0.465544 0.534095i
\(766\) 15.7766i 0.570031i
\(767\) 21.0708 + 21.0708i 0.760821 + 0.760821i
\(768\) 4.10600 + 4.10600i 0.148162 + 0.148162i
\(769\) 37.6421 1.35741 0.678705 0.734411i \(-0.262542\pi\)
0.678705 + 0.734411i \(0.262542\pi\)
\(770\) 0 0
\(771\) −3.75184 −0.135119
\(772\) 1.30276 + 1.30276i 0.0468875 + 0.0468875i
\(773\) 18.2525 + 18.2525i 0.656497 + 0.656497i 0.954549 0.298053i \(-0.0963371\pi\)
−0.298053 + 0.954549i \(0.596337\pi\)
\(774\) 18.9440i 0.680928i
\(775\) 1.73818 0.239518i 0.0624371 0.00860374i
\(776\) 3.54125i 0.127123i
\(777\) 0.583436 + 0.583436i 0.0209307 + 0.0209307i
\(778\) −23.8045 + 23.8045i −0.853434 + 0.853434i
\(779\) 4.98040i 0.178441i
\(780\) −0.117260 1.70994i −0.00419856 0.0612257i
\(781\) 0 0
\(782\) 6.47282 6.47282i 0.231467 0.231467i
\(783\) −28.8713 + 28.8713i −1.03178 + 1.03178i
\(784\) 31.5071i 1.12525i
\(785\) 7.27008 8.34059i 0.259480 0.297688i
\(786\) 11.8387 0.422272
\(787\) 12.2154 + 12.2154i 0.435433 + 0.435433i 0.890472 0.455039i \(-0.150375\pi\)
−0.455039 + 0.890472i \(0.650375\pi\)
\(788\) −3.07645 + 3.07645i −0.109594 + 0.109594i
\(789\) 12.6520 0.450421
\(790\) −1.71794 1.49744i −0.0611214 0.0532765i
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 12.8994i −0.458070 0.458070i
\(794\) 23.1670 0.822165
\(795\) 1.10133 + 16.0602i 0.0390602 + 0.569596i
\(796\) −4.15657 −0.147326
\(797\) 31.5150 31.5150i 1.11632 1.11632i 0.124043 0.992277i \(-0.460414\pi\)
0.992277 0.124043i \(-0.0395862\pi\)
\(798\) 0.122034 0.122034i 0.00431997 0.00431997i
\(799\) −45.8277 −1.62127
\(800\) 6.94133 + 5.26000i 0.245413 + 0.185969i
\(801\) 18.7308 0.661820
\(802\) −4.60219 4.60219i −0.162509 0.162509i
\(803\) 0 0
\(804\) 1.44771i 0.0510569i
\(805\) 0.0475902 + 0.693986i 0.00167734 + 0.0244598i
\(806\) −1.65126 −0.0581631
\(807\) −6.37706 + 6.37706i −0.224483 + 0.224483i
\(808\) −8.76231 8.76231i −0.308257 0.308257i
\(809\) −15.2351 −0.535638 −0.267819 0.963469i \(-0.586303\pi\)
−0.267819 + 0.963469i \(0.586303\pi\)
\(810\) −9.43883 8.22736i −0.331647 0.289080i
\(811\) 45.5573i 1.59973i −0.600178 0.799866i \(-0.704904\pi\)
0.600178 0.799866i \(-0.295096\pi\)
\(812\) −0.401470 + 0.401470i −0.0140888 + 0.0140888i
\(813\) 10.0502 10.0502i 0.352475 0.352475i
\(814\) 0 0
\(815\) 16.8842 + 14.7171i 0.591427 + 0.515518i
\(816\) 13.3702i 0.468051i
\(817\) −2.77217 + 2.77217i −0.0969859 + 0.0969859i
\(818\) −4.61714 4.61714i −0.161434 0.161434i
\(819\) 1.40144i 0.0489703i
\(820\) −4.63946 + 0.318152i −0.162017 + 0.0111104i
\(821\) 28.7123i 1.00207i 0.865428 + 0.501034i \(0.167047\pi\)
−0.865428 + 0.501034i \(0.832953\pi\)
\(822\) −3.71046 3.71046i −0.129417 0.129417i
