Properties

Label 880.2.cm.a.657.1
Level $880$
Weight $2$
Character 880.657
Analytic conductor $7.027$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(17,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 5, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 657.1
Character \(\chi\) \(=\) 880.657
Dual form 880.2.cm.a.513.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.710333 - 0.361933i) q^{3} +(-1.71486 - 1.43501i) q^{5} +(-0.0869260 - 0.170602i) q^{7} +(-1.38978 - 1.91287i) q^{9} +(-1.77694 + 2.80044i) q^{11} +(3.05749 + 0.484259i) q^{13} +(0.698743 + 1.64000i) q^{15} +(-3.66088 + 0.579827i) q^{17} +(-0.229844 - 0.707388i) q^{19} +0.152646i q^{21} +(1.14886 - 1.14886i) q^{23} +(0.881484 + 4.92169i) q^{25} +(0.669017 + 4.22401i) q^{27} +(-2.95025 + 9.07993i) q^{29} +(0.283900 - 0.206266i) q^{31} +(2.27579 - 1.34611i) q^{33} +(-0.0957498 + 0.417298i) q^{35} +(-4.81621 + 2.45398i) q^{37} +(-1.99657 - 1.45059i) q^{39} +(6.36824 - 2.06917i) q^{41} +(3.72708 + 3.72708i) q^{43} +(-0.361710 + 5.27464i) q^{45} +(-5.61318 + 11.0165i) q^{47} +(4.09295 - 5.63346i) q^{49} +(2.81030 + 0.913123i) q^{51} +(-1.41265 + 8.91914i) q^{53} +(7.06587 - 2.25243i) q^{55} +(-0.0927608 + 0.585669i) q^{57} +(-9.15496 - 2.97463i) q^{59} +(-3.46383 + 4.76756i) q^{61} +(-0.205531 + 0.403377i) q^{63} +(-4.54825 - 5.21797i) q^{65} +(-4.13426 - 4.13426i) q^{67} +(-1.23188 + 0.400262i) q^{69} +(-9.27272 - 6.73702i) q^{71} +(2.14008 - 1.09042i) q^{73} +(1.15517 - 3.81507i) q^{75} +(0.632224 + 0.0597184i) q^{77} +(-0.542434 + 0.394101i) q^{79} +(-1.13837 + 3.50353i) q^{81} +(2.60980 + 16.4776i) q^{83} +(7.10995 + 4.25908i) q^{85} +(5.38198 - 5.38198i) q^{87} -7.92190i q^{89} +(-0.183160 - 0.563709i) q^{91} +(-0.276318 + 0.0437645i) q^{93} +(-0.620959 + 1.54290i) q^{95} +(-1.36201 - 0.215721i) q^{97} +(7.82643 - 0.492943i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} - 2 q^{5} + 24 q^{11} - 10 q^{13} - 14 q^{15} + 24 q^{23} + 16 q^{25} + 16 q^{27} + 28 q^{31} + 66 q^{33} + 10 q^{35} - 8 q^{37} + 40 q^{41} - 28 q^{45} + 28 q^{47} - 20 q^{51} - 24 q^{53}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.710333 0.361933i −0.410111 0.208962i 0.236749 0.971571i \(-0.423918\pi\)
−0.646860 + 0.762609i \(0.723918\pi\)
\(4\) 0 0
\(5\) −1.71486 1.43501i −0.766908 0.641757i
\(6\) 0 0
\(7\) −0.0869260 0.170602i −0.0328550 0.0644815i 0.873996 0.485934i \(-0.161520\pi\)
−0.906851 + 0.421452i \(0.861520\pi\)
\(8\) 0 0
\(9\) −1.38978 1.91287i −0.463259 0.637622i
\(10\) 0 0
\(11\) −1.77694 + 2.80044i −0.535768 + 0.844365i
\(12\) 0 0
\(13\) 3.05749 + 0.484259i 0.847995 + 0.134309i 0.565285 0.824896i \(-0.308766\pi\)
0.282711 + 0.959205i \(0.408766\pi\)
\(14\) 0 0
\(15\) 0.698743 + 1.64000i 0.180415 + 0.423446i
\(16\) 0 0
\(17\) −3.66088 + 0.579827i −0.887894 + 0.140629i −0.583688 0.811978i \(-0.698391\pi\)
−0.304206 + 0.952606i \(0.598391\pi\)
\(18\) 0 0
\(19\) −0.229844 0.707388i −0.0527299 0.162286i 0.921224 0.389033i \(-0.127191\pi\)
−0.973954 + 0.226747i \(0.927191\pi\)
\(20\) 0 0
\(21\) 0.152646i 0.0333100i
\(22\) 0 0
\(23\) 1.14886 1.14886i 0.239553 0.239553i −0.577112 0.816665i \(-0.695820\pi\)
0.816665 + 0.577112i \(0.195820\pi\)
\(24\) 0 0
\(25\) 0.881484 + 4.92169i 0.176297 + 0.984337i
\(26\) 0 0
\(27\) 0.669017 + 4.22401i 0.128752 + 0.812911i
\(28\) 0 0
\(29\) −2.95025 + 9.07993i −0.547847 + 1.68610i 0.166275 + 0.986079i \(0.446826\pi\)
−0.714122 + 0.700021i \(0.753174\pi\)
\(30\) 0 0
\(31\) 0.283900 0.206266i 0.0509900 0.0370464i −0.561998 0.827138i \(-0.689967\pi\)
0.612988 + 0.790092i \(0.289967\pi\)
\(32\) 0 0
\(33\) 2.27579 1.34611i 0.396165 0.234328i
\(34\) 0 0
\(35\) −0.0957498 + 0.417298i −0.0161847 + 0.0705363i
\(36\) 0 0
\(37\) −4.81621 + 2.45398i −0.791780 + 0.403432i −0.802606 0.596510i \(-0.796554\pi\)
0.0108264 + 0.999941i \(0.496554\pi\)
\(38\) 0 0
\(39\) −1.99657 1.45059i −0.319707 0.232280i
\(40\) 0 0
\(41\) 6.36824 2.06917i 0.994552 0.323150i 0.233866 0.972269i \(-0.424862\pi\)
0.760687 + 0.649119i \(0.224862\pi\)
\(42\) 0 0
\(43\) 3.72708 + 3.72708i 0.568374 + 0.568374i 0.931673 0.363299i \(-0.118350\pi\)
−0.363299 + 0.931673i \(0.618350\pi\)
\(44\) 0 0
\(45\) −0.361710 + 5.27464i −0.0539205 + 0.786297i
\(46\) 0 0
\(47\) −5.61318 + 11.0165i −0.818766 + 1.60692i −0.0242272 + 0.999706i \(0.507713\pi\)
−0.794539 + 0.607213i \(0.792287\pi\)
\(48\) 0 0
\(49\) 4.09295 5.63346i 0.584707 0.804780i
\(50\) 0 0
\(51\) 2.81030 + 0.913123i 0.393521 + 0.127863i
\(52\) 0 0
\(53\) −1.41265 + 8.91914i −0.194043 + 1.22514i 0.677761 + 0.735282i \(0.262950\pi\)
−0.871804 + 0.489855i \(0.837050\pi\)
\(54\) 0 0
\(55\) 7.06587 2.25243i 0.952762 0.303718i
\(56\) 0 0
\(57\) −0.0927608 + 0.585669i −0.0122865 + 0.0775737i
\(58\) 0 0
\(59\) −9.15496 2.97463i −1.19187 0.387263i −0.355108 0.934825i \(-0.615556\pi\)
−0.836765 + 0.547562i \(0.815556\pi\)
\(60\) 0 0
\(61\) −3.46383 + 4.76756i −0.443498 + 0.610423i −0.970985 0.239140i \(-0.923134\pi\)
0.527487 + 0.849563i \(0.323134\pi\)
\(62\) 0 0
\(63\) −0.205531 + 0.403377i −0.0258944 + 0.0508207i
\(64\) 0 0
\(65\) −4.54825 5.21797i −0.564141 0.647209i
\(66\) 0 0
\(67\) −4.13426 4.13426i −0.505081 0.505081i 0.407932 0.913012i \(-0.366250\pi\)
−0.913012 + 0.407932i \(0.866250\pi\)
\(68\) 0 0
\(69\) −1.23188 + 0.400262i −0.148301 + 0.0481859i
\(70\) 0 0
\(71\) −9.27272 6.73702i −1.10047 0.799538i −0.119333 0.992854i \(-0.538075\pi\)
−0.981136 + 0.193317i \(0.938075\pi\)
\(72\) 0 0
\(73\) 2.14008 1.09042i 0.250477 0.127624i −0.324245 0.945973i \(-0.605110\pi\)
0.574722 + 0.818349i \(0.305110\pi\)
\(74\) 0 0
\(75\) 1.15517 3.81507i 0.133388 0.440527i
\(76\) 0 0
\(77\) 0.632224 + 0.0597184i 0.0720486 + 0.00680554i
\(78\) 0 0
