Properties

Label 495.2.bj.a.73.4
Level $495$
Weight $2$
Character 495.73
Analytic conductor $3.953$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(28,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 73.4
Character \(\chi\) \(=\) 495.73
Dual form 495.2.bj.a.217.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.237790 + 1.50135i) q^{2} +(-0.295389 + 0.0959778i) q^{4} +(1.71486 - 1.43501i) q^{5} +(0.0869260 - 0.170602i) q^{7} +(1.16585 + 2.28811i) q^{8} +(2.56223 + 2.23337i) q^{10} +(-1.77694 - 2.80044i) q^{11} +(3.05749 - 0.484259i) q^{13} +(0.276803 + 0.0899388i) q^{14} +(-3.66057 + 2.65956i) q^{16} +(3.66088 + 0.579827i) q^{17} +(0.229844 - 0.707388i) q^{19} +(-0.368822 + 0.588475i) q^{20} +(3.78190 - 3.33373i) q^{22} +(1.14886 + 1.14886i) q^{23} +(0.881484 - 4.92169i) q^{25} +(1.45408 + 4.47521i) q^{26} +(-0.00930302 + 0.0587369i) q^{28} +(2.95025 + 9.07993i) q^{29} +(-0.283900 - 0.206266i) q^{31} +(-1.23166 - 1.23166i) q^{32} +5.63413i q^{34} +(-0.0957498 - 0.417298i) q^{35} +(-4.81621 - 2.45398i) q^{37} +(1.11669 + 0.176866i) q^{38} +(5.28274 + 2.25078i) q^{40} +(-6.36824 - 2.06917i) q^{41} +(-3.72708 + 3.72708i) q^{43} +(0.793670 + 0.656674i) q^{44} +(-1.45165 + 1.99802i) q^{46} +(-5.61318 - 11.0165i) q^{47} +(4.09295 + 5.63346i) q^{49} +(7.59877 + 0.153087i) q^{50} +(-0.856672 + 0.436496i) q^{52} +(1.41265 + 8.91914i) q^{53} +(-7.06587 - 2.25243i) q^{55} +0.491699 q^{56} +(-12.9306 + 6.58847i) q^{58} +(-9.15496 + 2.97463i) q^{59} +(-3.46383 - 4.76756i) q^{61} +(0.242168 - 0.475281i) q^{62} +(-3.76284 + 5.17911i) q^{64} +(4.54825 - 5.21797i) q^{65} +(4.13426 - 4.13426i) q^{67} +(-1.13704 + 0.180089i) q^{68} +(0.603742 - 0.242983i) q^{70} +(-9.27272 + 6.73702i) q^{71} +(2.14008 + 1.09042i) q^{73} +(2.53903 - 7.81434i) q^{74} +0.231015i q^{76} +(-0.632224 + 0.0597184i) q^{77} +(0.542434 + 0.394101i) q^{79} +(-2.46086 + 9.81373i) q^{80} +(1.59224 - 10.0530i) q^{82} +(2.60980 - 16.4776i) q^{83} +(7.10995 - 4.25908i) q^{85} +(-6.48191 - 4.70938i) q^{86} +(4.33608 - 7.33074i) q^{88} -7.92190i q^{89} +(0.183160 - 0.563709i) q^{91} +(-0.449625 - 0.229095i) q^{92} +(15.2048 - 11.0469i) q^{94} +(-0.620959 - 1.54290i) q^{95} +(-1.36201 + 0.215721i) q^{97} +(-7.48452 + 7.48452i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8} + 24 q^{11} - 10 q^{13} - 8 q^{16} - 16 q^{20} + 10 q^{22} + 24 q^{23} + 16 q^{25} - 20 q^{26} + 50 q^{28} - 28 q^{31} + 10 q^{35} - 8 q^{37} - 10 q^{38} - 50 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.237790 + 1.50135i 0.168143 + 1.06161i 0.917002 + 0.398884i \(0.130602\pi\)
−0.748859 + 0.662730i \(0.769398\pi\)
\(3\) 0 0
\(4\) −0.295389 + 0.0959778i −0.147695 + 0.0479889i
\(5\) 1.71486 1.43501i 0.766908 0.641757i
\(6\) 0 0
\(7\) 0.0869260 0.170602i 0.0328550 0.0644815i −0.873996 0.485934i \(-0.838480\pi\)
0.906851 + 0.421452i \(0.138480\pi\)
\(8\) 1.16585 + 2.28811i 0.412191 + 0.808970i
\(9\) 0 0
\(10\) 2.56223 + 2.23337i 0.810248 + 0.706253i
\(11\) −1.77694 2.80044i −0.535768 0.844365i
\(12\) 0 0
\(13\) 3.05749 0.484259i 0.847995 0.134309i 0.282711 0.959205i \(-0.408766\pi\)
0.565285 + 0.824896i \(0.308766\pi\)
\(14\) 0.276803 + 0.0899388i 0.0739787 + 0.0240372i
\(15\) 0 0
\(16\) −3.66057 + 2.65956i −0.915143 + 0.664890i
\(17\) 3.66088 + 0.579827i 0.887894 + 0.140629i 0.583688 0.811978i \(-0.301609\pi\)
0.304206 + 0.952606i \(0.401609\pi\)
\(18\) 0 0
\(19\) 0.229844 0.707388i 0.0527299 0.162286i −0.921224 0.389033i \(-0.872809\pi\)
0.973954 + 0.226747i \(0.0728091\pi\)
\(20\) −0.368822 + 0.588475i −0.0824710 + 0.131587i
\(21\) 0 0
\(22\) 3.78190 3.33373i 0.806304 0.710753i
\(23\) 1.14886 + 1.14886i 0.239553 + 0.239553i 0.816665 0.577112i \(-0.195820\pi\)
