Properties

Label 275.2.bm.b.7.1
Level $275$
Weight $2$
Character 275.7
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(7,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.1
Character \(\chi\) \(=\) 275.7
Dual form 275.2.bm.b.118.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50135 + 0.237790i) q^{2} +(0.361933 + 0.710333i) q^{3} +(0.295389 - 0.0959778i) q^{4} +(-0.712297 - 0.980393i) q^{6} +(-0.170602 - 0.0869260i) q^{7} +(2.28811 - 1.16585i) q^{8} +(1.38978 - 1.91287i) q^{9} +(1.77694 + 2.80044i) q^{11} +(0.175087 + 0.175087i) q^{12} +(0.484259 + 3.05749i) q^{13} +(0.276803 + 0.0899388i) q^{14} +(-3.66057 + 2.65956i) q^{16} +(-0.579827 + 3.66088i) q^{17} +(-1.63168 + 3.20235i) q^{18} +(-0.229844 + 0.707388i) q^{19} -0.152646i q^{21} +(-3.33373 - 3.78190i) q^{22} +(1.14886 - 1.14886i) q^{23} +(1.65629 + 1.20336i) q^{24} +(-1.45408 - 4.47521i) q^{26} +(4.22401 + 0.669017i) q^{27} +(-0.0587369 - 0.00930302i) q^{28} +(2.95025 + 9.07993i) q^{29} +(-0.283900 - 0.206266i) q^{31} +(1.23166 - 1.23166i) q^{32} +(-1.34611 + 2.27579i) q^{33} -5.63413i q^{34} +(0.226933 - 0.698428i) q^{36} +(-2.45398 + 4.81621i) q^{37} +(0.176866 - 1.11669i) q^{38} +(-1.99657 + 1.45059i) q^{39} +(6.36824 + 2.06917i) q^{41} +(0.0362976 + 0.229174i) q^{42} +(-3.72708 - 3.72708i) q^{43} +(0.793670 + 0.656674i) q^{44} +(-1.45165 + 1.99802i) q^{46} +(11.0165 - 5.61318i) q^{47} +(-3.21405 - 1.63764i) q^{48} +(-4.09295 - 5.63346i) q^{49} +(-2.81030 + 0.913123i) q^{51} +(0.436496 + 0.856672i) q^{52} +(8.91914 - 1.41265i) q^{53} -6.50079 q^{54} -0.491699 q^{56} +(-0.585669 + 0.0927608i) q^{57} +(-6.58847 - 12.9306i) q^{58} +(-9.15496 + 2.97463i) q^{59} +(-3.46383 - 4.76756i) q^{61} +(0.475281 + 0.242168i) q^{62} +(-0.403377 + 0.205531i) q^{63} +(3.76284 - 5.17911i) q^{64} +(1.47982 - 3.73685i) q^{66} +(-4.13426 - 4.13426i) q^{67} +(0.180089 + 1.13704i) q^{68} +(1.23188 + 0.400262i) q^{69} +(9.27272 - 6.73702i) q^{71} +(0.949851 - 5.99713i) q^{72} +(-1.09042 + 2.14008i) q^{73} +(2.53903 - 7.81434i) q^{74} +0.231015i q^{76} +(-0.0597184 - 0.632224i) q^{77} +(2.65261 - 2.65261i) q^{78} +(-0.542434 - 0.394101i) q^{79} +(-1.13837 - 3.50353i) q^{81} +(-10.0530 - 1.59224i) q^{82} +(-16.4776 - 2.60980i) q^{83} +(-0.0146506 - 0.0450899i) q^{84} +(6.48191 + 4.70938i) q^{86} +(-5.38198 + 5.38198i) q^{87} +(7.33074 + 4.33608i) q^{88} -7.92190i q^{89} +(0.183160 - 0.563709i) q^{91} +(0.229095 - 0.449625i) q^{92} +(0.0437645 - 0.276318i) q^{93} +(-15.2048 + 11.0469i) q^{94} +(1.32067 + 0.429111i) q^{96} +(0.215721 + 1.36201i) q^{97} +(7.48452 + 7.48452i) q^{98} +(7.82643 + 0.492943i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50135 + 0.237790i −1.06161 + 0.168143i −0.662730 0.748859i \(-0.730602\pi\)
−0.398884 + 0.917002i \(0.630602\pi\)
\(3\) 0.361933 + 0.710333i 0.208962 + 0.410111i 0.971571 0.236749i \(-0.0760819\pi\)
−0.762609 + 0.646860i \(0.776082\pi\)
\(4\) 0.295389 0.0959778i 0.147695 0.0479889i
\(5\) 0 0
\(6\) −0.712297 0.980393i −0.290794 0.400244i
\(7\) −0.170602 0.0869260i −0.0644815 0.0328550i 0.421452 0.906851i \(-0.361520\pi\)
−0.485934 + 0.873996i \(0.661520\pi\)
\(8\) 2.28811 1.16585i 0.808970 0.412191i
\(9\) 1.38978 1.91287i 0.463259 0.637622i
\(10\) 0 0
\(11\) 1.77694 + 2.80044i 0.535768 + 0.844365i
\(12\) 0.175087 + 0.175087i 0.0505433 + 0.0505433i
\(13\) 0.484259 + 3.05749i 0.134309 + 0.847995i 0.959205 + 0.282711i \(0.0912336\pi\)
−0.824896 + 0.565285i \(0.808766\pi\)
\(14\) 0.276803 + 0.0899388i 0.0739787 + 0.0240372i
\(15\) 0 0
\(16\) −3.66057 + 2.65956i −0.915143 + 0.664890i
\(17\) −0.579827 + 3.66088i −0.140629 + 0.887894i 0.811978 + 0.583688i \(0.198391\pi\)
−0.952606 + 0.304206i \(0.901609\pi\)
\(18\) −1.63168 + 3.20235i −0.384591 + 0.754802i
\(19\) −0.229844 + 0.707388i −0.0527299 + 0.162286i −0.973954 0.226747i \(-0.927191\pi\)
0.921224 + 0.389033i \(0.127191\pi\)
\(20\) 0 0
\(21\) 0.152646i 0.0333100i
\(22\) −3.33373 3.78190i −0.710753 0.806304i
\(23\) 1.14886 1.14886i 0.239553 0.239553i −0.577112 0.816665i \(-0.695820\pi\)
0.816665 + 0.577112i \(0.195820\pi\)
\(24\) 1.65629 + 1.20336i 0.338088 + 0.245635i
\(25\) 0 0
\(26\) −1.45408 4.47521i −0.285169 0.877660i
\(27\) 4.22401 + 0.669017i 0.812911 + 0.128752i
\(28\) −0.0587369 0.00930302i −0.0111002 0.00175811i
\(29\) 2.95025 + 9.07993i 0.547847 + 1.68610i 0.714122 + 0.700021i \(0.246826\pi\)
−0.166275 + 0.986079i \(0.553174\pi\)
\(30\) 0 0
\(31\) −0.283900 0.206266i −0.0509900 0.0370464i 0.561998 0.827138i \(-0.310033\pi\)
−0.612988 + 0.790092i \(0.710033\pi\)
\(32\) 1.23166 1.23166i 0.217729 0.217729i
\(33\) −1.34611 + 2.27579i −0.234328 + 0.396165i
\(34\) 5.63413i 0.966246i
\(35\) 0 0
\(36\) 0.226933 0.698428i 0.0378222 0.116405i
\(37\) −2.45398 + 4.81621i −0.403432 + 0.791780i −0.999941 0.0108264i \(-0.996554\pi\)
0.596510 + 0.802606i \(0.296554\pi\)
\(38\) 0.176866 1.11669i 0.0286915 0.181151i
\(39\) −1.99657 + 1.45059i −0.319707 + 0.232280i
\(40\) 0 0
\(41\) 6.36824 + 2.06917i 0.994552 + 0.323150i 0.760687 0.649119i \(-0.224862\pi\)
0.233866 + 0.972269i \(0.424862\pi\)
\(42\) 0.0362976 + 0.229174i 0.00560084 + 0.0353623i
\(43\) −3.72708 3.72708i −0.568374 0.568374i 0.363299 0.931673i \(-0.381650\pi\)
−0.931673 + 0.363299i \(0.881650\pi\)
\(44\) 0.793670 + 0.656674i 0.119650 + 0.0989973i
\(45\) 0 0
\(46\) −1.45165 + 1.99802i −0.214034 + 0.294592i
\(47\) 11.0165 5.61318i 1.60692 0.818766i 0.607213 0.794539i \(-0.292287\pi\)
0.999706 0.0242272i \(-0.00771250\pi\)
\(48\) −3.21405 1.63764i −0.463909 0.236373i
\(49\) −4.09295 5.63346i −0.584707 0.804780i
\(50\) 0 0
\(51\) −2.81030 + 0.913123i −0.393521 + 0.127863i
\(52\) 0.436496 + 0.856672i 0.0605311 + 0.118799i
\(53\) 8.91914 1.41265i 1.22514 0.194043i 0.489855 0.871804i \(-0.337050\pi\)
0.735282 + 0.677761i \(0.237050\pi\)
\(54\) −6.50079 −0.884646
\(55\) 0 0
\(56\) −0.491699 −0.0657061
\(57\) −0.585669 + 0.0927608i −0.0775737 + 0.0122865i
\(58\) −6.58847 12.9306i −0.865108 1.69787i
\(59\) −9.15496 + 2.97463i −1.19187 + 0.387263i −0.836765 0.547562i \(-0.815556\pi\)
−0.355108 + 0.934825i \(0.615556\pi\)
\(60\) 0 0
\(61\) −3.46383 4.76756i −0.443498 0.610423i 0.527487 0.849563i \(-0.323134\pi\)
−0.970985 + 0.239140i \(0.923134\pi\)
\(62\) 0.475281 + 0.242168i 0.0603608 + 0.0307554i
\(63\) −0.403377 + 0.205531i −0.0508207 + 0.0258944i
\(64\) 3.76284 5.17911i 0.470356 0.647389i
\(65\) 0 0
\(66\) 1.47982 3.73685i 0.182154 0.459974i
\(67\) −4.13426 4.13426i −0.505081 0.505081i 0.407932 0.913012i \(-0.366250\pi\)
−0.913012 + 0.407932i \(0.866250\pi\)
\(68\) 0.180089 + 1.13704i 0.0218390 + 0.137886i
\(69\) 1.23188 + 0.400262i 0.148301 + 0.0481859i
\(70\) 0 0
\(71\) 9.27272 6.73702i 1.10047 0.799538i 0.119333 0.992854i \(-0.461925\pi\)
0.981136 + 0.193317i \(0.0619245\pi\)
\(72\) 0.949851 5.99713i 0.111941 0.706768i
\(73\) −1.09042 + 2.14008i −0.127624 + 0.250477i −0.945973 0.324245i \(-0.894890\pi\)
0.818349 + 0.574722i \(0.194890\pi\)
\(74\) 2.53903 7.81434i 0.295156 0.908398i
\(75\) 0 0
\(76\) 0.231015i 0.0264992i
\(77\) −0.0597184 0.632224i −0.00680554 0.0720486i