\(79\) −0.542434 + 0.394101i −0.0610286 + 0.0443399i −0.617881 0.786271i \(-0.712009\pi\)
0.556853 + 0.830611i \(0.312009\pi\)
\(80\) 0 0
\(81\) −1.13837 + 3.50353i −0.126485 + 0.389282i
\(82\) 0 0
\(83\) 2.60980 + 16.4776i 0.286463 + 1.80865i 0.540372 + 0.841426i \(0.318284\pi\)
−0.253909 + 0.967228i \(0.581716\pi\)
\(84\) 0 0
\(85\) 7.10995 + 4.25908i 0.771183 + 0.461963i
\(86\) 0 0
\(87\) 5.38198 5.38198i 0.577009 0.577009i
\(88\) 0 0
\(89\) 7.92190i 0.839720i −0.907589 0.419860i \(-0.862079\pi\)
0.907589 0.419860i \(-0.137921\pi\)
\(90\) 0 0
\(91\) −0.183160 0.563709i −0.0192004 0.0590927i
\(92\) 0 0
\(93\) −0.276318 + 0.0437645i −0.0286528 + 0.00453817i
\(94\) 0 0
\(95\) −0.620959 + 1.54290i −0.0637090 + 0.158298i
\(96\) 0 0
\(97\) −1.36201 0.215721i −0.138291 0.0219032i 0.0869051 0.996217i \(-0.472302\pi\)
−0.225196 + 0.974313i \(0.572302\pi\)
\(98\) 0 0
\(99\) 7.82643 0.492943i 0.786585 0.0495427i
\(100\) 0 0
\(101\) −2.83633 3.90387i −0.282225 0.388449i 0.644244 0.764820i \(-0.277172\pi\)
−0.926469 + 0.376370i \(0.877172\pi\)
\(102\) 0 0
\(103\) 1.46972 + 2.88449i 0.144816 + 0.284217i 0.952009 0.306071i \(-0.0990144\pi\)
−0.807193 + 0.590287i \(0.799014\pi\)
\(104\) 0 0
\(105\) 0.219048 0.261766i 0.0213769 0.0255457i
\(106\) 0 0
\(107\) 9.85055 + 5.01911i 0.952289 + 0.485215i 0.859875 0.510505i \(-0.170542\pi\)
0.0924142 + 0.995721i \(0.470542\pi\)
\(108\) 0 0
\(109\) −9.54212 −0.913969 −0.456985 0.889475i \(-0.651071\pi\)
−0.456985 + 0.889475i \(0.651071\pi\)
\(110\) 0 0
\(111\) 4.30929 0.409019
\(112\) 0 0
\(113\) 3.69562 + 1.88301i 0.347654 + 0.177139i 0.619094 0.785317i \(-0.287500\pi\)
−0.271440 + 0.962455i \(0.587500\pi\)
\(114\) 0 0
\(115\) −3.61875 + 0.321505i −0.337450 + 0.0299805i
\(116\) 0 0
\(117\) −3.32291 6.52158i −0.307203 0.602920i
\(118\) 0 0
\(119\) 0.417145 + 0.574151i 0.0382397 + 0.0526324i
\(120\) 0 0
\(121\) −4.68496 9.95245i −0.425905 0.904768i
\(122\) 0 0
\(123\) −5.27247 0.835077i −0.475403 0.0752964i
\(124\) 0 0
\(125\) 5.55105 9.70494i 0.496501 0.868036i
\(126\) 0 0
\(127\) −14.3879 + 2.27881i −1.27672 + 0.202212i −0.757728 0.652570i \(-0.773691\pi\)
−0.518987 + 0.854782i \(0.673691\pi\)
\(128\) 0 0
\(129\) −1.29851 3.99642i −0.114328 0.351865i
\(130\) 0 0
\(131\) 9.76926i 0.853544i −0.904359 0.426772i \(-0.859651\pi\)
0.904359 0.426772i \(-0.140349\pi\)
\(132\) 0 0
\(133\) −0.100702 + 0.100702i −0.00873200 + 0.00873200i
\(134\) 0 0
\(135\) 4.91423 8.20363i 0.422949 0.706056i
\(136\) 0 0
\(137\) 0.677380 + 4.27681i 0.0578725 + 0.365392i 0.999581 + 0.0289612i \(0.00921994\pi\)
−0.941708 + 0.336431i \(0.890780\pi\)
\(138\) 0 0
\(139\) 3.24794 9.99613i 0.275487 0.847860i −0.713604 0.700550i \(-0.752938\pi\)
0.989090 0.147311i \(-0.0470618\pi\)
\(140\) 0 0
\(141\) 7.97445 5.79378i 0.671570 0.487924i
\(142\) 0 0
\(143\) −6.78912 + 7.70183i −0.567735 + 0.644059i
\(144\) 0 0
\(145\) 18.0891 11.3372i 1.50221 0.941500i
\(146\) 0 0
\(147\) −4.94629 + 2.52026i −0.407963 + 0.207868i
\(148\) 0 0
\(149\) −4.66189 3.38706i −0.381917 0.277479i 0.380218 0.924897i \(-0.375849\pi\)
−0.762135 + 0.647418i \(0.775849\pi\)
\(150\) 0 0
\(151\) 14.2318 4.62419i 1.15817 0.376311i 0.333953 0.942590i \(-0.391617\pi\)
0.824214 + 0.566278i \(0.191617\pi\)
\(152\) 0 0
\(153\) 6.19694 + 6.19694i 0.500993 + 0.500993i
\(154\) 0 0
\(155\) −0.782843 0.0536836i −0.0628795 0.00431197i
\(156\) 0 0
\(157\) −2.24640 + 4.40881i −0.179282 + 0.351861i −0.963106 0.269122i \(-0.913267\pi\)
0.783824 + 0.620983i \(0.213267\pi\)
\(158\) 0 0
\(159\) 4.23158 5.82427i 0.335586 0.461895i
\(160\) 0 0
\(161\) −0.295863 0.0961317i −0.0233173 0.00757624i
\(162\) 0 0
\(163\) 1.56695 9.89335i 0.122733 0.774907i −0.847153 0.531349i \(-0.821685\pi\)
0.969886 0.243558i \(-0.0783147\pi\)
\(164\) 0 0
\(165\) −5.83435 0.957393i −0.454204 0.0745329i
\(166\) 0 0
\(167\) 1.88695 11.9137i 0.146017 0.921913i −0.800517 0.599310i \(-0.795442\pi\)
0.946534 0.322604i \(-0.104558\pi\)
\(168\) 0 0
\(169\) −3.24999 1.05599i −0.250000 0.0812298i
\(170\) 0 0
\(171\) −1.03371 + 1.42277i −0.0790494 + 0.108802i
\(172\) 0 0
\(173\) −5.65903 + 11.1065i −0.430248 + 0.844410i 0.569501 + 0.821991i \(0.307137\pi\)
−0.999749 + 0.0224186i \(0.992863\pi\)
\(174\) 0 0
\(175\) 0.763025 0.578206i 0.0576793 0.0437082i
\(176\) 0 0
\(177\) 5.42645 + 5.42645i 0.407877 + 0.407877i
\(178\) 0 0
\(179\) −19.1909 + 6.23551i −1.43440 + 0.466064i −0.920146 0.391575i \(-0.871930\pi\)
−0.514252 + 0.857639i \(0.671930\pi\)
\(180\) 0 0
\(181\) −3.72935 2.70953i −0.277200 0.201398i 0.440495 0.897755i \(-0.354803\pi\)
−0.717695 + 0.696357i \(0.754803\pi\)
\(182\) 0 0
\(183\) 4.18601 2.13288i 0.309439 0.157667i
\(184\) 0 0
\(185\) 11.7806 + 2.70308i 0.866127 + 0.198735i
\(186\) 0 0
\(187\) 4.88140 11.2824i 0.356963 0.825051i
\(188\) 0 0
\(189\) 0.662469 0.481312i 0.0481875 0.0350103i
\(190\) 0 0
\(191\) −1.95493 + 6.01667i −0.141454 + 0.435351i −0.996538 0.0831389i \(-0.973505\pi\)
0.855084 + 0.518490i \(0.173505\pi\)
\(192\) 0 0
\(193\) −0.927951 5.85885i −0.0667954 0.421729i −0.998314 0.0580368i \(-0.981516\pi\)
0.931519 0.363692i \(-0.118484\pi\)
\(194\) 0 0
\(195\) 1.34222 + 5.35265i 0.0961181 + 0.383312i
\(196\) 0 0
\(197\) 9.90515 9.90515i 0.705713 0.705713i −0.259918 0.965631i \(-0.583696\pi\)
0.965631 + 0.259918i \(0.0836955\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(200\) 0 0
\(201\) 1.44038 + 4.43303i 0.101596 + 0.312682i
\(202\) 0 0
\(203\) 1.80551 0.285964i 0.126722 0.0200708i
\(204\) 0 0
\(205\) −13.8899 5.59017i −0.970114 0.390434i
\(206\) 0 0
\(207\) −3.79427 0.600953i −0.263720 0.0417691i
\(208\) 0 0
\(209\) 2.38942 + 0.613321i 0.165280 + 0.0424243i
\(210\) 0 0
\(211\) −3.48696 4.79939i −0.240052 0.330404i 0.671944 0.740602i \(-0.265460\pi\)