\(823\) 19.0615 + 19.0615i 0.664443 + 0.664443i 0.956424 0.291981i \(-0.0943145\pi\)
−0.291981 + 0.956424i \(0.594314\pi\)
\(824\) 8.31350 0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) 28.0601 + 28.0601i 0.975746 + 0.975746i 0.999713 0.0239670i \(-0.00762967\pi\)
−0.0239670 + 0.999713i \(0.507630\pi\)
\(828\) −0.843687 0.843687i −0.0293201 0.0293201i
\(829\) 10.8672i 0.377432i −0.982032 0.188716i \(-0.939567\pi\)
0.982032 0.188716i \(-0.0604326\pi\)
\(830\) 56.5721 3.87945i 1.96365 0.134658i
\(831\) 3.73228i 0.129471i
\(832\) 14.0129 + 14.0129i 0.485810 + 0.485810i
\(833\) 18.2502 18.2502i 0.632333 0.632333i
\(834\) 12.7370i 0.441047i
\(835\) 20.3322 + 17.7226i 0.703625 + 0.613316i
\(836\) 0 0
\(837\) 1.06120 1.06120i 0.0366805 0.0366805i
\(838\) 1.29240 1.29240i 0.0446453 0.0446453i
\(839\) 40.3158i 1.39186i −0.718112 0.695928i \(-0.754993\pi\)
0.718112 0.695928i \(-0.245007\pi\)
\(840\) −0.660750 0.575943i −0.0227980 0.0198719i
\(841\) 62.1491 2.14307
\(842\) 33.6521 + 33.6521i 1.15973 + 1.15973i
\(843\) −7.43512 + 7.43512i −0.256079 + 0.256079i
\(844\) −1.84254 −0.0634229
\(845\) 0.522769 + 7.62329i 0.0179838 + 0.262249i
\(846\) 44.4376i 1.52780i
\(847\) 0 0
\(848\) 28.8921 + 28.8921i 0.992159 + 0.992159i
\(849\) −18.1660 −0.623455
\(850\) 3.84554 + 27.9070i 0.131901 + 0.957201i
\(851\) 8.78224 0.301051
\(852\) 2.00680 2.00680i 0.0687518 0.0687518i
\(853\) 9.86864 9.86864i 0.337896 0.337896i −0.517679 0.855575i \(-0.673204\pi\)
0.855575 + 0.517679i \(0.173204\pi\)
\(854\) 1.71515 0.0586913
\(855\) −0.269037 3.92323i −0.00920086 0.134172i
\(856\) −28.3907 −0.970374
\(857\) 26.9229 + 26.9229i 0.919668 + 0.919668i 0.997005 0.0773373i \(-0.0246418\pi\)
−0.0773373 + 0.997005i \(0.524642\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i −0.949906 0.312535i \(-0.898822\pi\)
0.949906 0.312535i \(-0.101178\pi\)
\(860\) −2.75949 2.40531i −0.0940977 0.0820204i
\(861\) 1.02211 0.0348334
\(862\) 10.6316 10.6316i 0.362114 0.362114i
\(863\) 8.59342 + 8.59342i 0.292523 + 0.292523i 0.838076 0.545553i \(-0.183680\pi\)
−0.545553 + 0.838076i \(0.683680\pi\)
\(864\) 7.44923 0.253428
\(865\) 18.3145 21.0112i 0.622711 0.714404i
\(866\) 41.0148i 1.39374i
\(867\) 1.83873 1.83873i 0.0624464 0.0624464i
\(868\) 0.0147565 0.0147565i 0.000500870 0.000500870i
\(869\) 0 0
\(870\) −1.76991 25.8098i −0.0600057 0.875035i
\(871\) 18.0992i 0.613266i
\(872\) −17.3271 + 17.3271i −0.586770 + 0.586770i
\(873\) −2.30554 2.30554i −0.0780306 0.0780306i
\(874\) 1.83693i 0.0621352i
\(875\) −1.79063 1.17315i −0.0605344 0.0396597i
\(876\) 0.594727i 0.0200940i