\(78\) 2.65261 2.65261i 0.300348 0.300348i
\(79\) −0.542434 0.394101i −0.0610286 0.0443399i 0.556853 0.830611i \(-0.312009\pi\)
−0.617881 + 0.786271i \(0.712009\pi\)
\(80\) 0 0
\(81\) −1.13837 3.50353i −0.126485 0.389282i
\(82\) −10.0530 1.59224i −1.11017 0.175833i
\(83\) −16.4776 2.60980i −1.80865 0.286463i −0.841426 0.540372i \(-0.818284\pi\)
−0.967228 + 0.253909i \(0.918284\pi\)
\(84\) −0.0146506 0.0450899i −0.00159851 0.00491971i
\(85\) 0 0
\(86\) 6.48191 + 4.70938i 0.698962 + 0.507826i
\(87\) −5.38198 + 5.38198i −0.577009 + 0.577009i
\(88\) 7.33074 + 4.33608i 0.781460 + 0.462227i
\(89\) 7.92190i 0.839720i −0.907589 0.419860i \(-0.862079\pi\)
0.907589 0.419860i \(-0.137921\pi\)
\(90\) 0 0
\(91\) 0.183160 0.563709i 0.0192004 0.0590927i
\(92\) 0.229095 0.449625i 0.0238848 0.0468766i
\(93\) 0.0437645 0.276318i 0.00453817 0.0286528i
\(94\) −15.2048 + 11.0469i −1.56826 + 1.13941i
\(95\) 0 0
\(96\) 1.32067 + 0.429111i 0.134790 + 0.0437960i
\(97\) 0.215721 + 1.36201i 0.0219032 + 0.138291i 0.996217 0.0869051i \(-0.0276977\pi\)
−0.974313 + 0.225196i \(0.927698\pi\)
\(98\) 7.48452 + 7.48452i 0.756051 + 0.756051i
\(99\) 7.82643 + 0.492943i 0.786585 + 0.0495427i
\(100\) 0 0
\(101\) −2.83633 + 3.90387i −0.282225 + 0.388449i −0.926469 0.376370i \(-0.877172\pi\)
0.644244 + 0.764820i \(0.277172\pi\)
\(102\) 4.00211 2.03918i 0.396268 0.201909i
\(103\) −2.88449 1.46972i −0.284217 0.144816i 0.306071 0.952009i \(-0.400986\pi\)
−0.590287 + 0.807193i \(0.700986\pi\)
\(104\) 4.67262 + 6.43131i 0.458188 + 0.630641i
\(105\) 0 0
\(106\) −13.0548 + 4.24177i −1.26800 + 0.411997i
\(107\) 5.01911 + 9.85055i 0.485215 + 0.952289i 0.995721 + 0.0924142i \(0.0294584\pi\)
−0.510505 + 0.859875i \(0.670542\pi\)
\(108\) 1.31194 0.207790i 0.126241 0.0199946i
\(109\) 9.54212 0.913969 0.456985 0.889475i \(-0.348929\pi\)
0.456985 + 0.889475i \(0.348929\pi\)
\(110\) 0 0
\(111\) −4.30929 −0.409019
\(112\) 0.855686 0.135527i 0.0808547 0.0128061i
\(113\) 1.88301 + 3.69562i 0.177139 + 0.347654i 0.962455 0.271440i \(-0.0874999\pi\)
−0.785317 + 0.619094i \(0.787500\pi\)
\(114\) 0.857235 0.278533i 0.0802874 0.0260870i
\(115\) 0 0
\(116\) 1.74294 + 2.39895i 0.161828 + 0.222737i
\(117\) 6.52158 + 3.32291i 0.602920 + 0.307203i
\(118\) 13.0374 6.64291i 1.20019 0.611529i
\(119\) 0.417145 0.574151i 0.0382397 0.0526324i
\(120\) 0 0
\(121\) −4.68496 + 9.95245i −0.425905 + 0.904768i
\(122\) 6.33410 + 6.33410i 0.573462 + 0.573462i
\(123\) 0.835077 + 5.27247i 0.0752964 + 0.475403i
\(124\) −0.103658 0.0336805i −0.00930877 0.00302460i
\(125\) 0 0
\(126\) 0.556736 0.404492i 0.0495980 0.0360350i
\(127\) 2.27881 14.3879i 0.202212 1.27672i −0.652570 0.757728i \(-0.726309\pi\)
0.854782 0.518987i \(-0.173691\pi\)
\(128\) −5.99935 + 11.7744i −0.530273 + 1.04072i
\(129\) 1.29851 3.99642i 0.114328 0.351865i
\(130\) 0 0
\(131\) 9.76926i 0.853544i −0.904359 0.426772i \(-0.859651\pi\)
0.904359 0.426772i \(-0.140349\pi\)
\(132\) −0.179202 + 0.801441i −0.0155975 + 0.0697565i
\(133\) 0.100702 0.100702i 0.00873200 0.00873200i
\(134\) 7.19006 + 5.22388i 0.621126 + 0.451275i
\(135\) 0 0
\(136\) 2.94133 + 9.05250i 0.252217 + 0.776245i
\(137\) −4.27681 0.677380i −0.365392 0.0578725i −0.0289612 0.999581i \(-0.509220\pi\)
−0.336431 + 0.941708i \(0.609220\pi\)
\(138\) −1.94466 0.308004i −0.165540 0.0262190i
\(139\) 3.24794 + 9.99613i 0.275487 + 0.847860i 0.989090 + 0.147311i \(0.0470618\pi\)
−0.713604 + 0.700550i \(0.752938\pi\)
\(140\) 0 0
\(141\) 7.97445 + 5.79378i 0.671570 + 0.487924i
\(142\) −12.3196 + 12.3196i −1.03384 + 1.03384i
\(143\) −7.70183 + 6.78912i −0.644059 + 0.567735i
\(144\) 10.6984i 0.891532i
\(145\) 0 0
\(146\) 1.12822 3.47229i 0.0933719 0.287369i
\(147\) 2.52026 4.94629i 0.207868 0.407963i
\(148\) −0.262630 + 1.65818i −0.0215881 + 0.136302i
\(149\) 4.66189 3.38706i 0.381917 0.277479i −0.380218 0.924897i \(-0.624151\pi\)
0.762135 + 0.647418i \(0.224151\pi\)
\(150\) 0 0
\(151\) −14.2318 4.62419i −1.15817 0.376311i −0.333953 0.942590i \(-0.608383\pi\)
−0.824214 + 0.566278i \(0.808383\pi\)
\(152\) 0.298800 + 1.88655i 0.0242358 + 0.153019i
\(153\) 6.19694 + 6.19694i 0.500993 + 0.500993i
\(154\) 0.239995 + 0.934987i 0.0193393 + 0.0753434i
\(155\) 0 0
\(156\) −0.450540 + 0.620115i −0.0360721 + 0.0496489i
\(157\) −4.40881 + 2.24640i −0.351861 + 0.179282i −0.620983 0.783824i \(-0.713267\pi\)
0.269122 + 0.963106i \(0.413267\pi\)
\(158\) 0.908095 + 0.462698i 0.0722442 + 0.0368103i
\(159\) 4.23158 + 5.82427i 0.335586 + 0.461895i
\(160\) 0 0
\(161\) −0.295863 + 0.0961317i −0.0233173 + 0.00757624i
\(162\) 2.54219 + 4.98933i 0.199733 + 0.391999i
\(163\) 9.89335 1.56695i 0.774907 0.122733i 0.243558 0.969886i \(-0.421685\pi\)
0.531349 + 0.847153i \(0.321685\pi\)
\(164\) 2.07970 0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) −11.9137 + 1.88695i −0.921913 + 0.146017i −0.599310 0.800517i \(-0.704558\pi\)
−0.322604 + 0.946534i \(0.604558\pi\)
\(168\) −0.177962 0.349270i −0.0137301 0.0269468i
\(169\) 3.24999 1.05599i 0.250000 0.0812298i
\(170\) 0 0
\(171\) 1.03371 + 1.42277i 0.0790494 + 0.108802i
\(172\) −1.45866 0.743222i −0.111221 0.0566702i
\(173\) 11.1065 5.65903i 0.844410 0.430248i 0.0224186 0.999749i \(-0.492863\pi\)
0.821991 + 0.569501i \(0.192863\pi\)
\(174\) 6.80045 9.36001i 0.515540 0.709581i
\(175\) 0 0
\(176\) −13.9526 5.52533i −1.05171 0.416488i
\(177\) −5.42645 5.42645i −0.407877 0.407877i
\(178\) 1.88375 + 11.8935i 0.141193 + 0.891458i
\(179\) −19.1909 6.23551i −1.43440 0.466064i −0.514252 0.857639i \(-0.671930\pi\)
−0.920146 + 0.391575i \(0.871930\pi\)
\(180\) 0 0
\(181\) −3.72935 + 2.70953i −0.277200 + 0.201398i −0.717695 0.696357i \(-0.754803\pi\)
0.440495 + 0.897755i \(0.354803\pi\)
\(182\) −0.140943 + 0.889877i −0.0104474 + 0.0659620i
\(183\) 2.13288 4.18601i 0.157667 0.309439i
\(184\) 1.28932 3.96811i 0.0950497 0.292533i
\(185\) 0 0
\(186\) 0.425256i 0.0311813i
\(187\) −11.2824 + 4.88140i −0.825051 + 0.356963i
\(188\) 2.71541 2.71541i 0.198042 0.198042i
\(189\) −0.662469 0.481312i −0.0481875 0.0350103i
\(190\) 0 0
\(191\) 1.95493 + 6.01667i 0.141454 + 0.435351i 0.996538 0.0831389i \(-0.0264945\pi\)
−0.855084 + 0.518490i \(0.826495\pi\)
\(192\) 5.04079 + 0.798383i 0.363788 + 0.0576183i
\(193\) −5.85885 0.927951i −0.421729 0.0667954i −0.0580368 0.998314i \(-0.518484\pi\)
−0.363692 + 0.931519i \(0.618484\pi\)
\(194\) −0.647745 1.99355i −0.0465054 0.143129i
\(195\) 0 0
\(196\) −1.74970 1.27123i −0.124979 0.0908022i
\(197\) 9.90515 9.90515i 0.705713 0.705713i −0.259918 0.965631i \(-0.583696\pi\)
0.965631 + 0.259918i \(0.0836955\pi\)
\(198\) −11.8674 + 1.12097i −0.843380 + 0.0796637i
\(199\) 13.3828i 0.948680i −0.880342 0.474340i \(-0.842687\pi\)
0.880342 0.474340i \(-0.157313\pi\)
\(200\) 0 0
\(201\) 1.44038 4.43303i 0.101596 0.312682i
\(202\) 3.33001 6.53551i 0.234299 0.459837i
\(203\) 0.285964 1.80551i 0.0200708 0.126722i
\(204\) −0.742493 + 0.539453i −0.0519849 + 0.0377693i
\(205\) 0 0
\(206\) 4.68010 + 1.52066i 0.326078 + 0.105949i
\(207\) −0.600953 3.79427i −0.0417691 0.263720i
\(208\) −9.90424 9.90424i −0.686736 0.686736i
\(209\) −2.38942 + 0.613321i −0.165280 + 0.0424243i