−0.911996 + 0.410198i \(0.865460\pi\)
\(212\) 0 0
\(213\) 4.14837 + 8.14163i 0.284241 + 0.557855i
\(214\) 0 0
\(215\) −1.04301 11.7398i −0.0711330 0.800649i
\(216\) 0 0
\(217\) −0.0598677 0.0305041i −0.00406408 0.00207075i
\(218\) 0 0
\(219\) −1.91483 −0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) 0 0
\(223\) 18.9389 + 9.64984i 1.26824 + 0.646201i 0.953046 0.302826i \(-0.0979300\pi\)
0.315195 + 0.949027i \(0.397930\pi\)
\(224\) 0 0
\(225\) 8.18945 8.52621i 0.545964 0.568414i
\(226\) 0 0
\(227\) −5.93372 11.6456i −0.393835 0.772944i 0.605910 0.795533i \(-0.292809\pi\)
−0.999745 + 0.0225888i \(0.992809\pi\)
\(228\) 0 0
\(229\) 9.65796 + 13.2930i 0.638216 + 0.878429i 0.998519 0.0544066i \(-0.0173267\pi\)
−0.360303 + 0.932835i \(0.617327\pi\)
\(230\) 0 0
\(231\) −0.427475 0.271242i −0.0281258 0.0178464i
\(232\) 0 0
\(233\) −15.4510 2.44720i −1.01223 0.160321i −0.371779 0.928321i \(-0.621252\pi\)
−0.640450 + 0.768000i \(0.721252\pi\)
\(234\) 0 0
\(235\) 25.4346 10.8367i 1.65917 0.706911i
\(236\) 0 0
\(237\) 0.527947 0.0836185i 0.0342938 0.00543161i
\(238\) 0 0
\(239\) 1.63214 + 5.02322i 0.105575 + 0.324925i 0.989865 0.142012i \(-0.0453572\pi\)
−0.884290 + 0.466938i \(0.845357\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i −0.853726 0.520722i \(-0.825663\pi\)
0.853726 0.520722i \(-0.174337\pi\)
\(242\) 0 0
\(243\) 11.1488 11.1488i 0.715198 0.715198i
\(244\) 0 0
\(245\) −15.1029 + 3.78716i −0.964889 + 0.241953i
\(246\) 0 0
\(247\) −0.360188 2.27413i −0.0229182 0.144700i
\(248\) 0 0
\(249\) 4.10997 12.6492i 0.260458 0.801609i
\(250\) 0 0
\(251\) 15.6486 11.3694i 0.987729 0.717627i 0.0283063 0.999599i \(-0.490989\pi\)
0.959423 + 0.281972i \(0.0909886\pi\)
\(252\) 0 0
\(253\) 1.17586 + 5.25876i 0.0739254 + 0.330615i
\(254\) 0 0
\(255\) −3.50893 5.59869i −0.219738 0.350604i
\(256\) 0 0
\(257\) −4.19318 + 2.13653i −0.261563 + 0.133273i −0.579855 0.814720i \(-0.696891\pi\)
0.318292 + 0.947993i \(0.396891\pi\)
\(258\) 0 0
\(259\) 0.837308 + 0.608340i 0.0520278 + 0.0378004i
\(260\) 0 0
\(261\) 21.4689 6.97566i 1.32889 0.431783i
\(262\) 0 0
\(263\) −11.2218 11.2218i −0.691964 0.691964i 0.270700 0.962664i \(-0.412745\pi\)
−0.962664 + 0.270700i \(0.912745\pi\)
\(264\) 0 0
\(265\) 15.2216 13.2679i 0.935053 0.815040i
\(266\) 0 0
\(267\) −2.86720 + 5.62719i −0.175470 + 0.344378i
\(268\) 0 0
\(269\) −6.64926 + 9.15192i −0.405412 + 0.558002i −0.962092 0.272725i \(-0.912075\pi\)
0.556680 + 0.830727i \(0.312075\pi\)
\(270\) 0 0
\(271\) −16.9556 5.50921i −1.02998 0.334661i −0.255198 0.966889i \(-0.582141\pi\)
−0.774782 + 0.632228i \(0.782141\pi\)
\(272\) 0 0
\(273\) −0.0739200 + 0.466712i −0.00447384 + 0.0282467i
\(274\) 0 0
\(275\) −15.3492 6.27700i −0.925594 0.378517i
\(276\) 0 0
\(277\) 0.732361 4.62395i 0.0440033 0.277826i −0.955869 0.293793i \(-0.905083\pi\)
0.999873 + 0.0159666i \(0.00508253\pi\)
\(278\) 0 0
\(279\) −0.789117 0.256400i −0.0472432 0.0153502i
\(280\) 0 0
\(281\) −7.75247 + 10.6704i −0.462474 + 0.636541i −0.975019 0.222119i \(-0.928703\pi\)
0.512546 + 0.858660i \(0.328703\pi\)
\(282\) 0 0
\(283\) −10.3449 + 20.3029i −0.614938 + 1.20688i 0.348084 + 0.937463i \(0.386832\pi\)
−0.963022 + 0.269421i \(0.913168\pi\)
\(284\) 0 0
\(285\) 0.999513 0.871227i 0.0592061 0.0516070i
\(286\) 0 0
\(287\) −0.906570 0.906570i −0.0535131 0.0535131i
\(288\) 0 0
\(289\) −3.10211 + 1.00794i −0.182477 + 0.0592904i
\(290\) 0 0
\(291\) 0.889404 + 0.646190i 0.0521378 + 0.0378803i
\(292\) 0 0
\(293\) −6.43996 + 3.28132i −0.376226 + 0.191697i −0.631870 0.775074i \(-0.717713\pi\)
0.255644 + 0.966771i \(0.417713\pi\)
\(294\) 0 0
\(295\) 11.4308 + 18.2385i 0.665529 + 1.06189i
\(296\) 0 0
\(297\) −13.0179 5.63227i −0.755375 0.326818i
\(298\) 0 0
\(299\) 4.06896 2.95628i 0.235314 0.170966i
\(300\) 0 0
\(301\) 0.311867 0.959827i 0.0179757 0.0553235i
\(302\) 0 0
\(303\) 0.601798 + 3.79960i 0.0345724 + 0.218282i
\(304\) 0 0
\(305\) 12.7815 3.20505i 0.731866 0.183521i
\(306\) 0 0
\(307\) −20.1272 + 20.1272i −1.14872 + 1.14872i −0.161918 + 0.986804i \(0.551768\pi\)
−0.986804 + 0.161918i \(0.948232\pi\)
\(308\) 0 0
\(309\) 2.58088i 0.146821i
\(310\) 0 0
\(311\) 2.32254 + 7.14803i 0.131699 + 0.405328i 0.995062 0.0992557i \(-0.0316462\pi\)
−0.863363 + 0.504583i \(0.831646\pi\)
\(312\) 0 0
\(313\) −1.32951 + 0.210574i −0.0751483 + 0.0119023i −0.193895 0.981022i \(-0.562112\pi\)
0.118747 + 0.992925i \(0.462112\pi\)
\(314\) 0 0
\(315\) 0.931306 0.396795i 0.0524732 0.0223569i
\(316\) 0 0
\(317\) −11.1924 1.77271i −0.628630 0.0995652i −0.166013 0.986124i \(-0.553089\pi\)
−0.462617 + 0.886558i \(0.653089\pi\)
\(318\) 0 0
\(319\) −20.1854 24.3965i −1.13017 1.36594i
\(320\) 0 0
\(321\) −5.18059 7.13047i −0.289152 0.397984i
\(322\) 0 0
\(323\) 1.25159 + 2.45639i 0.0696406 + 0.136677i
\(324\) 0 0
\(325\) 0.311760 + 15.4749i 0.0172934 + 0.858391i
\(326\) 0 0
\(327\) 6.77808 + 3.45360i 0.374829 + 0.190985i
\(328\) 0 0
\(329\) 2.36737 0.130517
\(330\) 0 0
\(331\) 17.7048 0.973145 0.486572 0.873640i \(-0.338247\pi\)
0.486572 + 0.873640i \(0.338247\pi\)
\(332\) 0 0
\(333\) 11.3876 + 5.80227i 0.624036 + 0.317962i
\(334\) 0 0
\(335\) 1.15696 + 13.0224i 0.0632117 + 0.711489i
\(336\) 0 0
\(337\) 3.45945 + 6.78954i 0.188448 + 0.369850i 0.965829 0.259180i \(-0.0834523\pi\)
−0.777381 + 0.629030i \(0.783452\pi\)
\(338\) 0 0
\(339\) −1.94359 2.67513i −0.105562 0.145293i
\(340\) 0 0
\(341\) 0.0731608 + 1.16157i 0.00396188 + 0.0629025i
\(342\) 0 0
\(343\) −2.64066 0.418239i −0.142582 0.0225828i
\(344\) 0 0
\(345\) 2.68688 + 1.08137i 0.144657 + 0.0582189i
\(346\) 0 0
\(347\) 9.21879 1.46011i 0.494891 0.0783830i 0.0959998 0.995381i \(-0.469395\pi\)
0.398891 + 0.916998i \(0.369395\pi\)
\(348\) 0 0