\(877\) −9.07573 9.07573i −0.306466 0.306466i 0.537071 0.843537i \(-0.319531\pi\)
−0.843537 + 0.537071i \(0.819531\pi\)
\(878\) −26.4264 26.4264i −0.891848 0.891848i
\(879\) −5.76213 −0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) −17.6966 17.6966i −0.595877 0.595877i
\(883\) 30.8218 + 30.8218i 1.03724 + 1.03724i 0.999279 + 0.0379569i \(0.0120850\pi\)
0.0379569 + 0.999279i \(0.487915\pi\)
\(884\) 3.56368i 0.119860i
\(885\) 11.2753 12.9356i 0.379017 0.434826i
\(886\) 46.8136i 1.57273i
\(887\) 7.35335 + 7.35335i 0.246901 + 0.246901i 0.819698 0.572796i \(-0.194141\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(888\) −7.82504 + 7.82504i −0.262591 + 0.262591i
\(889\) 2.78920i 0.0935467i
\(890\) −17.6925 + 20.2977i −0.593055 + 0.680381i
\(891\) 0 0
\(892\) 4.66817 4.66817i 0.156302 0.156302i
\(893\) −6.50277 + 6.50277i −0.217607 + 0.217607i
\(894\) 6.98308i 0.233549i
\(895\) 3.08691 + 45.0149i 0.103184 + 1.50468i
\(896\) −2.53023 −0.0845292
\(897\) 2.83526 + 2.83526i 0.0946664 + 0.0946664i
\(898\) 7.87294 7.87294i 0.262723 0.262723i
\(899\) −3.35031 −0.111739
\(900\) 3.63748 0.501239i 0.121249 0.0167080i
\(901\) 33.4710i 1.11508i
\(902\) 0 0
\(903\) 0.568922 + 0.568922i 0.0189325 + 0.0189325i
\(904\) 10.6513 0.354257
\(905\) 10.2835 0.705194i 0.341835 0.0234414i
\(906\) 18.1341 0.602465
\(907\) −11.5308 + 11.5308i −0.382873 + 0.382873i −0.872136 0.489263i \(-0.837266\pi\)
0.489263 + 0.872136i \(0.337266\pi\)
\(908\) 2.87047 2.87047i 0.0952600 0.0952600i
\(909\) −11.4094 −0.378427
\(910\) 1.51868 + 1.32376i 0.0503437 + 0.0438822i
\(911\) −17.7104 −0.586773 −0.293387 0.955994i \(-0.594782\pi\)
−0.293387 + 0.955994i \(0.594782\pi\)
\(912\) 1.89718 + 1.89718i 0.0628219 + 0.0628219i
\(913\) 0 0
\(914\) 10.2385i 0.338659i
\(915\) −6.90269 + 7.91910i −0.228196 + 0.261797i
\(916\) −5.10334 −0.168619
\(917\) −1.32266 + 1.32266i −0.0436782 + 0.0436782i
\(918\) 17.0379 + 17.0379i 0.562336 + 0.562336i
\(919\) 9.13000 0.301171 0.150585 0.988597i \(-0.451884\pi\)
0.150585 + 0.988597i \(0.451884\pi\)
\(920\) −9.30773 + 0.638280i −0.306867 + 0.0210435i
\(921\) 22.6924i 0.747740i
\(922\) 31.2567 31.2567i 1.02938 1.02938i
\(923\) 25.0888 25.0888i 0.825807 0.825807i
\(924\) 0 0
\(925\) −16.3231 + 21.5407i −0.536701 + 0.708254i
\(926\) 37.6509i 1.23729i
\(927\) 5.41252 5.41252i 0.177770 0.177770i
\(928\) −11.7589 11.7589i −0.386006 0.386006i
\(929\) 1.81238i 0.0594624i −0.999558 0.0297312i \(-0.990535\pi\)
0.999558 0.0297312i \(-0.00946512\pi\)
\(930\) 0.0650556 + 0.948674i 0.00213326 + 0.0311083i
\(931\) 5.17927i 0.169744i
\(932\) 3.43566 + 3.43566i 0.112539 + 0.112539i
\(933\) −4.23688 4.23688i −0.138709 0.138709i