\(210\) 0 0
\(211\) 3.48696 4.79939i 0.240052 0.330404i −0.671944 0.740602i \(-0.734540\pi\)
0.911996 + 0.410198i \(0.134540\pi\)
\(212\) 2.49903 1.27332i 0.171634 0.0874521i
\(213\) 8.14163 + 4.14837i 0.557855 + 0.284241i
\(214\) −9.87779 13.5956i −0.675232 0.929377i
\(215\) 0 0
\(216\) 10.4450 3.39378i 0.710691 0.230917i
\(217\) 0.0305041 + 0.0598677i 0.00207075 + 0.00406408i
\(218\) −14.3260 + 2.26902i −0.970282 + 0.153678i
\(219\) −1.91483 −0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) 6.46974 1.02471i 0.434220 0.0687738i
\(223\) −9.64984 18.9389i −0.646201 1.26824i −0.949027 0.315195i \(-0.897930\pi\)
0.302826 0.953046i \(-0.402070\pi\)
\(224\) −0.317188 + 0.103060i −0.0211930 + 0.00688602i
\(225\) 0 0
\(226\) −3.70584 5.10065i −0.246509 0.339290i
\(227\) −11.6456 5.93372i −0.772944 0.393835i 0.0225888 0.999745i \(-0.492809\pi\)
−0.795533 + 0.605910i \(0.792809\pi\)
\(228\) −0.164097 + 0.0836117i −0.0108676 + 0.00553732i
\(229\) −9.65796 + 13.2930i −0.638216 + 0.878429i −0.998519 0.0544066i \(-0.982673\pi\)
0.360303 + 0.932835i \(0.382673\pi\)
\(230\) 0 0
\(231\) 0.427475 0.271242i 0.0281258 0.0178464i
\(232\) 17.3363 + 17.3363i 1.13819 + 1.13819i
\(233\) −2.44720 15.4510i −0.160321 1.01223i −0.928321 0.371779i \(-0.878748\pi\)
0.768000 0.640450i \(-0.221252\pi\)
\(234\) −10.5813 3.43808i −0.691722 0.224754i
\(235\) 0 0
\(236\) −2.41878 + 1.75734i −0.157449 + 0.114393i
\(237\) 0.0836185 0.527947i 0.00543161 0.0342938i
\(238\) −0.489753 + 0.961194i −0.0317460 + 0.0623050i
\(239\) 1.63214 5.02322i 0.105575 0.324925i −0.884290 0.466938i \(-0.845357\pi\)
0.989865 + 0.142012i \(0.0453572\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i 0.853726 + 0.520722i \(0.174337\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(242\) 4.66716 16.0561i 0.300016 1.03213i
\(243\) 11.1488 11.1488i 0.715198 0.715198i
\(244\) −1.48076 1.07583i −0.0947959 0.0688732i
\(245\) 0 0
\(246\) −2.50748 7.71724i −0.159871 0.492033i
\(247\) −2.27413 0.360188i −0.144700 0.0229182i
\(248\) −0.890071 0.140973i −0.0565196 0.00895182i
\(249\) −4.10997 12.6492i −0.260458 0.801609i
\(250\) 0 0
\(251\) −15.6486 11.3694i −0.987729 0.717627i −0.0283063 0.999599i \(-0.509011\pi\)
−0.959423 + 0.281972i \(0.909011\pi\)
\(252\) −0.0994268 + 0.0994268i −0.00626330 + 0.00626330i
\(253\) 5.25876 + 1.17586i 0.330615 + 0.0739254i
\(254\) 22.1431i 1.38938i
\(255\) 0 0
\(256\) 2.25079 6.92722i 0.140674 0.432951i
\(257\) −2.13653 + 4.19318i −0.133273 + 0.261563i −0.947993 0.318292i \(-0.896891\pi\)
0.814720 + 0.579855i \(0.196891\pi\)
\(258\) −0.999214 + 6.30879i −0.0622083 + 0.392768i
\(259\) 0.837308 0.608340i 0.0520278 0.0378004i
\(260\) 0 0
\(261\) 21.4689 + 6.97566i 1.32889 + 0.431783i
\(262\) 2.32303 + 14.6671i 0.143517 + 0.906134i
\(263\) 11.2218 + 11.2218i 0.691964 + 0.691964i 0.962664 0.270700i \(-0.0872550\pi\)
−0.270700 + 0.962664i \(0.587255\pi\)
\(264\) −0.426823 + 6.77663i −0.0262691 + 0.417073i
\(265\) 0 0
\(266\) −0.127243 + 0.175135i −0.00780178 + 0.0107382i
\(267\) 5.62719 2.86720i 0.344378 0.175470i
\(268\) −1.61801 0.824419i −0.0988359 0.0503594i
\(269\) 6.64926 + 9.15192i 0.405412 + 0.558002i 0.962092 0.272725i \(-0.0879249\pi\)
−0.556680 + 0.830727i \(0.687925\pi\)
\(270\) 0 0
\(271\) 16.9556 5.50921i 1.02998 0.334661i 0.255198 0.966889i \(-0.417859\pi\)
0.774782 + 0.632228i \(0.217859\pi\)
\(272\) −7.61384 14.9430i −0.461657 0.906052i
\(273\) 0.466712 0.0739200i 0.0282467 0.00447384i
\(274\) 6.58205 0.397636
\(275\) 0 0
\(276\) 0.402300 0.0242156
\(277\) 4.62395 0.732361i 0.277826 0.0440033i −0.0159666 0.999873i \(-0.505083\pi\)
0.293793 + 0.955869i \(0.405083\pi\)
\(278\) −7.25327 14.2353i −0.435022 0.853779i
\(279\) −0.789117 + 0.256400i −0.0472432 + 0.0153502i
\(280\) 0 0
\(281\) −7.75247 10.6704i −0.462474 0.636541i 0.512546 0.858660i \(-0.328703\pi\)
−0.975019 + 0.222119i \(0.928703\pi\)
\(282\) −13.3501 6.80223i −0.794989 0.405067i
\(283\) −20.3029 + 10.3449i −1.20688 + 0.614938i −0.937463 0.348084i \(-0.886832\pi\)
−0.269421 + 0.963022i \(0.586832\pi\)
\(284\) 2.09246 2.88002i 0.124164 0.170898i
\(285\) 0 0
\(286\) 9.94874 12.0243i 0.588281 0.711009i
\(287\) −0.906570 0.906570i −0.0535131 0.0535131i
\(288\) −0.644267 4.06774i −0.0379638 0.239694i
\(289\) 3.10211 + 1.00794i 0.182477 + 0.0592904i
\(290\) 0 0
\(291\) −0.889404 + 0.646190i −0.0521378 + 0.0378803i
\(292\) −0.116700 + 0.736812i −0.00682933 + 0.0431187i
\(293\) 3.28132 6.43996i 0.191697 0.376226i −0.775074 0.631870i \(-0.782287\pi\)
0.966771 + 0.255644i \(0.0822875\pi\)
\(294\) −2.60761 + 8.02539i −0.152079 + 0.468051i
\(295\) 0 0
\(296\) 13.8810i 0.806817i
\(297\) 5.63227 + 13.0179i 0.326818 + 0.755375i
\(298\) −6.19371 + 6.19371i −0.358792 + 0.358792i
\(299\) 4.06896 + 2.95628i 0.235314 + 0.170966i
\(300\) 0 0
\(301\) 0.311867 + 0.959827i 0.0179757 + 0.0553235i
\(302\) 22.4665 + 3.55834i 1.29280 + 0.204759i
\(303\) −3.79960 0.601798i −0.218282 0.0345724i
\(304\) −1.03998 3.20073i −0.0596469 0.183574i
\(305\) 0 0
\(306\) −10.7773 7.83020i −0.616100 0.447623i
\(307\) 20.1272 20.1272i 1.14872 1.14872i 0.161918 0.986804i \(-0.448232\pi\)
0.986804 0.161918i \(-0.0517681\pi\)
\(308\) −0.0783196 0.181020i −0.00446267 0.0103146i
\(309\) 2.58088i 0.146821i
\(310\) 0 0
\(311\) −2.32254 + 7.14803i −0.131699 + 0.405328i −0.995062 0.0992557i \(-0.968354\pi\)
0.863363 + 0.504583i \(0.168354\pi\)
\(312\) −2.87720 + 5.64681i −0.162889 + 0.319688i
\(313\) 0.210574 1.32951i 0.0119023 0.0751483i −0.981022 0.193895i \(-0.937888\pi\)
0.992925 + 0.118747i \(0.0378878\pi\)
\(314\) 6.08499 4.42100i 0.343396 0.249492i
\(315\) 0 0
\(316\) −0.198054 0.0643517i −0.0111414 0.00362006i
\(317\) 1.77271 + 11.1924i 0.0995652 + 0.628630i 0.986124 + 0.166013i \(0.0530894\pi\)
−0.886558 + 0.462617i \(0.846911\pi\)
\(318\) −7.73803 7.73803i −0.433927 0.433927i
\(319\) −20.1854 + 24.3965i −1.13017 + 1.36594i
\(320\) 0 0
\(321\) −5.18059 + 7.13047i −0.289152 + 0.397984i
\(322\) 0.421334 0.214680i 0.0234800 0.0119637i
\(323\) −2.45639 1.25159i −0.136677 0.0696406i
\(324\) −0.672523 0.925648i −0.0373624 0.0514249i
\(325\) 0 0
\(326\) −14.4808 + 4.70509i −0.802015 + 0.260591i
\(327\) 3.45360 + 6.77808i 0.190985 + 0.374829i
\(328\) 16.9836 2.68994i 0.937762 0.148527i
\(329\) −2.36737 −0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) −5.11780 + 0.810579i −0.280876 + 0.0444863i
\(333\) 5.80227 + 11.3876i 0.317962 + 0.624036i
\(334\) 17.4380 5.66594i 0.954164 0.310027i
\(335\) 0 0
\(336\) 0.405970 + 0.558770i 0.0221475 + 0.0304834i
\(337\) −6.78954 3.45945i −0.369850 0.188448i 0.259180 0.965829i \(-0.416548\pi\)
−0.629030 + 0.777381i \(0.716548\pi\)
\(338\) −4.62827 + 2.35822i −0.251745 + 0.128270i
\(339\) −1.94359 + 2.67513i −0.105562 + 0.145293i
\(340\) 0 0
\(341\) 0.0731608 1.16157i 0.00396188 0.0629025i
\(342\) −1.89027 1.89027i −0.102214 0.102214i
\(343\) 0.418239 + 2.64066i 0.0225828 + 0.142582i
\(344\) −12.8732 4.18275i −0.694076 0.225519i
\(345\) 0 0
\(346\) −15.3290 + 11.1372i −0.824093 + 0.598739i