−0.577112 + 0.816665i \(0.695820\pi\)
\(24\) 0 0
\(25\) 0.881484 4.92169i 0.176297 0.984337i
\(26\) 1.45408 + 4.47521i 0.285169 + 0.877660i
\(27\) 0 0
\(28\) −0.00930302 + 0.0587369i −0.00175811 + 0.0111002i
\(29\) 2.95025 + 9.07993i 0.547847 + 1.68610i 0.714122 + 0.700021i \(0.246826\pi\)
−0.166275 + 0.986079i \(0.553174\pi\)
\(30\) 0 0
\(31\) −0.283900 0.206266i −0.0509900 0.0370464i 0.561998 0.827138i \(-0.310033\pi\)
−0.612988 + 0.790092i \(0.710033\pi\)
\(32\) −1.23166 1.23166i −0.217729 0.217729i
\(33\) 0 0
\(34\) 5.63413i 0.966246i
\(35\) −0.0957498 0.417298i −0.0161847 0.0705363i
\(36\) 0 0
\(37\) −4.81621 2.45398i −0.791780 0.403432i 0.0108264 0.999941i \(-0.496554\pi\)
−0.802606 + 0.596510i \(0.796554\pi\)
\(38\) 1.11669 + 0.176866i 0.181151 + 0.0286915i
\(39\) 0 0
\(40\) 5.28274 + 2.25078i 0.835274 + 0.355880i
\(41\) −6.36824 2.06917i −0.994552 0.323150i −0.233866 0.972269i \(-0.575138\pi\)
−0.760687 + 0.649119i \(0.775138\pi\)
\(42\) 0 0
\(43\) −3.72708 + 3.72708i −0.568374 + 0.568374i −0.931673 0.363299i \(-0.881650\pi\)
0.363299 + 0.931673i \(0.381650\pi\)
\(44\) 0.793670 + 0.656674i 0.119650 + 0.0989973i
\(45\) 0 0
\(46\) −1.45165 + 1.99802i −0.214034 + 0.294592i
\(47\) −5.61318 11.0165i −0.818766 1.60692i −0.794539 0.607213i \(-0.792287\pi\)
−0.0242272 0.999706i \(-0.507713\pi\)
\(48\) 0 0
\(49\) 4.09295 + 5.63346i 0.584707 + 0.804780i
\(50\) 7.59877 + 0.153087i 1.07463 + 0.0216497i
\(51\) 0 0
\(52\) −0.856672 + 0.436496i −0.118799 + 0.0605311i
\(53\) 1.41265 + 8.91914i 0.194043 + 1.22514i 0.871804 + 0.489855i \(0.162950\pi\)
−0.677761 + 0.735282i \(0.737050\pi\)
\(54\) 0 0
\(55\) −7.06587 2.25243i −0.952762 0.303718i
\(56\) 0.491699 0.0657061
\(57\) 0 0
\(58\) −12.9306 + 6.58847i −1.69787 + 0.865108i
\(59\) −9.15496 + 2.97463i −1.19187 + 0.387263i −0.836765 0.547562i \(-0.815556\pi\)
−0.355108 + 0.934825i \(0.615556\pi\)
\(60\) 0 0
\(61\) −3.46383 4.76756i −0.443498 0.610423i 0.527487 0.849563i \(-0.323134\pi\)
−0.970985 + 0.239140i \(0.923134\pi\)
\(62\) 0.242168 0.475281i 0.0307554 0.0603608i
\(63\) 0 0
\(64\) −3.76284 + 5.17911i −0.470356 + 0.647389i
\(65\) 4.54825 5.21797i 0.564141 0.647209i
\(66\) 0 0
\(67\) 4.13426 4.13426i 0.505081 0.505081i −0.407932 0.913012i \(-0.633750\pi\)
0.913012 + 0.407932i \(0.133750\pi\)
\(68\) −1.13704 + 0.180089i −0.137886 + 0.0218390i
\(69\) 0 0
\(70\) 0.603742 0.242983i 0.0721609 0.0290421i
\(71\) −9.27272 + 6.73702i −1.10047 + 0.799538i −0.981136 0.193317i \(-0.938075\pi\)
−0.119333 + 0.992854i \(0.538075\pi\)
\(72\) 0 0
\(73\) 2.14008 + 1.09042i 0.250477 + 0.127624i 0.574722 0.818349i \(-0.305110\pi\)
−0.324245 + 0.945973i \(0.605110\pi\)
\(74\) 2.53903 7.81434i 0.295156 0.908398i
\(75\) 0 0
\(76\) 0.231015i 0.0264992i
\(77\) −0.632224 + 0.0597184i −0.0720486 + 0.00680554i
\(78\) 0 0
\(79\) 0.542434 + 0.394101i 0.0610286 + 0.0443399i 0.617881 0.786271i \(-0.287991\pi\)
−0.556853 + 0.830611i \(0.687991\pi\)
\(80\) −2.46086 + 9.81373i −0.275133 + 1.09721i
\(81\) 0 0
\(82\) 1.59224 10.0530i 0.175833 1.11017i
\(83\) 2.60980 16.4776i 0.286463 1.80865i −0.253909 0.967228i \(-0.581716\pi\)
0.540372 0.841426i \(-0.318284\pi\)
\(84\) 0 0
\(85\) 7.10995 4.25908i 0.771183 0.461963i
\(86\) −6.48191 4.70938i −0.698962 0.507826i
\(87\) 0 0
\(88\) 4.33608 7.33074i 0.462227 0.781460i
\(89\) 7.92190i 0.839720i −0.907589 0.419860i \(-0.862079\pi\)
0.907589 0.419860i \(-0.137921\pi\)
\(90\) 0 0
\(91\) 0.183160 0.563709i 0.0192004 0.0590927i
\(92\) −0.449625 0.229095i −0.0468766 0.0238848i
\(93\) 0 0
\(94\) 15.2048 11.0469i 1.56826 1.13941i
\(95\) −0.620959 1.54290i −0.0637090 0.158298i
\(96\) 0 0
\(97\) −1.36201 + 0.215721i −0.138291 + 0.0219032i −0.225196 0.974313i \(-0.572302\pi\)