\(349\) 0.464073 + 1.42827i 0.0248413 + 0.0764536i 0.962709 0.270540i \(-0.0872024\pi\)
−0.937867 + 0.346994i \(0.887202\pi\)
\(350\) 0 0
\(351\) 13.2388i 0.706637i
\(352\) 0 0
\(353\) 4.40229 4.40229i 0.234310 0.234310i −0.580179 0.814489i \(-0.697017\pi\)
0.814489 + 0.580179i \(0.197017\pi\)
\(354\) 0 0
\(355\) 6.23370 + 24.8595i 0.330850 + 1.31941i
\(356\) 0 0
\(357\) −0.0885080 0.558817i −0.00468434 0.0295757i
\(358\) 0 0
\(359\) −8.12845 + 25.0168i −0.429003 + 1.32034i 0.470105 + 0.882611i \(0.344216\pi\)
−0.899108 + 0.437726i \(0.855784\pi\)
\(360\) 0 0
\(361\) 14.9238 10.8427i 0.785461 0.570671i
\(362\) 0 0
\(363\) −0.274237 + 8.76519i −0.0143937 + 0.460053i
\(364\) 0 0
\(365\) −5.23470 1.20111i −0.273997 0.0628691i
\(366\) 0 0
\(367\) −7.27872 + 3.70869i −0.379946 + 0.193592i −0.633524 0.773723i \(-0.718392\pi\)
0.253579 + 0.967315i \(0.418392\pi\)
\(368\) 0 0
\(369\) −12.8085 9.30591i −0.666783 0.484446i
\(370\) 0 0
\(371\) 1.64442 0.534304i 0.0853740 0.0277397i
\(372\) 0 0
\(373\) 6.12473 + 6.12473i 0.317126 + 0.317126i 0.847662 0.530536i \(-0.178009\pi\)
−0.530536 + 0.847662i \(0.678009\pi\)
\(374\) 0 0
\(375\) −7.45563 + 4.88463i −0.385007 + 0.252241i
\(376\) 0 0
\(377\) −13.4174 + 26.3331i −0.691031 + 1.35622i
\(378\) 0 0
\(379\) 0.363481 0.500288i 0.0186708 0.0256981i −0.799580 0.600560i \(-0.794944\pi\)
0.818250 + 0.574862i \(0.194944\pi\)
\(380\) 0 0
\(381\) 11.0449 + 3.58872i 0.565849 + 0.183856i
\(382\) 0 0
\(383\) −1.62362 + 10.2511i −0.0829629 + 0.523807i 0.910850 + 0.412738i \(0.135428\pi\)
−0.993813 + 0.111069i \(0.964572\pi\)
\(384\) 0 0
\(385\) −0.998478 1.00966i −0.0508871 0.0514569i
\(386\) 0 0
\(387\) 1.94959 12.3092i 0.0991031 0.625712i
\(388\) 0 0
\(389\) −21.0630 6.84378i −1.06794 0.346993i −0.278252 0.960508i \(-0.589755\pi\)
−0.789683 + 0.613515i \(0.789755\pi\)
\(390\) 0 0
\(391\) −3.53969 + 4.87197i −0.179010 + 0.246386i
\(392\) 0 0
\(393\) −3.53581 + 6.93942i −0.178358 + 0.350048i
\(394\) 0 0
\(395\) 1.49574 + 0.102571i 0.0752587 + 0.00516089i
\(396\) 0 0
\(397\) 10.7769 + 10.7769i 0.540876 + 0.540876i 0.923786 0.382910i \(-0.125078\pi\)
−0.382910 + 0.923786i \(0.625078\pi\)
\(398\) 0 0
\(399\) 0.107980 0.0350847i 0.00540574 0.00175643i
\(400\) 0 0
\(401\) 3.46399 + 2.51673i 0.172983 + 0.125680i 0.670908 0.741540i \(-0.265904\pi\)
−0.497925 + 0.867220i \(0.665904\pi\)
\(402\) 0 0
\(403\) 0.967909 0.493174i 0.0482150 0.0245668i
\(404\) 0 0
\(405\) 6.97975 4.37450i 0.346827 0.217371i
\(406\) 0 0
\(407\) 1.68589 17.8481i 0.0835664 0.884697i
\(408\) 0 0
\(409\) 3.47523 2.52490i 0.171839 0.124848i −0.498541 0.866866i \(-0.666131\pi\)
0.670381 + 0.742017i \(0.266131\pi\)
\(410\) 0 0
\(411\) 1.06675 3.28312i 0.0526190 0.161945i
\(412\) 0 0
\(413\) 0.288327 + 1.82043i 0.0141877 + 0.0895773i
\(414\) 0 0
\(415\) 19.1701 32.0019i 0.941025 1.57091i
\(416\) 0 0
\(417\) −5.92504 + 5.92504i −0.290151 + 0.290151i
\(418\) 0 0
\(419\) 1.20241i 0.0587414i −0.999569 0.0293707i \(-0.990650\pi\)
0.999569 0.0293707i \(-0.00935032\pi\)
\(420\) 0 0
\(421\) 9.67493 + 29.7764i 0.471527 + 1.45121i 0.850584 + 0.525839i \(0.176248\pi\)
−0.379057 + 0.925373i \(0.623752\pi\)
\(422\) 0 0
\(423\) 28.8741 4.57321i 1.40391 0.222357i
\(424\) 0 0
\(425\) −6.08073 17.5066i −0.294959 0.849195i
\(426\) 0 0
\(427\) 1.11445 + 0.176512i 0.0539321 + 0.00854201i
\(428\) 0 0
\(429\) 7.61008 3.01366i 0.367418 0.145501i
\(430\) 0 0
\(431\) 5.81395 + 8.00222i 0.280048 + 0.385453i 0.925750 0.378137i \(-0.123435\pi\)
−0.645702 + 0.763590i \(0.723435\pi\)
\(432\) 0 0
\(433\) 12.2497 + 24.0414i 0.588683 + 1.15536i 0.972708 + 0.232033i \(0.0745378\pi\)
−0.384025 + 0.923323i \(0.625462\pi\)
\(434\) 0 0
\(435\) −16.9525 + 1.50614i −0.812812 + 0.0722137i
\(436\) 0 0
\(437\) −1.07675 0.548629i −0.0515077 0.0262445i
\(438\) 0 0
\(439\) 24.5862 1.17344 0.586718 0.809791i \(-0.300420\pi\)
0.586718 + 0.809791i \(0.300420\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) 0 0
\(443\) −27.4404 13.9816i −1.30373 0.664286i −0.342370 0.939565i \(-0.611230\pi\)
−0.961364 + 0.275279i \(0.911230\pi\)
\(444\) 0 0
\(445\) −11.3680 + 13.5849i −0.538896 + 0.643988i
\(446\) 0 0
\(447\) 2.08561 + 4.09323i 0.0986458 + 0.193603i
\(448\) 0 0
\(449\) −4.30536 5.92582i −0.203182 0.279657i 0.695250 0.718768i \(-0.255293\pi\)
−0.898433 + 0.439111i \(0.855293\pi\)
\(450\) 0 0
\(451\) −5.52141 + 21.5107i −0.259993 + 1.01290i
\(452\) 0 0
\(453\) −11.7830 1.86624i −0.553612 0.0876835i
\(454\) 0 0
\(455\) −0.494835 + 1.22952i −0.0231982 + 0.0576407i
\(456\) 0 0
\(457\) −6.65265 + 1.05368i −0.311198 + 0.0492889i −0.310080 0.950710i \(-0.600356\pi\)
−0.00111791 + 0.999999i \(0.500356\pi\)
\(458\) 0 0
\(459\) −4.89838 15.0757i −0.228637 0.703672i
\(460\) 0 0
\(461\) 29.0801i 1.35440i 0.735801 + 0.677198i \(0.236806\pi\)
−0.735801 + 0.677198i \(0.763194\pi\)
\(462\) 0 0
\(463\) −17.5146 + 17.5146i −0.813970 + 0.813970i −0.985227 0.171256i \(-0.945217\pi\)
0.171256 + 0.985227i \(0.445217\pi\)
\(464\) 0 0
\(465\) 0.536649 + 0.321470i 0.0248865 + 0.0149078i
\(466\) 0 0
\(467\) 4.13890 + 26.1320i 0.191525 + 1.20924i 0.876763 + 0.480923i \(0.159698\pi\)
−0.685237 + 0.728320i \(0.740302\pi\)
\(468\) 0 0
\(469\) −0.345938 + 1.06469i −0.0159739 + 0.0491627i
\(470\) 0 0
\(471\) 3.19138 2.31868i 0.147051 0.106839i
\(472\) 0 0
\(473\) −17.0603 + 3.81467i −0.784432 + 0.175399i
\(474\) 0 0
\(475\) 3.27894 1.75477i 0.150448 0.0805145i
\(476\) 0 0
\(477\) 19.0244 9.69341i 0.871067 0.443831i
\(478\) 0 0
\(479\) −21.2408 15.4324i −0.970519 0.705123i −0.0149492 0.999888i \(-0.504759\pi\)
−0.955570 + 0.294765i \(0.904759\pi\)
\(480\) 0 0
\(481\) −15.9139 + 5.17073i −0.725610 + 0.235765i
\(482\) 0 0
\(483\) 0.175368 + 0.175368i 0.00797952 + 0.00797952i
\(484\) 0 0