\(347\) −1.46011 + 9.21879i −0.0783830 + 0.494891i 0.916998 + 0.398891i \(0.130605\pi\)
−0.995381 + 0.0959998i \(0.969395\pi\)
\(348\) −1.07323 + 2.10633i −0.0575311 + 0.112911i
\(349\) −0.464073 + 1.42827i −0.0248413 + 0.0764536i −0.962709 0.270540i \(-0.912798\pi\)
0.937867 + 0.346994i \(0.112798\pi\)
\(350\) 0 0
\(351\) 13.2388i 0.706637i
\(352\) 5.63779 + 1.26061i 0.300495 + 0.0671906i
\(353\) −4.40229 + 4.40229i −0.234310 + 0.234310i −0.814489 0.580179i \(-0.802983\pi\)
0.580179 + 0.814489i \(0.302983\pi\)
\(354\) 9.43735 + 6.85664i 0.501589 + 0.364426i
\(355\) 0 0
\(356\) −0.760327 2.34004i −0.0402972 0.124022i
\(357\) 0.558817 + 0.0885080i 0.0295757 + 0.00468434i
\(358\) 30.2950 + 4.79826i 1.60114 + 0.253596i
\(359\) −8.12845 25.0168i −0.429003 1.32034i −0.899108 0.437726i \(-0.855784\pi\)
0.470105 0.882611i \(-0.344216\pi\)
\(360\) 0 0
\(361\) 14.9238 + 10.8427i 0.785461 + 0.570671i
\(362\) 4.95475 4.95475i 0.260416 0.260416i
\(363\) −8.76519 + 0.274237i −0.460053 + 0.0143937i
\(364\) 0.184093i 0.00964908i
\(365\) 0 0
\(366\) −2.20680 + 6.79184i −0.115351 + 0.355015i
\(367\) 3.70869 7.27872i 0.193592 0.379946i −0.773723 0.633524i \(-0.781608\pi\)
0.967315 + 0.253579i \(0.0816076\pi\)
\(368\) −1.15002 + 7.26093i −0.0599488 + 0.378502i
\(369\) 12.8085 9.30591i 0.666783 0.484446i
\(370\) 0 0
\(371\) −1.64442 0.534304i −0.0853740 0.0277397i
\(372\) −0.0135928 0.0858218i −0.000704756 0.00444965i
\(373\) 6.12473 + 6.12473i 0.317126 + 0.317126i 0.847662 0.530536i \(-0.178009\pi\)
−0.530536 + 0.847662i \(0.678009\pi\)
\(374\) 15.7781 10.0115i 0.815864 0.517684i
\(375\) 0 0
\(376\) 18.6628 25.6872i 0.962461 1.32471i
\(377\) −26.3331 + 13.4174i −1.35622 + 0.691031i
\(378\) 1.10905 + 0.565088i 0.0570433 + 0.0290650i
\(379\) 0.363481 + 0.500288i 0.0186708 + 0.0256981i 0.818250 0.574862i \(-0.194944\pi\)
−0.799580 + 0.600560i \(0.794944\pi\)
\(380\) 0 0
\(381\) 11.0449 3.58872i 0.565849 0.183856i
\(382\) −4.36574 8.56825i −0.223371 0.438390i
\(383\) −10.2511 + 1.62362i −0.523807 + 0.0829629i −0.412738 0.910850i \(-0.635428\pi\)
−0.111069 + 0.993813i \(0.535428\pi\)
\(384\) −10.5351 −0.537617
\(385\) 0 0
\(386\) 9.01683 0.458945
\(387\) −12.3092 + 1.94959i −0.625712 + 0.0991031i
\(388\) 0.194444 + 0.381619i 0.00987142 + 0.0193737i
\(389\) 21.0630 6.84378i 1.06794 0.346993i 0.278252 0.960508i \(-0.410245\pi\)
0.789683 + 0.613515i \(0.210245\pi\)
\(390\) 0 0
\(391\) 3.53969 + 4.87197i 0.179010 + 0.246386i
\(392\) −15.9329 8.11822i −0.804733 0.410032i
\(393\) 6.93942 3.53581i 0.350048 0.178358i
\(394\) −12.5157 + 17.2264i −0.630534 + 0.867855i
\(395\) 0 0
\(396\) 2.35915 0.605553i 0.118552 0.0304302i
\(397\) −10.7769 10.7769i −0.540876 0.540876i 0.382910 0.923786i \(-0.374922\pi\)
−0.923786 + 0.382910i \(0.874922\pi\)
\(398\) 3.18229 + 20.0922i 0.159514 + 1.00713i
\(399\) 0.107980 + 0.0350847i 0.00540574 + 0.00175643i
\(400\) 0 0
\(401\) 3.46399 2.51673i 0.172983 0.125680i −0.497925 0.867220i \(-0.665904\pi\)
0.670908 + 0.741540i \(0.265904\pi\)
\(402\) −1.10838 + 6.99803i −0.0552809 + 0.349030i
\(403\) 0.493174 0.967909i 0.0245668 0.0482150i
\(404\) −0.463135 + 1.42538i −0.0230418 + 0.0709155i
\(405\) 0 0
\(406\) 2.77869i 0.137904i
\(407\) −17.8481 + 1.68589i −0.884697 + 0.0835664i
\(408\) −5.36572 + 5.36572i −0.265643 + 0.265643i
\(409\) −3.47523 2.52490i −0.171839 0.124848i 0.498541 0.866866i \(-0.333869\pi\)
−0.670381 + 0.742017i \(0.733869\pi\)
\(410\) 0 0
\(411\) −1.06675 3.28312i −0.0526190 0.161945i
\(412\) −0.993106 0.157293i −0.0489268 0.00774925i
\(413\) 1.82043 + 0.288327i 0.0895773 + 0.0141877i
\(414\) 1.80448 + 5.55361i 0.0886853 + 0.272945i
\(415\) 0 0
\(416\) 4.36224 + 3.16935i 0.213876 + 0.155390i
\(417\) −5.92504 + 5.92504i −0.290151 + 0.290151i
\(418\) 3.44151 1.48899i 0.168330 0.0728288i
\(419\) 1.20241i 0.0587414i 0.999569 + 0.0293707i \(0.00935032\pi\)
−0.999569 + 0.0293707i \(0.990650\pi\)
\(420\) 0 0
\(421\) 9.67493 29.7764i 0.471527 1.45121i −0.379057 0.925373i \(-0.623752\pi\)
0.850584 0.525839i \(-0.176248\pi\)
\(422\) −4.09390 + 8.03473i −0.199288 + 0.391124i
\(423\) 4.57321 28.8741i 0.222357 1.40391i
\(424\) 18.7610 13.6307i 0.911117 0.661965i
\(425\) 0 0
\(426\) −13.2099 4.29214i −0.640020 0.207955i
\(427\) 0.176512 + 1.11445i 0.00854201 + 0.0539321i
\(428\) 2.42802 + 2.42802i 0.117363 + 0.117363i
\(429\) −7.61008 3.01366i −0.367418 0.145501i
\(430\) 0 0
\(431\) −5.81395 + 8.00222i −0.280048 + 0.385453i −0.925750 0.378137i \(-0.876565\pi\)
0.645702 + 0.763590i \(0.276565\pi\)
\(432\) −17.2416 + 8.78502i −0.829536 + 0.422669i
\(433\) 24.0414 + 12.2497i 1.15536 + 0.588683i 0.923323 0.384025i \(-0.125462\pi\)
0.232033 + 0.972708i \(0.425462\pi\)
\(434\) −0.0600332 0.0826286i −0.00288169 0.00396630i
\(435\) 0 0
\(436\) 2.81864 0.915831i 0.134988 0.0438604i
\(437\) 0.548629 + 1.07675i 0.0262445 + 0.0515077i
\(438\) 2.87482 0.455327i 0.137364 0.0217564i
\(439\) 24.5862 1.17344 0.586718 0.809791i \(-0.300420\pi\)
0.586718 + 0.809791i \(0.300420\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) 17.2263 2.72838i 0.819372 0.129776i
\(443\) 13.9816 + 27.4404i 0.664286 + 1.30373i 0.939565 + 0.342370i \(0.111230\pi\)
−0.275279 + 0.961364i \(0.588770\pi\)
\(444\) −1.27292 + 0.413596i −0.0604099 + 0.0196284i
\(445\) 0 0
\(446\) 18.9912 + 26.1392i 0.899262 + 1.23773i
\(447\) 4.09323 + 2.08561i 0.193603 + 0.0986458i
\(448\) −1.09215 + 0.556477i −0.0515992 + 0.0262911i
\(449\) 4.30536 5.92582i 0.203182 0.279657i −0.695250 0.718768i \(-0.744707\pi\)
0.898433 + 0.439111i \(0.144707\pi\)
\(450\) 0 0
\(451\) 5.52141 + 21.5107i 0.259993 + 1.01290i
\(452\) 0.910918 + 0.910918i 0.0428460 + 0.0428460i
\(453\) −1.86624 11.7830i −0.0876835 0.553612i
\(454\) 18.8951 + 6.13938i 0.886789 + 0.288135i
\(455\) 0 0
\(456\) −1.23193 + 0.895050i −0.0576904 + 0.0419146i
\(457\) −1.05368 + 6.65265i −0.0492889 + 0.311198i 0.950710 + 0.310080i \(0.100356\pi\)
−0.999999 + 0.00111791i \(0.999644\pi\)
\(458\) 11.3390 22.2540i 0.529837 1.03986i
\(459\) −4.89838 + 15.0757i −0.228637 + 0.703672i
\(460\) 0 0
\(461\) 29.0801i 1.35440i −0.735801 0.677198i \(-0.763194\pi\)
0.735801 0.677198i \(-0.236806\pi\)
\(462\) −0.577290 + 0.508879i −0.0268580 + 0.0236752i
\(463\) −17.5146 + 17.5146i −0.813970 + 0.813970i −0.985227 0.171256i \(-0.945217\pi\)
0.171256 + 0.985227i \(0.445217\pi\)
\(464\) −34.9482 25.3914i −1.62243 1.17876i
\(465\) 0 0
\(466\) 7.34819 + 22.6154i 0.340398 + 1.04764i
\(467\) 26.1320 + 4.13890i 1.20924 + 0.191525i 0.728320 0.685237i \(-0.240302\pi\)
0.480923 + 0.876763i \(0.340302\pi\)
\(468\) 2.24533 + 0.355625i 0.103790 + 0.0164388i
\(469\) 0.345938 + 1.06469i 0.0159739 + 0.0491627i
\(470\) 0 0
\(471\) −3.19138 2.31868i −0.147051 0.106839i
\(472\) −17.4796 + 17.4796i −0.804563 + 0.804563i
\(473\) 3.81467 17.0603i 0.175399 0.784432i
\(474\) 0.812515i 0.0373201i
\(475\) 0 0
\(476\) 0.0681145 0.209635i 0.00312202 0.00960860i
\(477\) 9.69341 19.0244i 0.443831 0.871067i
\(478\) −1.25594 + 7.92972i −0.0574455 + 0.362697i
\(479\) −21.2408 + 15.4324i −0.970519 + 0.705123i −0.955570 0.294765i \(-0.904759\pi\)