0.0869051 + 0.996217i \(0.472302\pi\)
\(98\) −7.48452 + 7.48452i −0.756051 + 0.756051i
\(99\) 0 0
\(100\) 0.211991 + 1.53842i 0.0211991 + 0.153842i
\(101\) 2.83633 3.90387i 0.282225 0.388449i −0.644244 0.764820i \(-0.722828\pi\)
0.926469 + 0.376370i \(0.122828\pi\)
\(102\) 0 0
\(103\) −1.46972 + 2.88449i −0.144816 + 0.284217i −0.952009 0.306071i \(-0.900986\pi\)
0.807193 + 0.590287i \(0.200986\pi\)
\(104\) 4.67262 + 6.43131i 0.458188 + 0.630641i
\(105\) 0 0
\(106\) −13.0548 + 4.24177i −1.26800 + 0.411997i
\(107\) 9.85055 5.01911i 0.952289 0.485215i 0.0924142 0.995721i \(-0.470542\pi\)
0.859875 + 0.510505i \(0.170542\pi\)
\(108\) 0 0
\(109\) −9.54212 −0.913969 −0.456985 0.889475i \(-0.651071\pi\)
−0.456985 + 0.889475i \(0.651071\pi\)
\(110\) 1.70149 11.1439i 0.162231 1.06253i
\(111\) 0 0
\(112\) 0.135527 + 0.855686i 0.0128061 + 0.0808547i
\(113\) −3.69562 + 1.88301i −0.347654 + 0.177139i −0.619094 0.785317i \(-0.712500\pi\)
0.271440 + 0.962455i \(0.412500\pi\)
\(114\) 0 0
\(115\) 3.61875 + 0.321505i 0.337450 + 0.0299805i
\(116\) −1.74294 2.39895i −0.161828 0.222737i
\(117\) 0 0
\(118\) −6.64291 13.0374i −0.611529 1.20019i
\(119\) 0.417145 0.574151i 0.0382397 0.0526324i
\(120\) 0 0
\(121\) −4.68496 + 9.95245i −0.425905 + 0.904768i
\(122\) 6.33410 6.33410i 0.573462 0.573462i
\(123\) 0 0
\(124\) 0.103658 + 0.0336805i 0.00930877 + 0.00302460i
\(125\) −5.55105 9.70494i −0.496501 0.868036i
\(126\) 0 0
\(127\) 14.3879 + 2.27881i 1.27672 + 0.202212i 0.757728 0.652570i \(-0.226309\pi\)
0.518987 + 0.854782i \(0.326309\pi\)
\(128\) −11.7744 5.99935i −1.04072 0.530273i
\(129\) 0 0
\(130\) 8.91552 + 5.58772i 0.781943 + 0.490076i
\(131\) 9.76926i 0.853544i 0.904359 + 0.426772i \(0.140349\pi\)
−0.904359 + 0.426772i \(0.859651\pi\)
\(132\) 0 0
\(133\) −0.100702 0.100702i −0.00873200 0.00873200i
\(134\) 7.19006 + 5.22388i 0.621126 + 0.451275i
\(135\) 0 0
\(136\) 2.94133 + 9.05250i 0.252217 + 0.776245i
\(137\) −0.677380 + 4.27681i −0.0578725 + 0.365392i 0.941708 + 0.336431i \(0.109220\pi\)
−0.999581 + 0.0289612i \(0.990780\pi\)
\(138\) 0 0
\(139\) −3.24794 9.99613i −0.275487 0.847860i −0.989090 0.147311i \(-0.952938\pi\)
0.713604 0.700550i \(-0.247062\pi\)
\(140\) 0.0683348 + 0.114076i 0.00577535 + 0.00964114i
\(141\) 0 0
\(142\) −12.3196 12.3196i −1.03384 1.03384i
\(143\) −6.78912 7.70183i −0.567735 0.644059i
\(144\) 0 0
\(145\) 18.0891 + 11.3372i 1.50221 + 0.941500i
\(146\) −1.12822 + 3.47229i −0.0933719 + 0.287369i
\(147\) 0 0
\(148\) 1.65818 + 0.262630i 0.136302 + 0.0215881i
\(149\) 4.66189 3.38706i 0.381917 0.277479i −0.380218 0.924897i \(-0.624151\pi\)
0.762135 + 0.647418i \(0.224151\pi\)
\(150\) 0 0
\(151\) −14.2318 4.62419i −1.15817 0.376311i −0.333953 0.942590i \(-0.608383\pi\)
−0.824214 + 0.566278i \(0.808383\pi\)
\(152\) 1.88655 0.298800i 0.153019 0.0242358i
\(153\) 0 0
\(154\) −0.239995 0.934987i −0.0193393 0.0753434i
\(155\) −0.782843 + 0.0536836i −0.0628795 + 0.00431197i
\(156\) 0 0
\(157\) −2.24640 4.40881i −0.179282 0.351861i 0.783824 0.620983i \(-0.213267\pi\)
−0.963106 + 0.269122i \(0.913267\pi\)
\(158\) −0.462698 + 0.908095i −0.0368103 + 0.0722442i
\(159\) 0 0
\(160\) −3.87958 0.344678i −0.306707 0.0272492i
\(161\) 0.295863 0.0961317i 0.0233173 0.00757624i
\(162\) 0 0
\(163\) −1.56695 9.89335i −0.122733 0.774907i −0.969886 0.243558i \(-0.921685\pi\)
0.847153 0.531349i \(-0.178315\pi\)
\(164\) 2.07970 0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) 1.88695 + 11.9137i 0.146017 + 0.921913i 0.946534 + 0.322604i \(0.104558\pi\)
−0.800517 + 0.599310i \(0.795442\pi\)
\(168\) 0 0
\(169\) −3.24999 + 1.05599i −0.250000 + 0.0812298i
\(170\) 8.08505 + 9.66175i 0.620095 + 0.741022i