\(485\) 2.02609 + 2.32443i 0.0920001 + 0.105547i
\(486\) 0 0
\(487\) −10.5939 + 20.7917i −0.480056 + 0.942163i 0.516262 + 0.856431i \(0.327323\pi\)
−0.996318 + 0.0857326i \(0.972677\pi\)
\(488\) 0 0
\(489\) −4.69379 + 6.46044i −0.212260 + 0.292151i
\(490\) 0 0
\(491\) −17.4497 5.66974i −0.787493 0.255872i −0.112457 0.993657i \(-0.535872\pi\)
−0.675036 + 0.737785i \(0.735872\pi\)
\(492\) 0 0
\(493\) 5.53572 34.9512i 0.249316 1.57412i
\(494\) 0 0
\(495\) −14.1286 10.3857i −0.635033 0.466802i
\(496\) 0 0
\(497\) −0.343309 + 2.16757i −0.0153995 + 0.0972286i
\(498\) 0 0
\(499\) −11.1824 3.63339i −0.500595 0.162653i 0.0478260 0.998856i \(-0.484771\pi\)
−0.548421 + 0.836203i \(0.684771\pi\)
\(500\) 0 0
\(501\) −5.65234 + 7.77978i −0.252528 + 0.347575i
\(502\) 0 0
\(503\) 2.42460 4.75855i 0.108108 0.212173i −0.830615 0.556848i \(-0.812011\pi\)
0.938722 + 0.344674i \(0.112011\pi\)
\(504\) 0 0
\(505\) −0.738195 + 10.7647i −0.0328492 + 0.479025i
\(506\) 0 0
\(507\) 1.92638 + 1.92638i 0.0855536 + 0.0855536i
\(508\) 0 0
\(509\) −18.6283 + 6.05272i −0.825687 + 0.268282i −0.691228 0.722637i \(-0.742930\pi\)
−0.134459 + 0.990919i \(0.542930\pi\)
\(510\) 0 0
\(511\) −0.372057 0.270315i −0.0164588 0.0119580i
\(512\) 0 0
\(513\) 2.83424 1.44412i 0.125135 0.0637594i
\(514\) 0 0
\(515\) 1.61891 7.05555i 0.0713376 0.310905i
\(516\) 0 0
\(517\) −20.8767 35.2950i −0.918158 1.55227i
\(518\) 0 0
\(519\) 8.03959 5.84110i 0.352899 0.256396i
\(520\) 0 0
\(521\) 5.78913 17.8171i 0.253626 0.780582i −0.740471 0.672089i \(-0.765397\pi\)
0.994097 0.108493i \(-0.0346026\pi\)
\(522\) 0 0
\(523\) −0.403961 2.55051i −0.0176640 0.111526i 0.977281 0.211948i \(-0.0679807\pi\)
−0.994945 + 0.100422i \(0.967981\pi\)
\(524\) 0 0
\(525\) −0.751273 + 0.134555i −0.0327883 + 0.00587245i
\(526\) 0 0
\(527\) −0.919727 + 0.919727i −0.0400639 + 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) 0 0
\(531\) 7.03330 + 21.6463i 0.305219 + 0.939368i
\(532\) 0 0
\(533\) 20.4729 3.24258i 0.886778 0.140452i
\(534\) 0 0
\(535\) −9.68984 22.7427i −0.418928 0.983253i
\(536\) 0 0
\(537\) 15.8888 + 2.51654i 0.685652 + 0.108597i
\(538\) 0 0
\(539\) 8.50325 + 21.4724i 0.366261 + 0.924881i
\(540\) 0 0
\(541\) 5.42829 + 7.47139i 0.233380 + 0.321220i 0.909604 0.415476i \(-0.136385\pi\)
−0.676224 + 0.736696i \(0.736385\pi\)
\(542\) 0 0
\(543\) 1.66841 + 3.27444i 0.0715983 + 0.140520i
\(544\) 0 0
\(545\) 16.3634 + 13.6931i 0.700931 + 0.586546i
\(546\) 0 0
\(547\) −0.954295 0.486237i −0.0408027 0.0207900i 0.433470 0.901168i \(-0.357289\pi\)
−0.474273 + 0.880378i \(0.657289\pi\)
\(548\) 0 0
\(549\) 13.9337 0.594674
\(550\) 0 0
\(551\) 7.10113 0.302518
\(552\) 0 0
\(553\) 0.114386 + 0.0582826i 0.00486419 + 0.00247843i
\(554\) 0 0
\(555\) −7.38982 6.18387i −0.313680 0.262491i
\(556\) 0 0
\(557\) −19.5384 38.3462i −0.827868 1.62478i −0.779876 0.625934i \(-0.784718\pi\)
−0.0479915 0.998848i \(-0.515282\pi\)
\(558\) 0 0
\(559\) 9.59064 + 13.2004i 0.405641 + 0.558316i
\(560\) 0 0
\(561\) −7.55089 + 6.24752i −0.318799 + 0.263771i
\(562\) 0 0
\(563\) 25.5439 + 4.04575i 1.07655 + 0.170508i 0.669435 0.742871i \(-0.266536\pi\)
0.407111 + 0.913379i \(0.366536\pi\)
\(564\) 0 0
\(565\) −3.63532 8.53235i −0.152939 0.358959i
\(566\) 0 0
\(567\) 0.696664 0.110341i 0.0292571 0.00463387i
\(568\) 0 0
\(569\) 8.39651 + 25.8418i 0.352000 + 1.08334i 0.957729 + 0.287673i \(0.0928816\pi\)
−0.605729 + 0.795671i \(0.707118\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i −0.529308 0.848430i \(-0.677549\pi\)
0.529308 0.848430i \(-0.322451\pi\)
\(572\) 0 0
\(573\) 3.56628 3.56628i 0.148984 0.148984i
\(574\) 0 0
\(575\) 6.66701 + 4.64161i 0.278034 + 0.193569i
\(576\) 0 0
\(577\) 5.28872 + 33.3917i 0.220172 + 1.39011i 0.811815 + 0.583914i \(0.198479\pi\)
−0.591643 + 0.806200i \(0.701521\pi\)
\(578\) 0 0
\(579\) −1.46136 + 4.49759i −0.0607319 + 0.186913i
\(580\) 0 0
\(581\) 2.58426 1.87757i 0.107213 0.0778948i
\(582\) 0 0
\(583\) −22.4673 19.8048i −0.930502 0.820233i
\(584\) 0 0
\(585\) −3.66022 + 15.9520i −0.151331 + 0.659534i
\(586\) 0 0
\(587\) −8.62859 + 4.39649i −0.356140 + 0.181462i −0.622902 0.782300i \(-0.714046\pi\)
0.266762 + 0.963763i \(0.414046\pi\)
\(588\) 0 0
\(589\) −0.211163 0.153419i −0.00870081 0.00632151i
\(590\) 0 0
\(591\) −10.6210 + 3.45096i −0.436888 + 0.141953i
\(592\) 0 0
\(593\) −14.0452 14.0452i −0.576769 0.576769i 0.357243 0.934012i \(-0.383717\pi\)
−0.934012 + 0.357243i \(0.883717\pi\)
\(594\) 0 0
\(595\) 0.108568 1.58320i 0.00445086 0.0649048i
\(596\) 0 0
\(597\) 4.84367 9.50623i 0.198238 0.389064i
\(598\) 0 0
\(599\) −2.65433 + 3.65338i −0.108453 + 0.149273i −0.859793 0.510642i \(-0.829408\pi\)
0.751340 + 0.659915i \(0.229408\pi\)
\(600\) 0 0
\(601\) −7.96746 2.58878i −0.324999 0.105599i 0.141973 0.989871i \(-0.454655\pi\)
−0.466973 + 0.884272i \(0.654655\pi\)
\(602\) 0 0
\(603\) −2.16258 + 13.6540i −0.0880671 + 0.556034i
\(604\) 0 0
\(605\) −6.24783 + 23.7900i −0.254011 + 0.967201i
\(606\) 0 0
\(607\) −1.20123 + 7.58425i −0.0487563 + 0.307835i −1.00000 0.000605683i \(-0.999807\pi\)
0.951244 + 0.308441i \(0.0998072\pi\)
\(608\) 0 0
\(609\) −1.38601 0.450342i −0.0561640 0.0182488i
\(610\) 0 0
\(611\) −22.4971 + 30.9646i −0.910134 + 1.25269i
\(612\) 0 0
\(613\) 19.4882 38.2477i 0.787120 1.54481i −0.0506058 0.998719i \(-0.516115\pi\)
0.837726 0.546091i \(-0.183885\pi\)
\(614\) 0 0
\(615\) 7.84320 + 8.99810i 0.316268 + 0.362838i
\(616\) 0 0
\(617\) 33.4407 + 33.4407i 1.34627 + 1.34627i 0.889671 + 0.456601i \(0.150933\pi\)
0.456601 + 0.889671i \(0.349067\pi\)
\(618\) 0 0
\(619\) 20.0674 6.52029i 0.806576 0.262073i 0.123429 0.992353i \(-0.460611\pi\)
0.683147 + 0.730281i \(0.260611\pi\)
\(620\) 0 0
\(621\) 5.62139 + 4.08418i 0.225578 + 0.163892i