−0.0149492 + 0.999888i \(0.504759\pi\)
\(480\) 0 0
\(481\) −15.9139 5.17073i −0.725610 0.235765i
\(482\) −3.84449 24.2731i −0.175112 1.10561i
\(483\) −0.175368 0.175368i −0.00797952 0.00797952i
\(484\) −0.428672 + 3.38950i −0.0194851 + 0.154068i
\(485\) 0 0
\(486\) −14.0872 + 19.3894i −0.639008 + 0.879519i
\(487\) 20.7917 10.5939i 0.942163 0.480056i 0.0857326 0.996318i \(-0.472677\pi\)
0.856431 + 0.516262i \(0.172677\pi\)
\(488\) −13.4839 6.87039i −0.610388 0.311008i
\(489\) 4.69379 + 6.46044i 0.212260 + 0.292151i
\(490\) 0 0
\(491\) 17.4497 5.66974i 0.787493 0.255872i 0.112457 0.993657i \(-0.464128\pi\)
0.675036 + 0.737785i \(0.264128\pi\)
\(492\) 0.752713 + 1.47728i 0.0339349 + 0.0666010i
\(493\) −34.9512 + 5.53572i −1.57412 + 0.249316i
\(494\) 3.49992 0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) −2.16757 + 0.343309i −0.0972286 + 0.0153995i
\(498\) 9.17834 + 18.0135i 0.411291 + 0.807204i
\(499\) −11.1824 + 3.63339i −0.500595 + 0.162653i −0.548421 0.836203i \(-0.684771\pi\)
0.0478260 + 0.998856i \(0.484771\pi\)
\(500\) 0 0
\(501\) −5.65234 7.77978i −0.252528 0.347575i
\(502\) 26.1975 + 13.3483i 1.16925 + 0.595763i
\(503\) 4.75855 2.42460i 0.212173 0.108108i −0.344674 0.938722i \(-0.612011\pi\)
0.556848 + 0.830615i \(0.312011\pi\)
\(504\) −0.683353 + 0.940555i −0.0304390 + 0.0418956i
\(505\) 0 0
\(506\) −8.17484 0.514888i −0.363416 0.0228896i
\(507\) 1.92638 + 1.92638i 0.0855536 + 0.0855536i
\(508\) −0.707777 4.46873i −0.0314025 0.198268i
\(509\) 18.6283 + 6.05272i 0.825687 + 0.268282i 0.691228 0.722637i \(-0.257070\pi\)
0.134459 + 0.990919i \(0.457070\pi\)
\(510\) 0 0
\(511\) 0.372057 0.270315i 0.0164588 0.0119580i
\(512\) 2.40248 15.1686i 0.106175 0.670365i
\(513\) −1.44412 + 2.83424i −0.0637594 + 0.125135i
\(514\) 2.21058 6.80347i 0.0975046 0.300088i
\(515\) 0 0
\(516\) 1.30513i 0.0574550i
\(517\) 35.2950 + 20.8767i 1.55227 + 0.918158i
\(518\) −1.11243 + 1.11243i −0.0488775 + 0.0488775i
\(519\) 8.03959 + 5.84110i 0.352899 + 0.256396i
\(520\) 0 0
\(521\) 5.78913 + 17.8171i 0.253626 + 0.780582i 0.994097 + 0.108493i \(0.0346026\pi\)
−0.740471 + 0.672089i \(0.765397\pi\)
\(522\) −33.8910 5.36781i −1.48337 0.234943i
\(523\) 2.55051 + 0.403961i 0.111526 + 0.0176640i 0.211948 0.977281i \(-0.432019\pi\)
−0.100422 + 0.994945i \(0.532019\pi\)
\(524\) −0.937631 2.88573i −0.0409606 0.126064i
\(525\) 0 0
\(526\) −19.5162 14.1794i −0.850948 0.618250i
\(527\) 0.919727 0.919727i 0.0400639 0.0400639i
\(528\) −1.12506 11.9108i −0.0489621 0.518350i
\(529\) 20.3603i 0.885228i
\(530\) 0 0
\(531\) −7.03330 + 21.6463i −0.305219 + 0.939368i
\(532\) 0.0200812 0.0394115i 0.000870630 0.00170871i
\(533\) −3.24258 + 20.4729i −0.140452 + 0.886778i
\(534\) −7.76658 + 5.64275i −0.336093 + 0.244186i
\(535\) 0 0
\(536\) −14.2796 4.63972i −0.616784 0.200405i
\(537\) −2.51654 15.8888i −0.108597 0.685652i
\(538\) −12.1591 12.1591i −0.524216 0.524216i
\(539\) 8.50325 21.4724i 0.366261 0.924881i
\(540\) 0 0
\(541\) 5.42829 7.47139i 0.233380 0.321220i −0.676224 0.736696i \(-0.736385\pi\)
0.909604 + 0.415476i \(0.136385\pi\)
\(542\) −24.1462 + 12.3031i −1.03717 + 0.528464i
\(543\) −3.27444 1.66841i −0.140520 0.0715983i
\(544\) 3.79482 + 5.22312i 0.162701 + 0.223939i
\(545\) 0 0
\(546\) −0.683120 + 0.221959i −0.0292348 + 0.00949898i
\(547\) −0.486237 0.954295i −0.0207900 0.0408027i 0.880378 0.474273i \(-0.157289\pi\)
−0.901168 + 0.433470i \(0.857289\pi\)
\(548\) −1.32834 + 0.210388i −0.0567437 + 0.00898732i
\(549\) −13.9337 −0.594674
\(550\) 0 0
\(551\) −7.10113 −0.302518
\(552\) 3.28533 0.520344i 0.139833 0.0221473i
\(553\) 0.0582826 + 0.114386i 0.00247843 + 0.00486419i
\(554\) −6.76800 + 2.19906i −0.287545 + 0.0934290i
\(555\) 0 0
\(556\) 1.91881 + 2.64102i 0.0813758 + 0.112004i
\(557\) 38.3462 + 19.5384i 1.62478 + 0.827868i 0.998848 + 0.0479915i \(0.0152820\pi\)
0.625934 + 0.779876i \(0.284718\pi\)
\(558\) 1.12377 0.572590i 0.0475730 0.0242396i
\(559\) 9.59064 13.2004i 0.405641 0.558316i
\(560\) 0 0
\(561\) −7.55089 6.24752i −0.318799 0.263771i
\(562\) 14.1765 + 14.1765i 0.597998 + 0.597998i
\(563\) −4.04575 25.5439i −0.170508 1.07655i −0.913379 0.407111i \(-0.866536\pi\)
0.742871 0.669435i \(-0.233464\pi\)
\(564\) 2.91164 + 0.946049i 0.122602 + 0.0398359i
\(565\) 0 0
\(566\) 28.0219 20.3591i 1.17785 0.855756i
\(567\) −0.110341 + 0.696664i −0.00463387 + 0.0292571i
\(568\) 13.3626 26.2257i 0.560684 1.10040i
\(569\) −8.39651 + 25.8418i −0.352000 + 1.08334i 0.605729 + 0.795671i \(0.292882\pi\)
−0.957729 + 0.287673i \(0.907118\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i −0.529308 0.848430i \(-0.677549\pi\)
0.529308 0.848430i \(-0.322451\pi\)
\(572\) −1.62343 + 2.74464i −0.0678791 + 0.114759i
\(573\) −3.56628 + 3.56628i −0.148984 + 0.148984i
\(574\) 1.57665 + 1.14550i 0.0658081 + 0.0478124i
\(575\) 0 0
\(576\) −4.67742 14.3956i −0.194893 0.599818i
\(577\) −33.3917 5.28872i −1.39011 0.220172i −0.583914 0.811815i \(-0.698479\pi\)
−0.806200 + 0.591643i \(0.798479\pi\)
\(578\) −4.89703 0.775613i −0.203689 0.0322612i
\(579\) −1.46136 4.49759i −0.0607319 0.186913i
\(580\) 0 0
\(581\) 2.58426 + 1.87757i 0.107213 + 0.0778948i
\(582\) 1.18165 1.18165i 0.0489808 0.0489808i
\(583\) 19.8048 + 22.4673i 0.820233 + 0.930502i
\(584\) 6.16801i 0.255234i
\(585\) 0 0
\(586\) −3.39505 + 10.4489i −0.140248 + 0.431640i
\(587\) 4.39649 8.62859i 0.181462 0.356140i −0.782300 0.622902i \(-0.785954\pi\)
0.963763 + 0.266762i \(0.0859536\pi\)
\(588\) 0.269724 1.70297i 0.0111232 0.0702293i
\(589\) 0.211163 0.153419i 0.00870081 0.00632151i
\(590\) 0 0
\(591\) 10.6210 + 3.45096i 0.436888 + 0.141953i
\(592\) −3.82603 24.1566i −0.157249 0.992829i
\(593\) −14.0452 14.0452i −0.576769 0.576769i 0.357243 0.934012i \(-0.383717\pi\)
−0.934012 + 0.357243i \(0.883717\pi\)
\(594\) −11.5515 18.2051i −0.473965 0.746964i
\(595\) 0 0
\(596\) 1.05199 1.44794i 0.0430912 0.0593099i
\(597\) 9.50623 4.84367i 0.389064 0.198238i
\(598\) −6.81191 3.47084i −0.278560 0.141933i
\(599\) −2.65433 3.65338i −0.108453 0.149273i 0.751340 0.659915i \(-0.229408\pi\)
−0.859793 + 0.510642i \(0.829408\pi\)
\(600\) 0 0
\(601\) −7.96746 + 2.58878i −0.324999 + 0.105599i −0.466973 0.884272i \(-0.654655\pi\)
0.141973 + 0.989871i \(0.454655\pi\)
\(602\) −0.696458 1.36688i −0.0283855 0.0557097i
\(603\) −13.6540 + 2.16258i −0.556034 + 0.0880671i
\(604\) −4.64774 −0.189114
\(605\) 0 0
\(606\) 5.84763 0.237544
\(607\) 7.58425 1.20123i 0.307835 0.0487563i −0.000605683 1.00000i \(-0.500193\pi\)
0.308441 + 0.951244i \(0.400193\pi\)
\(608\) 0.588172 + 1.15435i 0.0238535 + 0.0468152i
\(609\) 1.38601 0.450342i 0.0561640 0.0182488i
\(610\) 0 0
\(611\) 22.4971 + 30.9646i 0.910134 + 1.25269i
\(612\) 2.42528 + 1.23574i 0.0980361 + 0.0499519i
\(613\) −38.2477 + 19.4882i −1.54481 + 0.787120i −0.998719 0.0506058i \(-0.983885\pi\)
−0.546091 + 0.837726i \(0.683885\pi\)
\(614\) −25.4319 + 35.0041i −1.02635 + 1.41265i
\(615\) 0 0
\(616\) −0.873721 1.37698i −0.0352032 0.0554799i
\(617\) −33.4407 33.4407i −1.34627 1.34627i −0.889671 0.456601i \(-0.849067\pi\)
−0.456601 0.889671i \(-0.650933\pi\)