\(934\) 40.2174 1.31595
\(935\) 0 0
\(936\) 18.7961 0.614371
\(937\) 10.7192 + 10.7192i 0.350181 + 0.350181i 0.860177 0.509996i \(-0.170353\pi\)
−0.509996 + 0.860177i \(0.670353\pi\)
\(938\) −1.20327 1.20327i −0.0392881 0.0392881i
\(939\) 1.07313i 0.0350203i
\(940\) −6.47302 5.64221i −0.211127 0.184029i
\(941\) 21.8290i 0.711605i 0.934561 + 0.355803i \(0.115792\pi\)
−0.934561 + 0.355803i \(0.884208\pi\)
\(942\) 4.24002 + 4.24002i 0.138147 + 0.138147i
\(943\) 7.69271 7.69271i 0.250509 0.250509i
\(944\) 43.5553i 1.41760i
\(945\) −1.82673 + 0.125268i −0.0594235 + 0.00407498i
\(946\) 0 0
\(947\) 6.90662 6.90662i 0.224435 0.224435i −0.585928 0.810363i \(-0.699270\pi\)
0.810363 + 0.585928i \(0.199270\pi\)
\(948\) 0.117393 0.117393i 0.00381276 0.00381276i
\(949\) 7.43522i 0.241357i
\(950\) 4.50556 + 3.41422i 0.146180 + 0.110772i
\(951\) 9.03412 0.292951
\(952\) −1.28870 1.28870i −0.0417669 0.0417669i
\(953\) −9.22299 + 9.22299i −0.298762 + 0.298762i −0.840529 0.541767i \(-0.817756\pi\)
0.541767 + 0.840529i \(0.317756\pi\)
\(954\) 32.4557 1.05079
\(955\) 14.1129 0.967795i 0.456682 0.0313171i
\(956\) 1.64046i 0.0530561i
\(957\) 0 0
\(958\) −28.2202 28.2202i −0.911755 0.911755i
\(959\) 0.829093 0.0267728
\(960\) 7.49856 8.60270i 0.242015 0.277651i
\(961\) −30.8769 −0.996028
\(962\) 17.9852 17.9852i 0.579867 0.579867i
\(963\) −18.4838 + 18.4838i −0.595633 + 0.595633i
\(964\) −5.02149 −0.161731
\(965\) 8.71548 9.99882i 0.280561 0.321873i
\(966\) −0.376987 −0.0121294
\(967\) −13.6319 13.6319i −0.438372 0.438372i 0.453092 0.891464i \(-0.350321\pi\)
−0.891464 + 0.453092i \(0.850321\pi\)
\(968\) 0 0
\(969\) 2.19785i 0.0706051i
\(970\) 4.67615 0.320668i 0.150142 0.0102960i
\(971\) 4.10875 0.131856 0.0659280 0.997824i \(-0.478999\pi\)
0.0659280 + 0.997824i \(0.478999\pi\)
\(972\) 3.46272 3.46272i 0.111067 0.111067i
\(973\) 1.42303 + 1.42303i 0.0456202 + 0.0456202i
\(974\) −35.4708 −1.13656
\(975\) −12.2239 + 1.68444i −0.391480 + 0.0539453i
\(976\) 26.6643i 0.853502i
\(977\) −21.7149 + 21.7149i −0.694720 + 0.694720i −0.963267 0.268547i \(-0.913457\pi\)
0.268547 + 0.963267i \(0.413457\pi\)
\(978\) −8.58324 + 8.58324i −0.274462 + 0.274462i
\(979\) 0 0
\(980\) 4.82472 0.330856i 0.154120 0.0105688i
\(981\) 22.5617i 0.720339i
\(982\) 19.7209 19.7209i 0.629320 0.629320i
\(983\) 19.6048 + 19.6048i 0.625296 + 0.625296i 0.946881 0.321585i \(-0.104215\pi\)
−0.321585 + 0.946881i \(0.604215\pi\)
\(984\) 13.7085i 0.437012i
\(985\) 23.6120 + 20.5814i 0.752340 + 0.655778i
\(986\) 53.7902i 1.71303i
\(987\) 1.33454 + 1.33454i 0.0424789 + 0.0424789i
\(988\) −0.505673 0.505673i −0.0160876 0.0160876i