\(622\) 0 0
\(623\) −1.35149 + 0.688620i −0.0541464 + 0.0275890i
\(624\) 0 0
\(625\) −23.4460 + 8.67678i −0.937839 + 0.347071i
\(626\) 0 0
\(627\) −1.47530 1.30047i −0.0589179 0.0519358i
\(628\) 0 0
\(629\) 16.2087 11.7763i 0.646282 0.469552i
\(630\) 0 0
\(631\) 8.72043 26.8387i 0.347155 1.06843i −0.613265 0.789877i \(-0.710144\pi\)
0.960420 0.278555i \(-0.0898556\pi\)
\(632\) 0 0
\(633\) 0.739847 + 4.67121i 0.0294063 + 0.185664i
\(634\) 0 0
\(635\) 27.9433 + 16.7389i 1.10889 + 0.664263i
\(636\) 0 0
\(637\) 15.2422 15.2422i 0.603918 0.603918i
\(638\) 0 0
\(639\) 27.1004i 1.07208i
\(640\) 0 0
\(641\) −5.23436 16.1097i −0.206745 0.636295i −0.999637 0.0269333i \(-0.991426\pi\)
0.792893 0.609362i \(-0.208574\pi\)
\(642\) 0 0
\(643\) −6.19838 + 0.981726i −0.244440 + 0.0387155i −0.277452 0.960739i \(-0.589490\pi\)
0.0330121 + 0.999455i \(0.489490\pi\)
\(644\) 0 0
\(645\) −3.50814 + 8.71668i −0.138133 + 0.343219i
\(646\) 0 0
\(647\) 42.9518 + 6.80289i 1.68861 + 0.267449i 0.925479 0.378798i \(-0.123662\pi\)
0.763128 + 0.646247i \(0.223662\pi\)
\(648\) 0 0
\(649\) 24.5981 20.3522i 0.965559 0.798893i
\(650\) 0 0
\(651\) 0.0314855 + 0.0433361i 0.00123402 + 0.00169848i
\(652\) 0 0
\(653\) −4.41780 8.67042i −0.172882 0.339300i 0.788266 0.615335i \(-0.210979\pi\)
−0.961147 + 0.276035i \(0.910979\pi\)
\(654\) 0 0
\(655\) −14.0190 + 16.7529i −0.547767 + 0.654590i
\(656\) 0 0
\(657\) −5.06007 2.57823i −0.197412 0.100586i
\(658\) 0 0
\(659\) 3.37375 0.131423 0.0657113 0.997839i \(-0.479068\pi\)
0.0657113 + 0.997839i \(0.479068\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) 0 0
\(663\) 8.15028 + 4.15278i 0.316531 + 0.161280i
\(664\) 0 0
\(665\) 0.317199 0.0281813i 0.0123005 0.00109282i
\(666\) 0 0
\(667\) 7.04213 + 13.8210i 0.272672 + 0.535150i
\(668\) 0 0
\(669\) −9.96031 13.7092i −0.385088 0.530028i
\(670\) 0 0
\(671\) −7.19624 18.1719i −0.277808 0.701520i
\(672\) 0 0
\(673\) −37.7823 5.98412i −1.45640 0.230671i −0.622514 0.782609i \(-0.713889\pi\)
−0.833885 + 0.551938i \(0.813889\pi\)
\(674\) 0 0
\(675\) −20.1995 + 7.01609i −0.777479 + 0.270049i
\(676\) 0 0
\(677\) −31.7956 + 5.03592i −1.22200 + 0.193546i −0.733911 0.679246i \(-0.762307\pi\)
−0.488092 + 0.872792i \(0.662307\pi\)
\(678\) 0 0
\(679\) 0.0815917 + 0.251113i 0.00313120 + 0.00963684i
\(680\) 0 0
\(681\) 10.4198i 0.399289i
\(682\) 0 0
\(683\) 28.7223 28.7223i 1.09903 1.09903i 0.104505 0.994524i \(-0.466674\pi\)
0.994524 0.104505i \(-0.0333260\pi\)
\(684\) 0 0
\(685\) 4.97566 8.30617i 0.190110 0.317363i
\(686\) 0 0
\(687\) −2.04918 12.9380i −0.0781811 0.493616i
\(688\) 0 0
\(689\) −8.63834 + 26.5861i −0.329095 + 1.01285i
\(690\) 0 0
\(691\) −20.4397 + 14.8503i −0.777564 + 0.564933i −0.904247 0.427010i \(-0.859567\pi\)
0.126683 + 0.991943i \(0.459567\pi\)
\(692\) 0 0
\(693\) −0.764417 1.29235i −0.0290378 0.0490925i
\(694\) 0 0
\(695\) −19.9143 + 12.4811i −0.755393 + 0.473436i
\(696\) 0 0
\(697\) −22.1136 + 11.2675i −0.837613 + 0.426785i
\(698\) 0 0
\(699\) 10.0896 + 7.33055i 0.381625 + 0.277267i
\(700\) 0 0
\(701\) 26.8458 8.72273i 1.01395 0.329453i 0.245525 0.969390i \(-0.421040\pi\)
0.768427 + 0.639937i \(0.221040\pi\)
\(702\) 0 0
\(703\) 2.84289 + 2.84289i 0.107222 + 0.107222i
\(704\) 0 0
\(705\) −21.9892 1.50791i −0.828161 0.0567914i
\(706\) 0 0
\(707\) −0.419457 + 0.823230i −0.0157753 + 0.0309608i
\(708\) 0 0
\(709\) 4.79615 6.60134i 0.180123 0.247918i −0.709402 0.704804i \(-0.751035\pi\)
0.889526 + 0.456885i \(0.151035\pi\)
\(710\) 0 0
\(711\) 1.50773 + 0.489890i 0.0565441 + 0.0183723i
\(712\) 0 0
\(713\) 0.0891912 0.563131i 0.00334024 0.0210894i
\(714\) 0 0
\(715\) 22.6946 3.46508i 0.848730 0.129587i
\(716\) 0 0
\(717\) 0.658703 4.15889i 0.0245997 0.155317i
\(718\) 0 0
\(719\) −0.986856 0.320649i −0.0368035 0.0119582i 0.290557 0.956858i \(-0.406159\pi\)
−0.327361 + 0.944899i \(0.606159\pi\)
\(720\) 0 0
\(721\) 0.364342 0.501474i 0.0135688 0.0186759i
\(722\) 0 0
\(723\) −5.85157 + 11.4843i −0.217622 + 0.427107i
\(724\) 0 0
\(725\) −47.2892 6.51637i −1.75627 0.242012i
\(726\) 0 0
\(727\) 3.27903 + 3.27903i 0.121612 + 0.121612i 0.765294 0.643681i \(-0.222594\pi\)
−0.643681 + 0.765294i \(0.722594\pi\)
\(728\) 0 0
\(729\) −1.44390 + 0.469153i −0.0534779 + 0.0173760i
\(730\) 0 0
\(731\) −15.8055 11.4833i −0.584586 0.424726i
\(732\) 0 0
\(733\) 40.6968 20.7361i 1.50317 0.765904i 0.507751 0.861504i \(-0.330477\pi\)
0.995420 + 0.0956003i \(0.0304771\pi\)
\(734\) 0 0
\(735\) 12.0988 + 2.77609i 0.446271 + 0.102398i
\(736\) 0 0
\(737\) 18.9241 4.23142i 0.697079 0.155866i
\(738\) 0 0
\(739\) 3.07164 2.23167i 0.112992 0.0820934i −0.529854 0.848089i \(-0.677753\pi\)
0.642846 + 0.765995i \(0.277753\pi\)
\(740\) 0 0
\(741\) −0.567231 + 1.74576i −0.0208377 + 0.0641320i
\(742\) 0 0
\(743\) −6.63736 41.9067i −0.243501 1.53741i −0.741931 0.670476i \(-0.766090\pi\)
0.498430 0.866930i \(-0.333910\pi\)
\(744\) 0 0
\(745\) 3.13401 + 12.4982i 0.114821 + 0.457899i
\(746\) 0 0
\(747\) 27.8924 27.8924i 1.02053 1.02053i
\(748\) 0 0
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) 3.08775 + 9.50312i 0.112674 + 0.346774i 0.991455 0.130451i \(-0.0416427\pi\)
−0.878781 + 0.477225i \(0.841643\pi\)
\(752\) 0 0
\(753\) −15.2306 + 2.41230i −0.555035 + 0.0879089i
\(754\) 0 0
\(755\) −31.0413 12.4930i −1.12971 0.454665i
\(756\) 0 0
\(757\) 29.0217 + 4.59658i 1.05481 + 0.167065i 0.659670 0.751555i \(-0.270696\pi\)
0.395140 + 0.918621i \(0.370696\pi\)
\(758\) 0 0
\(759\) 1.06807 4.16105i 0.0387684 0.151037i
\(760\) 0 0
\(761\) −17.8404 24.5552i −0.646713 0.890124i 0.352238 0.935910i \(-0.385421\pi\)
−0.998951 + 0.0457864i \(0.985421\pi\)
\(762\) 0 0
\(763\) 0.829459 + 1.62790i 0.0300284 + 0.0589341i
\(764\) 0 0
\(765\) −1.73420 19.5196i −0.0627002 0.705731i