\(618\) 0.613709 + 3.87481i 0.0246870 + 0.155868i
\(619\) 20.0674 + 6.52029i 0.806576 + 0.262073i 0.683147 0.730281i \(-0.260611\pi\)
0.123429 + 0.992353i \(0.460611\pi\)
\(620\) 0 0
\(621\) 5.62139 4.08418i 0.225578 0.163892i
\(622\) 1.78720 11.2840i 0.0716603 0.452445i
\(623\) −0.688620 + 1.35149i −0.0275890 + 0.0541464i
\(624\) 3.45064 10.6200i 0.138136 0.425139i
\(625\) 0 0
\(626\) 2.04613i 0.0817798i
\(627\) −1.30047 1.47530i −0.0519358 0.0589179i
\(628\) −1.08671 + 1.08671i −0.0433645 + 0.0433645i
\(629\) −16.2087 11.7763i −0.646282 0.469552i
\(630\) 0 0
\(631\) −8.72043 26.8387i −0.347155 1.06843i −0.960420 0.278555i \(-0.910144\pi\)
0.613265 0.789877i \(-0.289856\pi\)
\(632\) −1.70061 0.269351i −0.0676467 0.0107142i
\(633\) 4.67121 + 0.739847i 0.185664 + 0.0294063i
\(634\) −5.32290 16.3822i −0.211399 0.650621i
\(635\) 0 0
\(636\) 1.80896 + 1.31429i 0.0717301 + 0.0521150i
\(637\) 15.2422 15.2422i 0.603918 0.603918i
\(638\) 24.5041 41.4275i 0.970125 1.64013i
\(639\) 27.1004i 1.07208i
\(640\) 0 0
\(641\) −5.23436 + 16.1097i −0.206745 + 0.636295i 0.792893 + 0.609362i \(0.208574\pi\)
−0.999637 + 0.0269333i \(0.991426\pi\)
\(642\) 6.08232 11.9372i 0.240050 0.471124i
\(643\) −0.981726 + 6.19838i −0.0387155 + 0.244440i −0.999455 0.0330121i \(-0.989490\pi\)
0.960739 + 0.277452i \(0.0894900\pi\)
\(644\) −0.0781682 + 0.0567925i −0.00308026 + 0.00223794i
\(645\) 0 0
\(646\) 3.98552 + 1.29497i 0.156808 + 0.0509500i
\(647\) 6.80289 + 42.9518i 0.267449 + 1.68861i 0.646247 + 0.763128i \(0.276338\pi\)
−0.378798 + 0.925479i \(0.623662\pi\)
\(648\) −6.68931 6.68931i −0.262781 0.262781i
\(649\) −24.5981 20.3522i −0.965559 0.798893i
\(650\) 0 0
\(651\) −0.0314855 + 0.0433361i −0.00123402 + 0.00169848i
\(652\) 2.77200 1.41240i 0.108560 0.0553140i
\(653\) −8.67042 4.41780i −0.339300 0.172882i 0.276035 0.961147i \(-0.410979\pi\)
−0.615335 + 0.788266i \(0.710979\pi\)
\(654\) −6.79682 9.35503i −0.265777 0.365810i
\(655\) 0 0
\(656\) −28.8145 + 9.36239i −1.12502 + 0.365540i
\(657\) 2.57823 + 5.06007i 0.100586 + 0.197412i
\(658\) 3.55424 0.562936i 0.138559 0.0219455i
\(659\) 3.37375 0.131423 0.0657113 0.997839i \(-0.479068\pi\)
0.0657113 + 0.997839i \(0.479068\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) 26.5811 4.21003i 1.03310 0.163628i
\(663\) −4.15278 8.15028i −0.161280 0.316531i
\(664\) −40.7453 + 13.2389i −1.58122 + 0.513771i
\(665\) 0 0
\(666\) −11.4191 15.7170i −0.442481 0.609022i
\(667\) 13.8210 + 7.04213i 0.535150 + 0.272672i
\(668\) −3.33809 + 1.70084i −0.129154 + 0.0658075i
\(669\) 9.96031 13.7092i 0.385088 0.530028i
\(670\) 0 0
\(671\) 7.19624 18.1719i 0.277808 0.701520i
\(672\) −0.188008 0.188008i −0.00725256 0.00725256i
\(673\) −5.98412 37.7823i −0.230671 1.45640i −0.782609 0.622514i \(-0.786111\pi\)
0.551938 0.833885i \(-0.313889\pi\)
\(674\) 11.0161 + 3.57935i 0.424324 + 0.137871i
\(675\) 0 0
\(676\) 0.858662 0.623855i 0.0330255 0.0239944i
\(677\) −5.03592 + 31.7956i −0.193546 + 1.22200i 0.679246 + 0.733911i \(0.262307\pi\)
−0.872792 + 0.488092i \(0.837693\pi\)
\(678\) 2.28189 4.47847i 0.0876356 0.171994i
\(679\) 0.0815917 0.251113i 0.00313120 0.00963684i
\(680\) 0 0
\(681\) 10.4198i 0.399289i
\(682\) 0.166370 + 1.76132i 0.00637063 + 0.0674443i
\(683\) 28.7223 28.7223i 1.09903 1.09903i 0.104505 0.994524i \(-0.466674\pi\)
0.994524 0.104505i \(-0.0333260\pi\)
\(684\) 0.441900 + 0.321059i 0.0168965 + 0.0122760i
\(685\) 0 0
\(686\) −1.25585 3.86510i −0.0479484 0.147570i
\(687\) −12.9380 2.04918i −0.493616 0.0781811i
\(688\) 23.5556 + 3.73084i 0.898050 + 0.142237i
\(689\) 8.63834 + 26.5861i 0.329095 + 1.01285i
\(690\) 0 0
\(691\) 20.4397 + 14.8503i 0.777564 + 0.564933i 0.904247 0.427010i \(-0.140433\pi\)
−0.126683 + 0.991943i \(0.540433\pi\)
\(692\) 2.73759 2.73759i 0.104068 0.104068i
\(693\) −1.29235 0.764417i −0.0490925 0.0290378i
\(694\) 14.1878i 0.538562i
\(695\) 0 0
\(696\) −6.03999 + 18.5892i −0.228945 + 0.704621i
\(697\) −11.2675 + 22.1136i −0.426785 + 0.837613i
\(698\) 0.357107 2.25468i 0.0135167 0.0853410i
\(699\) 10.0896 7.33055i 0.381625 0.277267i
\(700\) 0 0
\(701\) 26.8458 + 8.72273i 1.01395 + 0.329453i 0.768427 0.639937i \(-0.221040\pi\)
0.245525 + 0.969390i \(0.421040\pi\)
\(702\) −3.14807 19.8761i −0.118816 0.750175i
\(703\) −2.84289 2.84289i −0.107222 0.107222i
\(704\) 21.1902 + 1.33465i 0.798634 + 0.0503015i
\(705\) 0 0
\(706\) 5.56255 7.65620i 0.209349 0.288145i
\(707\) 0.823230 0.419457i 0.0309608 0.0157753i
\(708\) −2.12373 1.08210i −0.0798148 0.0406677i
\(709\) −4.79615 6.60134i −0.180123 0.247918i 0.709402 0.704804i \(-0.248965\pi\)
−0.889526 + 0.456885i \(0.848965\pi\)
\(710\) 0 0
\(711\) −1.50773 + 0.489890i −0.0565441 + 0.0183723i
\(712\) −9.23576 18.1262i −0.346125 0.679308i
\(713\) −0.563131 + 0.0891912i −0.0210894 + 0.00334024i
\(714\) −0.860026 −0.0321856
\(715\) 0 0
\(716\) −6.26727 −0.234219
\(717\) 4.15889 0.658703i 0.155317 0.0245997i
\(718\) 18.1524 + 35.6261i 0.677441 + 1.32955i
\(719\) −0.986856 + 0.320649i −0.0368035 + 0.0119582i −0.327361 0.944899i \(-0.606159\pi\)
0.290557 + 0.956858i \(0.406159\pi\)
\(720\) 0 0
\(721\) 0.364342 + 0.501474i 0.0135688 + 0.0186759i
\(722\) −24.9840 12.7300i −0.929810 0.473762i
\(723\) −11.4843 + 5.85157i −0.427107 + 0.217622i
\(724\) −0.841554 + 1.15830i −0.0312761 + 0.0430479i
\(725\) 0 0
\(726\) 13.0944 2.49600i 0.485978 0.0926353i
\(727\) 3.27903 + 3.27903i 0.121612 + 0.121612i 0.765294 0.643681i \(-0.222594\pi\)
−0.643681 + 0.765294i \(0.722594\pi\)
\(728\) −0.238110 1.50337i −0.00882493 0.0557184i
\(729\) 1.44390 + 0.469153i 0.0534779 + 0.0173760i
\(730\) 0 0
\(731\) 15.8055 11.4833i 0.584586 0.424726i
\(732\) 0.228265 1.44121i 0.00843693 0.0532687i
\(733\) −20.7361 + 40.6968i −0.765904 + 1.50317i 0.0956003 + 0.995420i \(0.469523\pi\)
−0.861504 + 0.507751i \(0.830477\pi\)
\(734\) −3.83723 + 11.8098i −0.141635 + 0.435907i
\(735\) 0 0
\(736\) 2.83001i 0.104315i
\(737\) 4.23142 18.9241i 0.155866 0.697079i
\(738\) −17.0171 + 17.0171i −0.626410 + 0.626410i
\(739\) 3.07164 + 2.23167i 0.112992 + 0.0820934i 0.642846 0.765995i \(-0.277753\pi\)
−0.529854 + 0.848089i \(0.677753\pi\)
\(740\) 0 0
\(741\) −0.567231 1.74576i −0.0208377 0.0641320i
\(742\) 2.59590 + 0.411150i 0.0952984 + 0.0150938i
\(743\) 41.9067 + 6.63736i 1.53741 + 0.243501i 0.866930 0.498430i \(-0.166090\pi\)
0.670476 + 0.741931i \(0.266090\pi\)
\(744\) −0.222008 0.683270i −0.00813920 0.0250499i
\(745\) 0 0
\(746\) −10.6517 7.73895i −0.389988 0.283343i
\(747\) −27.8924 + 27.8924i −1.02053 + 1.02053i
\(748\) −2.86419 + 2.52477i −0.104725 + 0.0923149i
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) −3.08775 + 9.50312i −0.112674 + 0.346774i −0.991455 0.130451i \(-0.958357\pi\)
0.878781 + 0.477225i \(0.158357\pi\)
\(752\) −25.3980 + 49.8464i −0.926171 + 1.81771i
\(753\) 2.41230 15.2306i 0.0879089 0.555035i
\(754\) 36.3446 26.4059i 1.32359 0.961647i
\(755\) 0 0
\(756\) −0.241881 0.0785920i −0.00879714 0.00285837i
\(757\) −4.59658 29.0217i −0.167065 1.05481i −0.918621 0.395140i \(-0.870696\pi\)
0.751555 0.659670i \(-0.229304\pi\)
\(758\) −0.664675 0.664675i −0.0241421 0.0241421i