\(171\) 0 0
\(172\) 0.743222 1.45866i 0.0566702 0.111221i
\(173\) 5.65903 + 11.1065i 0.430248 + 0.844410i 0.999749 + 0.0224186i \(0.00713665\pi\)
−0.569501 + 0.821991i \(0.692863\pi\)
\(174\) 0 0
\(175\) −0.763025 0.578206i −0.0576793 0.0437082i
\(176\) 13.9526 + 5.52533i 1.05171 + 0.416488i
\(177\) 0 0
\(178\) 11.8935 1.88375i 0.891458 0.141193i
\(179\) −19.1909 6.23551i −1.43440 0.466064i −0.514252 0.857639i \(-0.671930\pi\)
−0.920146 + 0.391575i \(0.871930\pi\)
\(180\) 0 0
\(181\) −3.72935 + 2.70953i −0.277200 + 0.201398i −0.717695 0.696357i \(-0.754803\pi\)
0.440495 + 0.897755i \(0.354803\pi\)
\(182\) 0.889877 + 0.140943i 0.0659620 + 0.0104474i
\(183\) 0 0
\(184\) −1.28932 + 3.96811i −0.0950497 + 0.292533i
\(185\) −11.7806 + 2.70308i −0.866127 + 0.198735i
\(186\) 0 0
\(187\) −4.88140 11.2824i −0.356963 0.825051i
\(188\) 2.71541 + 2.71541i 0.198042 + 0.198042i
\(189\) 0 0
\(190\) 2.16877 1.29916i 0.157339 0.0942511i
\(191\) −1.95493 6.01667i −0.141454 0.435351i 0.855084 0.518490i \(-0.173505\pi\)
−0.996538 + 0.0831389i \(0.973505\pi\)
\(192\) 0 0
\(193\) −0.927951 + 5.85885i −0.0667954 + 0.421729i 0.931519 + 0.363692i \(0.118484\pi\)
−0.998314 + 0.0580368i \(0.981516\pi\)
\(194\) −0.647745 1.99355i −0.0465054 0.143129i
\(195\) 0 0
\(196\) −1.74970 1.27123i −0.124979 0.0908022i
\(197\) −9.90515 9.90515i −0.705713 0.705713i 0.259918 0.965631i \(-0.416304\pi\)
−0.965631 + 0.259918i \(0.916304\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(200\) 12.2890 3.72102i 0.868967 0.263116i
\(201\) 0 0
\(202\) 6.53551 + 3.33001i 0.459837 + 0.234299i
\(203\) 1.80551 + 0.285964i 0.126722 + 0.0200708i
\(204\) 0 0
\(205\) −13.8899 + 5.59017i −0.970114 + 0.390434i
\(206\) −4.68010 1.52066i −0.326078 0.105949i
\(207\) 0 0
\(208\) −9.90424 + 9.90424i −0.686736 + 0.686736i
\(209\) −2.38942 + 0.613321i −0.165280 + 0.0424243i
\(210\) 0 0
\(211\) 3.48696 4.79939i 0.240052 0.330404i −0.671944 0.740602i \(-0.734540\pi\)
0.911996 + 0.410198i \(0.134540\pi\)
\(212\) −1.27332 2.49903i −0.0874521 0.171634i
\(213\) 0 0
\(214\) 9.87779 + 13.5956i 0.675232 + 0.929377i
\(215\) −1.04301 + 11.7398i −0.0711330 + 0.800649i
\(216\) 0 0
\(217\) −0.0598677 + 0.0305041i −0.00406408 + 0.00207075i
\(218\) −2.26902 14.3260i −0.153678 0.970282i
\(219\) 0 0
\(220\) 2.30337 0.0128223i 0.155293 0.000864476i
\(221\) 11.4739 0.771818
\(222\) 0 0
\(223\) −18.9389 + 9.64984i −1.26824 + 0.646201i −0.953046 0.302826i \(-0.902070\pi\)
−0.315195 + 0.949027i \(0.602070\pi\)
\(224\) −0.317188 + 0.103060i −0.0211930 + 0.00688602i
\(225\) 0 0
\(226\) −3.70584 5.10065i −0.246509 0.339290i
\(227\) −5.93372 + 11.6456i −0.393835 + 0.772944i −0.999745 0.0225888i \(-0.992809\pi\)
0.605910 + 0.795533i \(0.292809\pi\)
\(228\) 0 0
\(229\) 9.65796 13.2930i 0.638216 0.878429i −0.360303 0.932835i \(-0.617327\pi\)
0.998519 + 0.0544066i \(0.0173267\pi\)
\(230\) 0.377812 + 5.50946i 0.0249122 + 0.363283i
\(231\) 0 0
\(232\) −17.3363 + 17.3363i −1.13819 + 1.13819i
\(233\) 15.4510 2.44720i 1.01223 0.160321i 0.371779 0.928321i \(-0.378748\pi\)
0.640450 + 0.768000i \(0.278748\pi\)
\(234\) 0 0
\(235\) −25.4346 10.8367i −1.65917 0.706911i
\(236\) 2.41878 1.75734i 0.157449 0.114393i
\(237\) 0 0
\(238\) 0.961194 + 0.489753i 0.0623050 + 0.0317460i
\(239\) 1.63214 5.02322i 0.105575 0.324925i −0.884290 0.466938i \(-0.845357\pi\)
0.989865 + 0.142012i \(0.0453572\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i 0.853726 + 0.520722i \(0.174337\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(242\) −16.0561 4.66716i −1.03213 0.300016i
\(243\) 0 0
\(244\) 1.48076 + 1.07583i 0.0947959 + 0.0688732i
\(245\) 15.1029 + 3.78716i 0.964889 + 0.241953i
\(246\) 0 0