\(766\) 0 0
\(767\) −26.5507 13.5283i −0.958690 0.488477i
\(768\) 0 0
\(769\) 37.6421 1.35741 0.678705 0.734411i \(-0.262542\pi\)
0.678705 + 0.734411i \(0.262542\pi\)
\(770\) 0 0
\(771\) 3.75184 0.135119
\(772\) 0 0
\(773\) 22.9995 + 11.7188i 0.827234 + 0.421497i 0.815727 0.578437i \(-0.196337\pi\)
0.0115072 + 0.999934i \(0.496337\pi\)
\(774\) 0 0
\(775\) 1.26543 + 1.21545i 0.0454555 + 0.0436602i
\(776\) 0 0
\(777\) −0.374589 0.735173i −0.0134383 0.0263742i
\(778\) 0 0
\(779\) −2.92741 4.02923i −0.104885 0.144362i
\(780\) 0 0
\(781\) 35.3437 13.9964i 1.26470 0.500831i
\(782\) 0 0
\(783\) −40.3275 6.38724i −1.44119 0.228261i
\(784\) 0 0
\(785\) 10.1790 4.33688i 0.363302 0.154790i
\(786\) 0 0
\(787\) 17.0625 2.70244i 0.608213 0.0963315i 0.155272 0.987872i \(-0.450375\pi\)
0.452942 + 0.891540i \(0.350375\pi\)
\(788\) 0 0
\(789\) 3.90967 + 12.0327i 0.139188 + 0.428376i
\(790\) 0 0
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 + 12.8994i −0.458070 + 0.458070i
\(794\) 0 0
\(795\) −15.6145 + 3.91544i −0.553788 + 0.138866i
\(796\) 0 0
\(797\) −6.97213 44.0203i −0.246965 1.55928i −0.729858 0.683599i \(-0.760414\pi\)
0.482892 0.875680i \(-0.339586\pi\)
\(798\) 0 0
\(799\) 14.1615 43.5847i 0.500999 1.54192i
\(800\) 0 0
\(801\) −15.1535 + 11.0097i −0.535424 + 0.389008i
\(802\) 0 0
\(803\) −0.749124 + 7.93078i −0.0264360 + 0.279871i
\(804\) 0 0
\(805\) 0.369413 + 0.589419i 0.0130201 + 0.0207743i
\(806\) 0 0
\(807\) 8.03556 4.09432i 0.282865 0.144127i
\(808\) 0 0
\(809\) 12.3255 + 8.95497i 0.433340 + 0.314840i 0.782983 0.622043i \(-0.213697\pi\)
−0.349643 + 0.936883i \(0.613697\pi\)
\(810\) 0 0
\(811\) 43.3276 14.0780i 1.52144 0.494345i 0.575253 0.817976i \(-0.304904\pi\)
0.946183 + 0.323631i \(0.104904\pi\)
\(812\) 0 0
\(813\) 10.0502 + 10.0502i 0.352475 + 0.352475i
\(814\) 0 0
\(815\) −16.8842 + 14.7171i −0.591427 + 0.515518i
\(816\) 0 0
\(817\) 1.77984 3.49314i 0.0622688 0.122209i
\(818\) 0 0
\(819\) −0.823747 + 1.13379i −0.0287840 + 0.0396178i
\(820\) 0 0
\(821\) −27.3071 8.87260i −0.953023 0.309656i −0.209079 0.977899i \(-0.567047\pi\)
−0.743943 + 0.668243i \(0.767047\pi\)
\(822\) 0 0
\(823\) 4.21701 26.6252i 0.146996 0.928095i −0.798390 0.602141i \(-0.794314\pi\)
0.945386 0.325954i \(-0.105686\pi\)
\(824\) 0 0
\(825\) 8.63122 + 10.0142i 0.300501 + 0.348648i
\(826\) 0 0
\(827\) 6.20779 39.1944i 0.215866 1.36292i −0.607006 0.794697i \(-0.707630\pi\)
0.822872 0.568227i \(-0.192370\pi\)
\(828\) 0 0
\(829\) 10.3353 + 3.35814i 0.358959 + 0.116633i 0.482944 0.875651i \(-0.339567\pi\)
−0.123985 + 0.992284i \(0.539567\pi\)
\(830\) 0 0
\(831\) −2.19378 + 3.01948i −0.0761013 + 0.104744i
\(832\) 0 0
\(833\) −11.7174 + 22.9966i −0.405983 + 0.796786i
\(834\) 0 0
\(835\) −20.3322 + 17.7226i −0.703625 + 0.613316i
\(836\) 0 0
\(837\) 1.06120 + 1.06120i 0.0366805 + 0.0366805i
\(838\) 0 0
\(839\) 38.3426 12.4583i 1.32373 0.430107i 0.439958 0.898019i \(-0.354993\pi\)
0.883775 + 0.467912i \(0.154993\pi\)
\(840\) 0 0
\(841\) −50.2797 36.5303i −1.73378 1.25967i
\(842\) 0 0
\(843\) 9.36879 4.77364i 0.322678 0.164413i
\(844\) 0 0
\(845\) 4.05793 + 6.47465i 0.139597 + 0.222735i
\(846\) 0 0
\(847\) −1.29066 + 1.66439i −0.0443477 + 0.0571891i
\(848\) 0 0
\(849\) 14.6966 10.6777i 0.504386 0.366458i
\(850\) 0 0
\(851\) −2.71386 + 8.35241i −0.0930300 + 0.286317i
\(852\) 0 0
\(853\) −2.18326 13.7845i −0.0747533 0.471974i −0.996459 0.0840831i \(-0.973204\pi\)
0.921705 0.387890i \(-0.126796\pi\)
\(854\) 0 0
\(855\) 3.81435 0.956477i 0.130448 0.0327108i
\(856\) 0 0
\(857\) 26.9229 26.9229i 0.919668 0.919668i −0.0773373 0.997005i \(-0.524642\pi\)
0.997005 + 0.0773373i \(0.0246418\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i −0.949906 0.312535i \(-0.898822\pi\)
0.949906 0.312535i \(-0.101178\pi\)
\(860\) 0 0
\(861\) 0.315849 + 0.972084i 0.0107641 + 0.0331285i
\(862\) 0 0
\(863\) 12.0033 1.90114i 0.408597 0.0647154i 0.0512472 0.998686i \(-0.483680\pi\)
0.357350 + 0.933971i \(0.383680\pi\)
\(864\) 0 0
\(865\) 25.6424 10.9253i 0.871866 0.371470i
\(866\) 0 0
\(867\) 2.56834 + 0.406785i 0.0872253 + 0.0138151i
\(868\) 0 0
\(869\) −0.139785 2.21935i −0.00474187 0.0752863i
\(870\) 0 0
\(871\) −10.6384 14.6425i −0.360469 0.496143i
\(872\) 0 0
\(873\) 1.48025 + 2.90515i 0.0500987 + 0.0983243i
\(874\) 0 0
\(875\) −2.13821 0.103409i −0.0722848 0.00349585i
\(876\) 0 0
\(877\) −11.4361 5.82698i −0.386169 0.196763i 0.250118 0.968215i \(-0.419531\pi\)
−0.636287 + 0.771452i \(0.719531\pi\)
\(878\) 0 0
\(879\) 5.76213 0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) 0 0
\(883\) −38.8377 19.7888i −1.30699 0.665947i −0.344893 0.938642i \(-0.612085\pi\)
−0.962100 + 0.272695i \(0.912085\pi\)
\(884\) 0 0
\(885\) −1.51858 17.0926i −0.0510465 0.574562i
\(886\) 0 0
\(887\) 4.72114 + 9.26576i 0.158520 + 0.311114i 0.956583 0.291461i \(-0.0941414\pi\)
−0.798062 + 0.602575i \(0.794141\pi\)
\(888\) 0 0
\(889\) 1.63945 + 2.25651i 0.0549853 + 0.0756808i
\(890\) 0 0
\(891\) −7.78863 9.41351i −0.260929 0.315364i
\(892\) 0 0
\(893\) 9.08308 + 1.43862i 0.303954 + 0.0481415i
\(894\) 0 0
\(895\) 41.8578 + 16.8462i 1.39915 + 0.563106i
\(896\) 0 0
\(897\) −3.96029 + 0.627249i −0.132230 + 0.0209432i
\(898\) 0 0
\(899\) 1.03530 + 3.18633i 0.0345292 + 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) 0 0
\(903\) −0.568922 + 0.568922i −0.0189325 + 0.0189325i
\(904\) 0 0
\(905\) 2.50710 + 9.99811i 0.0833388 + 0.332349i
\(906\) 0 0
\(907\) −2.55097 16.1062i −0.0847036 0.534798i −0.993155 0.116806i \(-0.962734\pi\)
0.908451 0.417991i \(-0.137266\pi\)
\(908\) 0 0
\(909\) −3.52571 + 10.8510i −0.116940 + 0.359906i
\(910\) 0 0
\(911\) −14.3281 + 10.4099i −0.474710 + 0.344897i −0.799274 0.600967i \(-0.794782\pi\)
0.324564 + 0.945864i \(0.394782\pi\)