\(759\) 1.06807 + 4.16105i 0.0387684 + 0.151037i
\(760\) 0 0
\(761\) −17.8404 + 24.5552i −0.646713 + 0.890124i −0.998951 0.0457864i \(-0.985421\pi\)
0.352238 + 0.935910i \(0.385421\pi\)
\(762\) −15.7289 + 8.01429i −0.569799 + 0.290327i
\(763\) −1.62790 0.829459i −0.0589341 0.0300284i
\(764\) 1.15493 + 1.58963i 0.0417840 + 0.0575107i
\(765\) 0 0
\(766\) 15.0044 4.87523i 0.542131 0.176149i
\(767\) −13.5283 26.5507i −0.488477 0.958690i
\(768\) 5.73527 0.908377i 0.206954 0.0327782i
\(769\) −37.6421 −1.35741 −0.678705 0.734411i \(-0.737458\pi\)
−0.678705 + 0.734411i \(0.737458\pi\)
\(770\) 0 0
\(771\) −3.75184 −0.135119
\(772\) −1.81970 + 0.288213i −0.0654926 + 0.0103730i
\(773\) 11.7188 + 22.9995i 0.421497 + 0.827234i 0.999934 + 0.0115072i \(0.00366294\pi\)
−0.578437 + 0.815727i \(0.696337\pi\)
\(774\) 18.0168 5.85402i 0.647601 0.210418i
\(775\) 0 0
\(776\) 2.08149 + 2.86493i 0.0747213 + 0.102845i
\(777\) 0.735173 + 0.374589i 0.0263742 + 0.0134383i
\(778\) −29.9955 + 15.2835i −1.07539 + 0.547939i
\(779\) −2.92741 + 4.02923i −0.104885 + 0.144362i
\(780\) 0 0
\(781\) 35.3437 + 13.9964i 1.26470 + 0.500831i
\(782\) −6.47282 6.47282i −0.231467 0.231467i
\(783\) 6.38724 + 40.3275i 0.228261 + 1.44119i
\(784\) 29.9651 + 9.73624i 1.07018 + 0.347723i
\(785\) 0 0
\(786\) −9.57771 + 6.95861i −0.341626 + 0.248206i
\(787\) −2.70244 + 17.0625i −0.0963315 + 0.608213i 0.891540 + 0.452942i \(0.149625\pi\)
−0.987872 + 0.155272i \(0.950375\pi\)
\(788\) 1.97520 3.87655i 0.0703636 0.138096i
\(789\) −3.90967 + 12.0327i −0.139188 + 0.428376i
\(790\) 0 0
\(791\) 0.794162i 0.0282372i
\(792\) 18.4824 7.99654i 0.656745 0.284145i
\(793\) 12.8994 12.8994i 0.458070 0.458070i
\(794\) 18.7425 + 13.6172i 0.665145 + 0.483256i
\(795\) 0 0
\(796\) −1.28445 3.95313i −0.0455261 0.140115i
\(797\) 44.0203 + 6.97213i 1.55928 + 0.246965i 0.875680 0.482892i \(-0.160414\pi\)
0.683599 + 0.729858i \(0.260414\pi\)
\(798\) −0.170458 0.0269979i −0.00603414 0.000955714i
\(799\) 14.1615 + 43.5847i 0.500999 + 1.54192i
\(800\) 0 0
\(801\) −15.1535 11.0097i −0.535424 0.389008i
\(802\) −4.60219 + 4.60219i −0.162509 + 0.162509i
\(803\) −7.93078 + 0.749124i −0.279871 + 0.0264360i
\(804\) 1.44771i 0.0510569i
\(805\) 0 0
\(806\) −0.510267 + 1.57044i −0.0179734 + 0.0553164i
\(807\) −4.09432 + 8.03556i −0.144127 + 0.282865i
\(808\) −1.93850 + 12.2392i −0.0681962 + 0.430574i
\(809\) −12.3255 + 8.95497i −0.433340 + 0.314840i −0.782983 0.622043i \(-0.786303\pi\)
0.349643 + 0.936883i \(0.386303\pi\)
\(810\) 0 0
\(811\) −43.3276 14.0780i −1.52144 0.494345i −0.575253 0.817976i \(-0.695096\pi\)
−0.946183 + 0.323631i \(0.895096\pi\)
\(812\) −0.0888178 0.560774i −0.00311689 0.0196793i
\(813\) 10.0502 + 10.0502i 0.352475 + 0.352475i
\(814\) 26.3953 6.77521i 0.925155 0.237471i
\(815\) 0 0
\(816\) 7.85881 10.8167i 0.275113 0.378661i
\(817\) 3.49314 1.77984i 0.122209 0.0622688i
\(818\) 5.81793 + 2.96438i 0.203419 + 0.103647i
\(819\) −0.823747 1.13379i −0.0287840 0.0396178i
\(820\) 0 0
\(821\) −27.3071 + 8.87260i −0.953023 + 0.309656i −0.743943 0.668243i \(-0.767047\pi\)
−0.209079 + 0.977899i \(0.567047\pi\)
\(822\) 2.38226 + 4.67545i 0.0830909 + 0.163075i
\(823\) 26.6252 4.21701i 0.928095 0.146996i 0.325954 0.945386i \(-0.394314\pi\)
0.602141 + 0.798390i \(0.294314\pi\)
\(824\) −8.31350 −0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) −39.1944 + 6.20779i −1.36292 + 0.215866i −0.794697 0.607006i \(-0.792370\pi\)
−0.568227 + 0.822872i \(0.692370\pi\)
\(828\) −0.541680 1.06311i −0.0188247 0.0369455i
\(829\) −10.3353 + 3.35814i −0.358959 + 0.116633i −0.482944 0.875651i \(-0.660433\pi\)
0.123985 + 0.992284i \(0.460433\pi\)
\(830\) 0 0
\(831\) 2.19378 + 3.01948i 0.0761013 + 0.104744i
\(832\) 17.6573 + 8.99683i 0.612156 + 0.311909i
\(833\) 22.9966 11.7174i 0.796786 0.405983i
\(834\) 7.48663 10.3045i 0.259241 0.356815i
\(835\) 0 0
\(836\) −0.646943 + 0.410500i −0.0223750 + 0.0141974i
\(837\) −1.06120 1.06120i −0.0366805 0.0366805i
\(838\) −0.285920 1.80523i −0.00987695 0.0623606i
\(839\) 38.3426 + 12.4583i 1.32373 + 0.430107i 0.883775 0.467912i \(-0.154993\pi\)
0.439958 + 0.898019i \(0.354993\pi\)
\(840\) 0 0
\(841\) −50.2797 + 36.5303i −1.73378 + 1.25967i
\(842\) −7.44491 + 47.0053i −0.256569 + 1.61991i
\(843\) 4.77364 9.36879i 0.164413 0.322678i
\(844\) 0.569376 1.75236i 0.0195987 0.0603187i
\(845\) 0 0
\(846\) 44.4376i 1.52780i
\(847\) 1.66439 1.29066i 0.0571891 0.0443477i
\(848\) −28.8921 + 28.8921i −0.992159 + 0.992159i
\(849\) −14.6966 10.6777i −0.504386 0.366458i
\(850\) 0 0
\(851\) 2.71386 + 8.35241i 0.0930300 + 0.286317i
\(852\) 2.80310 + 0.443967i 0.0960326 + 0.0152101i
\(853\) −13.7845 2.18326i −0.471974 0.0747533i −0.0840831 0.996459i \(-0.526796\pi\)
−0.387890 + 0.921705i \(0.626796\pi\)
\(854\) −0.530012 1.63121i −0.0181366 0.0558188i
\(855\) 0 0
\(856\) 22.9686 + 16.6876i 0.785049 + 0.570372i
\(857\) 26.9229 26.9229i 0.919668 0.919668i −0.0773373 0.997005i \(-0.524642\pi\)
0.997005 + 0.0773373i \(0.0246418\pi\)
\(858\) 12.1420 + 2.71494i 0.414521 + 0.0926867i
\(859\) 18.3200i 0.625071i 0.949906 + 0.312535i \(0.101178\pi\)
−0.949906 + 0.312535i \(0.898822\pi\)
\(860\) 0 0
\(861\) 0.315849 0.972084i 0.0107641 0.0331285i
\(862\) 6.82592 13.3966i 0.232492 0.456291i
\(863\) 1.90114 12.0033i 0.0647154 0.408597i −0.933971 0.357350i \(-0.883680\pi\)
0.998686 0.0512472i \(-0.0163196\pi\)
\(864\) 6.02655 4.37855i 0.205028 0.148961i
\(865\) 0 0
\(866\) −39.0074 12.6743i −1.32552 0.430689i
\(867\) 0.406785 + 2.56834i 0.0138151 + 0.0872253i
\(868\) 0.0147565 + 0.0147565i 0.000500870 + 0.000500870i
\(869\) 0.139785 2.21935i 0.00474187 0.0752863i
\(870\) 0 0
\(871\) 10.6384 14.6425i 0.360469 0.496143i
\(872\) 21.8334 11.1247i 0.739374 0.376730i
\(873\) 2.90515 + 1.48025i 0.0983243 + 0.0500987i
\(874\) −1.07972 1.48611i −0.0365222 0.0502685i
\(875\) 0 0
\(876\) −0.565619 + 0.183781i −0.0191105 + 0.00620938i
\(877\) 5.82698 + 11.4361i 0.196763 + 0.386169i 0.968215 0.250118i \(-0.0804694\pi\)
−0.771452 + 0.636287i \(0.780469\pi\)
\(878\) −36.9125 + 5.84636i −1.24574 + 0.197305i
\(879\) 5.76213 0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) 24.7187 3.91506i 0.832322 0.131827i
\(883\) 19.7888 + 38.8377i 0.665947 + 1.30699i 0.938642 + 0.344893i \(0.112085\pi\)
−0.272695 + 0.962100i \(0.587915\pi\)
\(884\) −3.38926 + 1.10124i −0.113993 + 0.0370387i
\(885\) 0 0
\(886\) −27.5163 37.8730i −0.924429 1.27237i
\(887\) 9.26576 + 4.72114i 0.311114 + 0.158520i 0.602575 0.798062i \(-0.294141\pi\)
−0.291461 + 0.956583i \(0.594141\pi\)
\(888\) −9.86013 + 5.02399i −0.330884 + 0.168594i
\(889\) −1.63945 + 2.25651i −0.0549853 + 0.0756808i
\(890\) 0 0
\(891\) 7.78863 9.41351i 0.260929 0.315364i
\(892\) −4.66817 4.66817i −0.156302 0.156302i
\(893\) 1.43862 + 9.08308i 0.0481415 + 0.303954i
\(894\) −6.64130 2.15789i −0.222118 0.0721706i
\(895\) 0 0
\(896\) 2.04700 1.48723i 0.0683855 0.0496850i
\(897\) −0.627249 + 3.96029i −0.0209432 + 0.132230i
\(898\) −5.05474 + 9.92048i −0.168679 + 0.331051i
\(899\) 1.03530 3.18633i 0.0345292 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) −13.4046 30.9821i −0.446324 1.03159i