\(247\) 0.360188 2.27413i 0.0229182 0.144700i
\(248\) 0.140973 0.890071i 0.00895182 0.0565196i
\(249\) 0 0
\(250\) 13.2505 10.6418i 0.838036 0.673047i
\(251\) 15.6486 + 11.3694i 0.987729 + 0.717627i 0.959423 0.281972i \(-0.0909886\pi\)
0.0283063 + 0.999599i \(0.490989\pi\)
\(252\) 0 0
\(253\) 1.17586 5.25876i 0.0739254 0.330615i
\(254\) 22.1431i 1.38938i
\(255\) 0 0
\(256\) 2.25079 6.92722i 0.140674 0.432951i
\(257\) 4.19318 + 2.13653i 0.261563 + 0.133273i 0.579855 0.814720i \(-0.303109\pi\)
−0.318292 + 0.947993i \(0.603109\pi\)
\(258\) 0 0
\(259\) −0.837308 + 0.608340i −0.0520278 + 0.0378004i
\(260\) −0.842694 + 1.97786i −0.0522617 + 0.122662i
\(261\) 0 0
\(262\) −14.6671 + 2.32303i −0.906134 + 0.143517i
\(263\) −11.2218 + 11.2218i −0.691964 + 0.691964i −0.962664 0.270700i \(-0.912745\pi\)
0.270700 + 0.962664i \(0.412745\pi\)
\(264\) 0 0
\(265\) 15.2216 + 13.2679i 0.935053 + 0.815040i
\(266\) 0.127243 0.175135i 0.00780178 0.0107382i
\(267\) 0 0
\(268\) −0.824419 + 1.61801i −0.0503594 + 0.0988359i
\(269\) 6.64926 + 9.15192i 0.405412 + 0.558002i 0.962092 0.272725i \(-0.0879249\pi\)
−0.556680 + 0.830727i \(0.687925\pi\)
\(270\) 0 0
\(271\) 16.9556 5.50921i 1.02998 0.334661i 0.255198 0.966889i \(-0.417859\pi\)
0.774782 + 0.632228i \(0.217859\pi\)
\(272\) −14.9430 + 7.61384i −0.906052 + 0.461657i
\(273\) 0 0
\(274\) −6.58205 −0.397636
\(275\) −15.3492 + 6.27700i −0.925594 + 0.378517i
\(276\) 0 0
\(277\) 0.732361 + 4.62395i 0.0440033 + 0.277826i 0.999873 0.0159666i \(-0.00508253\pi\)
−0.955869 + 0.293793i \(0.905083\pi\)
\(278\) 14.2353 7.25327i 0.853779 0.435022i
\(279\) 0 0
\(280\) 0.843195 0.705594i 0.0503905 0.0421673i
\(281\) 7.75247 + 10.6704i 0.462474 + 0.636541i 0.975019 0.222119i \(-0.0712975\pi\)
−0.512546 + 0.858660i \(0.671297\pi\)
\(282\) 0 0
\(283\) 10.3449 + 20.3029i 0.614938 + 1.20688i 0.963022 + 0.269421i \(0.0868324\pi\)
−0.348084 + 0.937463i \(0.613168\pi\)
\(284\) 2.09246 2.88002i 0.124164 0.170898i
\(285\) 0 0
\(286\) 9.94874 12.0243i 0.588281 0.711009i
\(287\) −0.906570 + 0.906570i −0.0535131 + 0.0535131i
\(288\) 0 0
\(289\) −3.10211 1.00794i −0.182477 0.0592904i
\(290\) −12.7196 + 29.8538i −0.746922 + 1.75308i
\(291\) 0 0
\(292\) −0.736812 0.116700i −0.0431187 0.00682933i
\(293\) 6.43996 + 3.28132i 0.376226 + 0.191697i 0.631870 0.775074i \(-0.282287\pi\)
−0.255644 + 0.966771i \(0.582287\pi\)
\(294\) 0 0
\(295\) −11.4308 + 18.2385i −0.665529 + 1.06189i
\(296\) 13.8810i 0.806817i
\(297\) 0 0
\(298\) 6.19371 + 6.19371i 0.358792 + 0.358792i
\(299\) 4.06896 + 2.95628i 0.235314 + 0.170966i
\(300\) 0 0
\(301\) 0.311867 + 0.959827i 0.0179757 + 0.0553235i
\(302\) 3.55834 22.4665i 0.204759 1.29280i
\(303\) 0 0
\(304\) 1.03998 + 3.20073i 0.0596469 + 0.183574i
\(305\) −12.7815 3.20505i −0.731866 0.183521i
\(306\) 0 0
\(307\) 20.1272 + 20.1272i 1.14872 + 1.14872i 0.986804 + 0.161918i \(0.0517681\pi\)
0.161918 + 0.986804i \(0.448232\pi\)
\(308\) 0.181020 0.0783196i 0.0103146 0.00446267i
\(309\) 0 0
\(310\) −0.266750 1.16255i −0.0151504 0.0660286i
\(311\) 2.32254 7.14803i 0.131699 0.405328i −0.863363 0.504583i \(-0.831646\pi\)
0.995062 + 0.0992557i \(0.0316462\pi\)
\(312\) 0 0
\(313\) −1.32951 0.210574i −0.0751483 0.0119023i 0.118747 0.992925i \(-0.462112\pi\)
−0.193895 + 0.981022i \(0.562112\pi\)
\(314\) 6.08499 4.42100i 0.343396 0.249492i
\(315\) 0 0
\(316\) −0.198054 0.0643517i −0.0111414 0.00362006i
\(317\) 11.1924 1.77271i 0.628630 0.0995652i 0.166013 0.986124i \(-0.446911\pi\)
0.462617 + 0.886558i \(0.346911\pi\)
\(318\) 0 0
\(319\) 20.1854 24.3965i 1.13017 1.36594i
\(320\) 0.979335 + 14.2812i 0.0547465 + 0.798342i
\(321\) 0 0
\(322\) 0.214680 + 0.421334i 0.0119637 + 0.0234800i