\(912\) 0 0
\(913\) −50.7821 21.9712i −1.68064 0.727140i
\(914\) 0 0
\(915\) −10.2391 2.34939i −0.338495 0.0776683i
\(916\) 0 0
\(917\) −1.66665 + 0.849203i −0.0550378 + 0.0280431i
\(918\) 0 0
\(919\) 7.38632 + 5.36648i 0.243652 + 0.177024i 0.702909 0.711280i \(-0.251884\pi\)
−0.459257 + 0.888304i \(0.651884\pi\)
\(920\) 0 0
\(921\) 21.5818 7.01234i 0.711143 0.231064i
\(922\) 0 0
\(923\) −25.0888 25.0888i −0.825807 0.825807i
\(924\) 0 0
\(925\) −16.3231 21.5407i −0.536701 0.708254i
\(926\) 0 0
\(927\) 3.47505 6.82017i 0.114136 0.224004i
\(928\) 0 0
\(929\) 1.06529 1.46625i 0.0349511 0.0481061i −0.791184 0.611578i \(-0.790535\pi\)
0.826135 + 0.563472i \(0.190535\pi\)
\(930\) 0 0
\(931\) −4.92578 1.60048i −0.161436 0.0524537i
\(932\) 0 0
\(933\) 0.937332 5.91808i 0.0306869 0.193749i
\(934\) 0 0
\(935\) −24.5613 + 12.3429i −0.803240 + 0.403655i
\(936\) 0 0
\(937\) −2.37143 + 14.9726i −0.0774711 + 0.489133i 0.918195 + 0.396130i \(0.129647\pi\)
−0.995666 + 0.0930039i \(0.970353\pi\)
\(938\) 0 0
\(939\) 1.02061 + 0.331616i 0.0333063 + 0.0108219i
\(940\) 0 0
\(941\) −12.8308 + 17.6600i −0.418271 + 0.575701i −0.965211 0.261471i \(-0.915792\pi\)
0.546940 + 0.837172i \(0.315792\pi\)
\(942\) 0 0
\(943\) 4.93902 9.69338i 0.160837 0.315660i
\(944\) 0 0
\(945\) −1.82673 0.125268i −0.0594235 0.00407498i
\(946\) 0 0
\(947\) −6.90662 6.90662i −0.224435 0.224435i 0.585928 0.810363i \(-0.300730\pi\)
−0.810363 + 0.585928i \(0.800730\pi\)
\(948\) 0 0
\(949\) 7.07131 2.29761i 0.229545 0.0745835i
\(950\) 0 0
\(951\) 7.30875 + 5.31012i 0.237003 + 0.172192i
\(952\) 0 0
\(953\) −11.6216 + 5.92153i −0.376462 + 0.191817i −0.631975 0.774989i \(-0.717756\pi\)
0.255513 + 0.966806i \(0.417756\pi\)
\(954\) 0 0
\(955\) 11.9864 7.51238i 0.387871 0.243095i
\(956\) 0 0
\(957\) 5.50846 + 24.6354i 0.178063 + 0.796349i
\(958\) 0 0
\(959\) 0.670750 0.487328i 0.0216596 0.0157367i
\(960\) 0 0
\(961\) −9.54147 + 29.3656i −0.307789 + 0.947279i
\(962\) 0 0
\(963\) −4.08921 25.8182i −0.131773 0.831981i
\(964\) 0 0
\(965\) −6.81621 + 11.3787i −0.219422 + 0.366294i
\(966\) 0 0
\(967\) 13.6319 13.6319i 0.438372 0.438372i −0.453092 0.891464i \(-0.649679\pi\)
0.891464 + 0.453092i \(0.149679\pi\)
\(968\) 0 0
\(969\) 2.19785i 0.0706051i
\(970\) 0 0
\(971\) −1.26967 3.90765i −0.0407457 0.125403i 0.928615 0.371046i \(-0.121001\pi\)
−0.969360 + 0.245643i \(0.921001\pi\)
\(972\) 0 0
\(973\) −1.98769 + 0.314819i −0.0637224 + 0.0100926i
\(974\) 0 0
\(975\) 5.37941 11.1051i 0.172279 0.355649i
\(976\) 0 0
\(977\) 30.3314 + 4.80402i 0.970386 + 0.153694i 0.621451 0.783453i \(-0.286543\pi\)
0.348935 + 0.937147i \(0.386543\pi\)
\(978\) 0 0
\(979\) 22.1848 + 14.0768i 0.709030 + 0.449895i
\(980\) 0 0
\(981\) 13.2614 + 18.2528i 0.423405 + 0.582767i
\(982\) 0 0
\(983\) 12.5871 + 24.7035i 0.401465 + 0.787919i 0.999912 0.0132429i \(-0.00421546\pi\)
−0.598447 + 0.801162i \(0.704215\pi\)
\(984\) 0 0
\(985\) −31.1999 + 2.77194i −0.994113 + 0.0883212i
\(986\) 0 0
\(987\) −1.68162 0.856827i −0.0535265 0.0272731i
\(988\) 0 0
\(989\) 8.56376 0.272312
\(990\) 0 0
\(991\) −9.10087 −0.289099 −0.144549 0.989498i \(-0.546173\pi\)
−0.144549 + 0.989498i \(0.546173\pi\)
\(992\) 0 0
\(993\) −12.5763 6.40795i −0.399097 0.203350i
\(994\) 0 0
\(995\) 19.2044 22.9496i 0.608822 0.727551i
\(996\) 0 0
\(997\) 13.1070 + 25.7239i 0.415103 + 0.814685i 0.999994 + 0.00357282i \(0.00113727\pi\)
−0.584891 + 0.811112i \(0.698863\pi\)
\(998\) 0 0
\(999\) −13.5878 18.7019i −0.429898 0.591703i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.a.657.1 32
4.3 odd 2 55.2.l.a.52.1 yes 32
5.3 odd 4 inner 880.2.cm.a.833.4 32
11.7 odd 10 inner 880.2.cm.a.337.4 32
12.11 even 2 495.2.bj.a.217.4 32
20.3 even 4 55.2.l.a.8.4 yes 32
20.7 even 4 275.2.bm.b.118.1 32
20.19 odd 2 275.2.bm.b.107.4 32
44.3 odd 10 605.2.m.c.457.4 32
44.7 even 10 55.2.l.a.7.4 32
44.15 odd 10 605.2.m.e.282.1 32
44.19 even 10 605.2.m.d.457.1 32
44.27 odd 10 605.2.m.d.112.1 32
44.31 odd 10 605.2.e.b.362.14 32
44.35 even 10 605.2.e.b.362.3 32
44.39 even 10 605.2.m.c.112.4 32
44.43 even 2 605.2.m.e.602.4 32
55.18 even 20 inner 880.2.cm.a.513.1 32
60.23 odd 4 495.2.bj.a.118.1 32
132.95 odd 10 495.2.bj.a.172.1 32
220.3 even 20 605.2.m.c.578.4 32
220.7 odd 20 275.2.bm.b.18.4 32
220.43 odd 4 605.2.m.e.118.1 32
220.63 odd 20 605.2.m.d.578.1 32
220.83 odd 20 605.2.m.c.233.4 32
220.103 even 20 605.2.m.e.403.4 32
220.123 odd 20 605.2.e.b.483.14 32
220.139 even 10 275.2.bm.b.7.1 32
220.163 even 20 605.2.e.b.483.3 32
220.183 odd 20 55.2.l.a.18.1 yes 32
220.203 even 20 605.2.m.d.233.1 32
660.623 even 20 495.2.bj.a.73.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 44.7 even 10
55.2.l.a.8.4 yes 32 20.3 even 4
55.2.l.a.18.1 yes 32 220.183 odd 20
55.2.l.a.52.1 yes 32 4.3 odd 2
275.2.bm.b.7.1 32 220.139 even 10
275.2.bm.b.18.4 32 220.7 odd 20
275.2.bm.b.107.4 32 20.19 odd 2
275.2.bm.b.118.1 32 20.7 even 4
495.2.bj.a.73.4 32 660.623 even 20
495.2.bj.a.118.1 32 60.23 odd 4
495.2.bj.a.172.1 32 132.95 odd 10
495.2.bj.a.217.4 32 12.11 even 2
605.2.e.b.362.3 32 44.35 even 10
605.2.e.b.362.14 32 44.31 odd 10
605.2.e.b.483.3 32 220.163 even 20
605.2.e.b.483.14 32 220.123 odd 20
605.2.m.c.112.4 32 44.39 even 10
605.2.m.c.233.4 32 220.83 odd 20
605.2.m.c.457.4 32 44.3 odd 10
605.2.m.c.578.4 32 220.3 even 20
605.2.m.d.112.1 32 44.27 odd 10
605.2.m.d.233.1 32 220.203 even 20
605.2.m.d.457.1 32 44.19 even 10
605.2.m.d.578.1 32 220.63 odd 20
605.2.m.e.118.1 32 220.43 odd 4
605.2.m.e.282.1 32 44.15 odd 10
605.2.m.e.403.4 32 220.103 even 20
605.2.m.e.602.4 32 44.43 even 2
880.2.cm.a.337.4 32 11.7 odd 10 inner
880.2.cm.a.513.1 32 55.18 even 20 inner
880.2.cm.a.657.1 32 1.1 even 1 trivial
880.2.cm.a.833.4 32 5.3 odd 4 inner