\(903\) −0.568922 + 0.568922i −0.0189325 + 0.0189325i
\(904\) 8.61708 + 6.26067i 0.286600 + 0.208227i
\(905\) 0 0
\(906\) 5.60375 + 17.2466i 0.186172 + 0.572979i
\(907\) −16.1062 2.55097i −0.534798 0.0847036i −0.116806 0.993155i \(-0.537266\pi\)
−0.417991 + 0.908451i \(0.637266\pi\)
\(908\) −4.00948 0.635040i −0.133059 0.0210745i
\(909\) 3.52571 + 10.8510i 0.116940 + 0.359906i
\(910\) 0 0
\(911\) 14.3281 + 10.4099i 0.474710 + 0.344897i 0.799274 0.600967i \(-0.205218\pi\)
−0.324564 + 0.945864i \(0.605218\pi\)
\(912\) 1.89718 1.89718i 0.0628219 0.0628219i
\(913\) −21.9712 50.7821i −0.727140 1.68064i
\(914\) 10.2385i 0.338659i
\(915\) 0 0
\(916\) −1.57702 + 4.85357i −0.0521062 + 0.160366i
\(917\) −0.849203 + 1.66665i −0.0280431 + 0.0550378i
\(918\) 3.76933 23.7986i 0.124406 0.785472i
\(919\) 7.38632 5.36648i 0.243652 0.177024i −0.459257 0.888304i \(-0.651884\pi\)
0.702909 + 0.711280i \(0.251884\pi\)
\(920\) 0 0
\(921\) 21.5818 + 7.01234i 0.711143 + 0.231064i
\(922\) 6.91497 + 43.6594i 0.227732 + 1.43785i
\(923\) 25.0888 + 25.0888i 0.825807 + 0.825807i
\(924\) 0.100238 0.121150i 0.00329760 0.00398555i
\(925\) 0 0
\(926\) 22.1307 30.4602i 0.727259 1.00099i
\(927\) −6.82017 + 3.47505i −0.224004 + 0.114136i
\(928\) 14.8171 + 7.54970i 0.486396 + 0.247831i
\(929\) −1.06529 1.46625i −0.0349511 0.0481061i 0.791184 0.611578i \(-0.209465\pi\)
−0.826135 + 0.563472i \(0.809465\pi\)
\(930\) 0 0
\(931\) 4.92578 1.60048i 0.161436 0.0524537i
\(932\) −2.20583 4.32918i −0.0722543 0.141807i
\(933\) −5.91808 + 0.937332i −0.193749 + 0.0306869i
\(934\) −40.2174 −1.31595
\(935\) 0 0
\(936\) 18.7961 0.614371
\(937\) −14.9726 + 2.37143i −0.489133 + 0.0774711i −0.396130 0.918195i \(-0.629647\pi\)
−0.0930039 + 0.995666i \(0.529647\pi\)
\(938\) −0.772546 1.51621i −0.0252245 0.0495059i
\(939\) 1.02061 0.331616i 0.0333063 0.0108219i
\(940\) 0 0
\(941\) −12.8308 17.6600i −0.418271 0.575701i 0.546940 0.837172i \(-0.315792\pi\)
−0.965211 + 0.261471i \(0.915792\pi\)
\(942\) 5.34274 + 2.72226i 0.174076 + 0.0886961i
\(943\) 9.69338 4.93902i 0.315660 0.160837i
\(944\) 25.6012 35.2370i 0.833247 1.14687i
\(945\) 0 0
\(946\) −1.67038 + 26.5205i −0.0543087 + 0.862256i
\(947\) −6.90662 6.90662i −0.224435 0.224435i 0.585928 0.810363i \(-0.300730\pi\)
−0.810363 + 0.585928i \(0.800730\pi\)
\(948\) −0.0259711 0.163975i −0.000843503 0.00532567i
\(949\) −7.07131 2.29761i −0.229545 0.0745835i
\(950\) 0 0
\(951\) −7.30875 + 5.31012i −0.237003 + 0.172192i
\(952\) 0.285100 1.80005i 0.00924015 0.0583400i
\(953\) 5.92153 11.6216i 0.191817 0.376462i −0.774989 0.631975i \(-0.782244\pi\)
0.966806 + 0.255513i \(0.0822444\pi\)
\(954\) −10.0294 + 30.8672i −0.324713 + 0.999363i
\(955\) 0 0
\(956\) 1.64046i 0.0530561i
\(957\) −24.6354 5.50846i −0.796349 0.178063i
\(958\) 28.2202 28.2202i 0.911755 0.911755i
\(959\) 0.670750 + 0.487328i 0.0216596 + 0.0157367i
\(960\) 0 0
\(961\) −9.54147 29.3656i −0.307789 0.947279i
\(962\) 25.1218 + 3.97890i 0.809960 + 0.128285i
\(963\) 25.8182 + 4.08921i 0.831981 + 0.131773i
\(964\) 1.55173 + 4.77572i 0.0499777 + 0.153816i
\(965\) 0 0
\(966\) 0.304989 + 0.221588i 0.00981287 + 0.00712946i
\(967\) −13.6319 + 13.6319i −0.438372 + 0.438372i −0.891464 0.453092i \(-0.850321\pi\)
0.453092 + 0.891464i \(0.350321\pi\)
\(968\) 0.883368 + 28.2343i 0.0283925 + 0.907484i
\(969\) 2.19785i 0.0706051i
\(970\) 0 0
\(971\) 1.26967 3.90765i 0.0407457 0.125403i −0.928615 0.371046i \(-0.878999\pi\)
0.969360 + 0.245643i \(0.0789992\pi\)
\(972\) 2.22320 4.36328i 0.0713093 0.139952i
\(973\) 0.314819 1.98769i 0.0100926 0.0637224i
\(974\) −28.6965 + 20.8492i −0.919495 + 0.668052i
\(975\) 0 0
\(976\) 25.3592 + 8.23971i 0.811729 + 0.263747i
\(977\) −4.80402 30.3314i −0.153694 0.970386i −0.937147 0.348935i \(-0.886543\pi\)
0.783453 0.621451i \(-0.213457\pi\)
\(978\) −8.58324 8.58324i −0.274462 0.274462i
\(979\) 22.1848 14.0768i 0.709030 0.449895i
\(980\) 0 0
\(981\) 13.2614 18.2528i 0.423405 0.582767i
\(982\) −24.8498 + 12.6616i −0.792990 + 0.404048i
\(983\) −24.7035 12.5871i −0.787919 0.401465i 0.0132429 0.999912i \(-0.495785\pi\)
−0.801162 + 0.598447i \(0.795785\pi\)
\(984\) 8.05767 + 11.0904i 0.256869 + 0.353550i
\(985\) 0 0
\(986\) 51.1575 16.6221i 1.62919 0.529355i
\(987\) −0.856827 1.68162i −0.0272731 0.0535265i
\(988\) −0.706325 + 0.111871i −0.0224712 + 0.00355909i
\(989\) −8.56376 −0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) −0.603719 + 0.0956197i −0.0191681 + 0.00303593i
\(993\) −6.40795 12.5763i −0.203350 0.399097i
\(994\) 3.17264 1.03085i 0.100630 0.0326966i
\(995\) 0 0
\(996\) −2.42808 3.34196i −0.0769366 0.105894i
\(997\) −25.7239 13.1070i −0.814685 0.415103i −0.00357282 0.999994i \(-0.501137\pi\)
−0.811112 + 0.584891i \(0.801137\pi\)
\(998\) 15.9247 8.11406i 0.504089 0.256846i
\(999\) −13.5878 + 18.7019i −0.429898 + 0.591703i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.7.1 32
5.2 odd 4 55.2.l.a.18.1 yes 32
5.3 odd 4 inner 275.2.bm.b.18.4 32
5.4 even 2 55.2.l.a.7.4 32
11.8 odd 10 inner 275.2.bm.b.107.4 32
15.2 even 4 495.2.bj.a.73.4 32
15.14 odd 2 495.2.bj.a.172.1 32
20.7 even 4 880.2.cm.a.513.1 32
20.19 odd 2 880.2.cm.a.337.4 32
55.2 even 20 605.2.m.c.578.4 32
55.4 even 10 605.2.m.c.112.4 32
55.7 even 20 605.2.m.d.233.1 32
55.8 even 20 inner 275.2.bm.b.118.1 32
55.9 even 10 605.2.m.d.457.1 32
55.14 even 10 605.2.m.e.602.4 32
55.17 even 20 605.2.e.b.483.3 32
55.19 odd 10 55.2.l.a.52.1 yes 32
55.24 odd 10 605.2.m.c.457.4 32
55.27 odd 20 605.2.e.b.483.14 32
55.29 odd 10 605.2.m.d.112.1 32
55.32 even 4 605.2.m.e.403.4 32
55.37 odd 20 605.2.m.c.233.4 32
55.39 odd 10 605.2.e.b.362.14 32
55.42 odd 20 605.2.m.d.578.1 32
55.47 odd 20 605.2.m.e.118.1 32
55.49 even 10 605.2.e.b.362.3 32
55.52 even 20 55.2.l.a.8.4 yes 32
55.54 odd 2 605.2.m.e.282.1 32
165.74 even 10 495.2.bj.a.217.4 32
165.107 odd 20 495.2.bj.a.118.1 32
220.19 even 10 880.2.cm.a.657.1 32
220.107 odd 20 880.2.cm.a.833.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 5.4 even 2
55.2.l.a.8.4 yes 32 55.52 even 20
55.2.l.a.18.1 yes 32 5.2 odd 4
55.2.l.a.52.1 yes 32 55.19 odd 10
275.2.bm.b.7.1 32 1.1 even 1 trivial
275.2.bm.b.18.4 32 5.3 odd 4 inner
275.2.bm.b.107.4 32 11.8 odd 10 inner
275.2.bm.b.118.1 32 55.8 even 20 inner
495.2.bj.a.73.4 32 15.2 even 4
495.2.bj.a.118.1 32 165.107 odd 20
495.2.bj.a.172.1 32 15.14 odd 2
495.2.bj.a.217.4 32 165.74 even 10
605.2.e.b.362.3 32 55.49 even 10
605.2.e.b.362.14 32 55.39 odd 10
605.2.e.b.483.3 32 55.17 even 20
605.2.e.b.483.14 32 55.27 odd 20
605.2.m.c.112.4 32 55.4 even 10
605.2.m.c.233.4 32 55.37 odd 20
605.2.m.c.457.4 32 55.24 odd 10
605.2.m.c.578.4 32 55.2 even 20
605.2.m.d.112.1 32 55.29 odd 10
605.2.m.d.233.1 32 55.7 even 20
605.2.m.d.457.1 32 55.9 even 10
605.2.m.d.578.1 32 55.42 odd 20
605.2.m.e.118.1 32 55.47 odd 20
605.2.m.e.282.1 32 55.54 odd 2
605.2.m.e.403.4 32 55.32 even 4
605.2.m.e.602.4 32 55.14 even 10
880.2.cm.a.337.4 32 20.19 odd 2
880.2.cm.a.513.1 32 20.7 even 4
880.2.cm.a.657.1 32 220.19 even 10
880.2.cm.a.833.4 32 220.107 odd 20