\(323\) 1.25159 2.45639i 0.0696406 0.136677i
\(324\) 0 0
\(325\) 0.311760 15.4749i 0.0172934 0.858391i
\(326\) 14.4808 4.70509i 0.802015 0.260591i
\(327\) 0 0
\(328\) −2.68994 16.9836i −0.148527 0.937762i
\(329\) −2.36737 −0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) 0.810579 + 5.11780i 0.0444863 + 0.280876i
\(333\) 0 0
\(334\) −17.4380 + 5.66594i −0.954164 + 0.310027i
\(335\) 1.15696 13.0224i 0.0632117 0.711489i
\(336\) 0 0
\(337\) 3.45945 6.78954i 0.188448 0.369850i −0.777381 0.629030i \(-0.783452\pi\)
0.965829 + 0.259180i \(0.0834523\pi\)
\(338\) −2.35822 4.62827i −0.128270 0.251745i
\(339\) 0 0
\(340\) −1.69143 + 1.94049i −0.0917305 + 0.105238i
\(341\) −0.0731608 + 1.16157i −0.00396188 + 0.0629025i
\(342\) 0 0
\(343\) 2.64066 0.418239i 0.142582 0.0225828i
\(344\) −12.8732 4.18275i −0.694076 0.225519i
\(345\) 0 0
\(346\) −15.3290 + 11.1372i −0.824093 + 0.598739i
\(347\) 9.21879 + 1.46011i 0.494891 + 0.0783830i 0.398891 0.916998i \(-0.369395\pi\)
0.0959998 + 0.995381i \(0.469395\pi\)
\(348\) 0 0
\(349\) 0.464073 1.42827i 0.0248413 0.0764536i −0.937867 0.346994i \(-0.887202\pi\)
0.962709 + 0.270540i \(0.0872024\pi\)
\(350\) 0.686648 1.28306i 0.0367029 0.0685823i
\(351\) 0 0
\(352\) −1.26061 + 5.63779i −0.0671906 + 0.300495i
\(353\) −4.40229 4.40229i −0.234310 0.234310i 0.580179 0.814489i \(-0.302983\pi\)
−0.814489 + 0.580179i \(0.802983\pi\)
\(354\) 0 0
\(355\) −6.23370 + 24.8595i −0.330850 + 1.31941i
\(356\) 0.760327 + 2.34004i 0.0402972 + 0.124022i
\(357\) 0 0
\(358\) 4.79826 30.2950i 0.253596 1.60114i
\(359\) −8.12845 25.0168i −0.429003 1.32034i −0.899108 0.437726i \(-0.855784\pi\)
0.470105 0.882611i \(-0.344216\pi\)
\(360\) 0 0
\(361\) 14.9238 + 10.8427i 0.785461 + 0.570671i
\(362\) −4.95475 4.95475i −0.260416 0.260416i
\(363\) 0 0
\(364\) 0.184093i 0.00964908i
\(365\) 5.23470 1.20111i 0.273997 0.0628691i
\(366\) 0 0
\(367\) 7.27872 + 3.70869i 0.379946 + 0.193592i 0.633524 0.773723i \(-0.281608\pi\)
−0.253579 + 0.967315i \(0.581608\pi\)
\(368\) −7.26093 1.15002i −0.378502 0.0599488i
\(369\) 0 0
\(370\) −6.85958 17.0440i −0.356613 0.886077i
\(371\) 1.64442 + 0.534304i 0.0853740 + 0.0277397i
\(372\) 0 0
\(373\) 6.12473 6.12473i 0.317126 0.317126i −0.530536 0.847662i \(-0.678009\pi\)
0.847662 + 0.530536i \(0.178009\pi\)
\(374\) 15.7781 10.0115i 0.815864 0.517684i
\(375\) 0 0
\(376\) 18.6628 25.6872i 0.962461 1.32471i
\(377\) 13.4174 + 26.3331i 0.691031 + 1.35622i
\(378\) 0 0
\(379\) −0.363481 0.500288i −0.0186708 0.0256981i 0.799580 0.600560i \(-0.205056\pi\)
−0.818250 + 0.574862i \(0.805056\pi\)
\(380\) 0.331509 + 0.396158i 0.0170060 + 0.0203225i
\(381\) 0 0
\(382\) 8.56825 4.36574i 0.438390 0.223371i
\(383\) −1.62362 10.2511i −0.0829629 0.523807i −0.993813 0.111069i \(-0.964572\pi\)
0.910850 0.412738i \(-0.135428\pi\)
\(384\) 0 0
\(385\) −0.998478 + 1.00966i −0.0508871 + 0.0514569i
\(386\) −9.01683 −0.458945
\(387\) 0 0
\(388\) 0.381619 0.194444i 0.0193737 0.00987142i
\(389\) 21.0630 6.84378i 1.06794 0.346993i 0.278252 0.960508i \(-0.410245\pi\)
0.789683 + 0.613515i \(0.210245\pi\)
\(390\) 0 0
\(391\) 3.53969 + 4.87197i 0.179010 + 0.246386i
\(392\) −8.11822 + 15.9329i −0.410032 + 0.804733i
\(393\) 0 0
\(394\) 12.5157 17.2264i 0.630534 0.867855i
\(395\) 1.49574 0.102571i 0.0752587 0.00516089i
\(396\) 0 0
\(397\) 10.7769 10.7769i 0.540876 0.540876i −0.382910 0.923786i \(-0.625078\pi\)
0.923786 + 0.382910i \(0.125078\pi\)
\(398\) −20.0922 + 3.18229i −1.00713 + 0.159514i
\(399\) 0 0
\(400\) 9.86278 + 20.3605i 0.493139 + 1.01803i
\(401\) −3.46399 + 2.51673i −0.172983 + 0.125680i −0.670908 0.741540i \(-0.734096\pi\)
0.497925 + 0.867220i \(0.334096\pi\)
\(402\) 0 0
\(403\) −0.967909 0.493174i −0.0482150 0.0245668i