\(989\) 8.56376 0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) 0.432215 + 0.432215i 0.0137228 + 0.0137228i
\(993\) −9.98062 9.98062i −0.316725 0.316725i
\(994\) 3.33591i 0.105809i
\(995\) 2.04729 + 29.8547i 0.0649035 + 0.946457i
\(996\) 4.13089i 0.130892i
\(997\) −20.4146 20.4146i −0.646537 0.646537i 0.305617 0.952155i \(-0.401137\pi\)
−0.952155 + 0.305617i \(0.901137\pi\)
\(998\) 12.6379 12.6379i 0.400047 0.400047i
\(999\) 23.1169i 0.731385i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.e.b.483.14 32
5.2 odd 4 inner 605.2.e.b.362.3 32
11.2 odd 10 605.2.m.e.403.4 32
11.3 even 5 605.2.m.c.233.4 32
11.4 even 5 605.2.m.d.578.1 32
11.5 even 5 605.2.m.e.118.1 32
11.6 odd 10 55.2.l.a.8.4 yes 32
11.7 odd 10 605.2.m.c.578.4 32
11.8 odd 10 605.2.m.d.233.1 32
11.9 even 5 55.2.l.a.18.1 yes 32
11.10 odd 2 inner 605.2.e.b.483.3 32
33.17 even 10 495.2.bj.a.118.1 32
33.20 odd 10 495.2.bj.a.73.4 32
44.31 odd 10 880.2.cm.a.513.1 32
44.39 even 10 880.2.cm.a.833.4 32
55.2 even 20 605.2.m.e.282.1 32
55.7 even 20 605.2.m.c.457.4 32
55.9 even 10 275.2.bm.b.18.4 32
55.17 even 20 55.2.l.a.52.1 yes 32
55.27 odd 20 605.2.m.e.602.4 32
55.28 even 20 275.2.bm.b.107.4 32
55.32 even 4 inner 605.2.e.b.362.14 32
55.37 odd 20 605.2.m.d.457.1 32
55.39 odd 10 275.2.bm.b.118.1 32
55.42 odd 20 55.2.l.a.7.4 32
55.47 odd 20 605.2.m.c.112.4 32
55.52 even 20 605.2.m.d.112.1 32
55.53 odd 20 275.2.bm.b.7.1 32
165.17 odd 20 495.2.bj.a.217.4 32
165.152 even 20 495.2.bj.a.172.1 32
220.127 odd 20 880.2.cm.a.657.1 32
220.207 even 20 880.2.cm.a.337.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 55.42 odd 20
55.2.l.a.8.4 yes 32 11.6 odd 10
55.2.l.a.18.1 yes 32 11.9 even 5
55.2.l.a.52.1 yes 32 55.17 even 20
275.2.bm.b.7.1 32 55.53 odd 20
275.2.bm.b.18.4 32 55.9 even 10
275.2.bm.b.107.4 32 55.28 even 20
275.2.bm.b.118.1 32 55.39 odd 10
495.2.bj.a.73.4 32 33.20 odd 10
495.2.bj.a.118.1 32 33.17 even 10
495.2.bj.a.172.1 32 165.152 even 20
495.2.bj.a.217.4 32 165.17 odd 20
605.2.e.b.362.3 32 5.2 odd 4 inner
605.2.e.b.362.14 32 55.32 even 4 inner
605.2.e.b.483.3 32 11.10 odd 2 inner
605.2.e.b.483.14 32 1.1 even 1 trivial
605.2.m.c.112.4 32 55.47 odd 20
605.2.m.c.233.4 32 11.3 even 5
605.2.m.c.457.4 32 55.7 even 20
605.2.m.c.578.4 32 11.7 odd 10
605.2.m.d.112.1 32 55.52 even 20
605.2.m.d.233.1 32 11.8 odd 10
605.2.m.d.457.1 32 55.37 odd 20
605.2.m.d.578.1 32 11.4 even 5
605.2.m.e.118.1 32 11.5 even 5
605.2.m.e.282.1 32 55.2 even 20
605.2.m.e.403.4 32 11.2 odd 10
605.2.m.e.602.4 32 55.27 odd 20
880.2.cm.a.337.4 32 220.207 even 20
880.2.cm.a.513.1 32 44.31 odd 10
880.2.cm.a.657.1 32 220.127 odd 20
880.2.cm.a.833.4 32 44.39 even 10