\(404\) −0.463135 + 1.42538i −0.0230418 + 0.0709155i
\(405\) 0 0
\(406\) 2.77869i 0.137904i
\(407\) 1.68589 + 17.8481i 0.0835664 + 0.884697i
\(408\) 0 0
\(409\) 3.47523 + 2.52490i 0.171839 + 0.124848i 0.670381 0.742017i \(-0.266131\pi\)
−0.498541 + 0.866866i \(0.666131\pi\)
\(410\) −11.6957 19.5243i −0.577608 0.964237i
\(411\) 0 0
\(412\) 0.157293 0.993106i 0.00774925 0.0489268i
\(413\) −0.288327 + 1.82043i −0.0141877 + 0.0895773i
\(414\) 0 0
\(415\) −19.1701 32.0019i −0.941025 1.57091i
\(416\) −4.36224 3.16935i −0.213876 0.155390i
\(417\) 0 0
\(418\) −1.48899 3.44151i −0.0728288 0.168330i
\(419\) 1.20241i 0.0587414i 0.999569 + 0.0293707i \(0.00935032\pi\)
−0.999569 + 0.0293707i \(0.990650\pi\)
\(420\) 0 0
\(421\) 9.67493 29.7764i 0.471527 1.45121i −0.379057 0.925373i \(-0.623752\pi\)
0.850584 0.525839i \(-0.176248\pi\)
\(422\) 8.03473 + 4.09390i 0.391124 + 0.199288i
\(423\) 0 0
\(424\) −18.7610 + 13.6307i −0.911117 + 0.661965i
\(425\) 6.08073 17.5066i 0.294959 0.849195i
\(426\) 0 0
\(427\) −1.11445 + 0.176512i −0.0539321 + 0.00854201i
\(428\) −2.42802 + 2.42802i −0.117363 + 0.117363i
\(429\) 0 0
\(430\) −17.8736 + 1.22568i −0.861940 + 0.0591078i
\(431\) 5.81395 8.00222i 0.280048 0.385453i −0.645702 0.763590i \(-0.723435\pi\)
0.925750 + 0.378137i \(0.123435\pi\)
\(432\) 0 0
\(433\) 12.2497 24.0414i 0.588683 1.15536i −0.384025 0.923323i \(-0.625462\pi\)
0.972708 0.232033i \(-0.0745378\pi\)
\(434\) −0.0600332 0.0826286i −0.00288169 0.00396630i
\(435\) 0 0
\(436\) 2.81864 0.915831i 0.134988 0.0438604i
\(437\) 1.07675 0.548629i 0.0515077 0.0262445i
\(438\) 0 0
\(439\) −24.5862 −1.17344 −0.586718 0.809791i \(-0.699580\pi\)
−0.586718 + 0.809791i \(0.699580\pi\)
\(440\) −3.08394 18.7935i −0.147021 0.895945i
\(441\) 0 0
\(442\) 2.72838 + 17.2263i 0.129776 + 0.819372i
\(443\) −27.4404 + 13.9816i −1.30373 + 0.664286i −0.961364 0.275279i \(-0.911230\pi\)
−0.342370 + 0.939565i \(0.611230\pi\)
\(444\) 0 0
\(445\) −11.3680 13.5849i −0.538896 0.643988i
\(446\) −18.9912 26.1392i −0.899262 1.23773i
\(447\) 0 0
\(448\) 0.556477 + 1.09215i 0.0262911 + 0.0515992i
\(449\) 4.30536 5.92582i 0.203182 0.279657i −0.695250 0.718768i \(-0.744707\pi\)
0.898433 + 0.439111i \(0.144707\pi\)
\(450\) 0 0
\(451\) 5.52141 + 21.5107i 0.259993 + 1.01290i
\(452\) 0.910918 0.910918i 0.0428460 0.0428460i
\(453\) 0 0
\(454\) −18.8951 6.13938i −0.886789 0.288135i
\(455\) −0.494835 1.22952i −0.0231982 0.0576407i
\(456\) 0 0
\(457\) −6.65265 1.05368i −0.311198 0.0492889i −0.00111791 0.999999i \(-0.500356\pi\)
−0.310080 + 0.950710i \(0.600356\pi\)
\(458\) 22.2540 + 11.3390i 1.03986 + 0.529837i
\(459\) 0 0
\(460\) −1.09980 + 0.252351i −0.0512783 + 0.0117659i
\(461\) 29.0801i 1.35440i 0.735801 + 0.677198i \(0.236806\pi\)
−0.735801 + 0.677198i \(0.763194\pi\)
\(462\) 0 0
\(463\) 17.5146 + 17.5146i 0.813970 + 0.813970i 0.985227 0.171256i \(-0.0547826\pi\)
−0.171256 + 0.985227i \(0.554783\pi\)
\(464\) −34.9482 25.3914i −1.62243 1.17876i
\(465\) 0 0
\(466\) 7.34819 + 22.6154i 0.340398 + 1.04764i
\(467\) 4.13890 26.1320i 0.191525 1.20924i −0.685237 0.728320i \(-0.740302\pi\)
0.876763 0.480923i \(-0.159698\pi\)
\(468\) 0 0
\(469\) −0.345938 1.06469i −0.0159739 0.0491627i
\(470\) 10.2216 40.7631i 0.471489 1.88026i
\(471\) 0 0
\(472\) −17.4796 17.4796i −0.804563 0.804563i
\(473\) 17.0603 + 3.81467i 0.784432 + 0.175399i
\(474\) 0 0
\(475\) −3.27894 1.75477i −0.150448 0.0805145i
\(476\) −0.0681145 + 0.209635i −0.00312202 + 0.00960860i
\(477\) 0 0
\(478\) 7.92972 + 1.25594i 0.362697 + 0.0574455i
\(479\) −21.2408 + 15.4324i −0.970519 + 0.705123i −0.955570 0.294765i \(-0.904759\pi\)
−0.0149492 + 0.999888i \(0.504759\pi\)
\(480\) 0 0
\(481\) −15.9139 5.17073i −0.725610 0.235765i
\(482\) −24.2731 + 3.84449i −1.10561 + 0.175112i
\(483\) 0 0
\(484\) 0.428672 3.38950i 0.0194851 0.154068i
\(485\) −2.02609 + 2.32443i −0.0920001 + 0.105547i
\(486\) 0 0
\(487\) 10.5939 + 20.7917i 0.480056 + 0.942163i 0.996318 + 0.0857326i \(0.0273231\pi\)
−0.516262 + 0.856431i \(0.672677\pi\)
\(488\) 6.87039 13.4839i 0.311008 0.610388i
\(489\) 0 0
\(490\) −2.09453 + 23.5753i −0.0946211 + 1.06502i
\(491\) −17.4497 + 5.66974i −0.787493 + 0.255872i −0.675036 0.737785i \(-0.735872\pi\)
−0.112457 + 0.993657i \(0.535872\pi\)
\(492\) 0 0
\(493\) 5.53572 + 34.9512i 0.249316 + 1.57412i
\(494\) 3.49992 0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) 0.343309 + 2.16757i 0.0153995 + 0.0972286i
\(498\) 0 0
\(499\) 11.1824 3.63339i 0.500595 0.162653i −0.0478260 0.998856i \(-0.515229\pi\)
0.548421 + 0.836203i \(0.315229\pi\)
\(500\) 2.57118 + 2.33396i 0.114987 + 0.104378i
\(501\) 0 0
\(502\) −13.3483 + 26.1975i −0.595763 + 1.16925i
\(503\) 2.42460 + 4.75855i 0.108108 + 0.212173i 0.938722 0.344674i \(-0.112011\pi\)
−0.830615 + 0.556848i \(0.812011\pi\)
\(504\) 0 0
\(505\) −0.738195 10.7647i −0.0328492 0.479025i
\(506\) 8.17484 + 0.514888i 0.363416 + 0.0228896i
\(507\) 0 0
\(508\) −4.46873 + 0.707777i −0.198268 + 0.0314025i
\(509\) 18.6283 + 6.05272i 0.825687 + 0.268282i 0.691228 0.722637i \(-0.257070\pi\)
0.134459 + 0.990919i \(0.457070\pi\)
\(510\) 0 0
\(511\) 0.372057 0.270315i 0.0164588 0.0119580i
\(512\) −15.1686 2.40248i −0.670365 0.106175i
\(513\) 0 0
\(514\) −2.21058 + 6.80347i −0.0975046 + 0.300088i
\(515\) 1.61891 + 7.05555i 0.0713376 + 0.310905i
\(516\) 0 0
\(517\) −20.8767 + 35.2950i −0.918158 + 1.55227i
\(518\) −1.11243 1.11243i −0.0488775 0.0488775i
\(519\) 0 0
\(520\) 17.2419 + 4.32353i 0.756106 + 0.189599i
\(521\) −5.78913 17.8171i −0.253626 0.780582i −0.994097 0.108493i \(-0.965397\pi\)
0.740471 0.672089i \(-0.234603\pi\)
\(522\) 0 0
\(523\) 0.403961 2.55051i 0.0176640 0.111526i −0.977281 0.211948i \(-0.932019\pi\)
0.994945 + 0.100422i \(0.0320193\pi\)
\(524\) −0.937631 2.88573i −0.0409606 0.126064i
\(525\) 0 0
\(526\) −19.5162 14.1794i −0.850948 0.618250i
\(527\) −0.919727 0.919727i −0.0400639 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) −16.3002 + 26.0078i −0.708035 + 1.12971i
\(531\) 0 0
\(532\) 0.0394115 + 0.0200812i 0.00170871 + 0.000870630i
\(533\) −20.4729 3.24258i −0.886778 0.140452i
\(534\) 0 0
\(535\) 9.68984 22.7427i 0.418928 0.983253i
\(536\) 14.2796 + 4.63972i 0.616784 + 0.200405i
\(537\) 0 0
\(538\) −12.1591 + 12.1591i −0.524216 + 0.524216i
\(539\) 8.50325 21.4724i 0.366261 0.924881i
\(540\) 0 0
\(541\) 5.42829 7.47139i 0.233380 0.321220i −0.676224 0.736696i \(-0.736385\pi\)
0.909604 + 0.415476i \(0.136385\pi\)
\(542\) 12.3031 + 24.1462i 0.528464 + 1.03717i
\(543\) 0 0
\(544\) −3.79482 5.22312i −0.162701 0.223939i
\(545\) −16.3634 + 13.6931i −0.700931 + 0.586546i
\(546\) 0 0
\(547\) 0.954295 0.486237i 0.0408027 0.0207900i −0.433470 0.901168i \(-0.642711\pi\)
0.474273 + 0.880378i \(0.342711\pi\)
\(548\) −0.210388 1.32834i −0.00898732 0.0567437i
\(549\) 0 0
\(550\) −13.0739 21.5519i −0.557471 0.918978i
\(551\) 7.10113 0.302518
\(552\) 0 0
\(553\) 0.114386 0.0582826i 0.00486419 0.00247843i
\(554\) −6.76800 + 2.19906i −0.287545 + 0.0934290i
\(555\) 0 0
\(556\) 1.91881 + 2.64102i 0.0813758 + 0.112004i
\(557\) 19.5384 38.3462i 0.827868 1.62478i 0.0479915 0.998848i \(-0.484718\pi\)
0.779876 0.625934i \(-0.215282\pi\)
\(558\) 0 0
\(559\) −9.59064 + 13.2004i −0.405641 + 0.558316i
\(560\) 1.46033 + 1.27290i 0.0617102 + 0.0537897i
\(561\) 0 0
\(562\) −14.1765 + 14.1765i −0.597998 + 0.597998i
\(563\) 25.5439 4.04575i 1.07655 0.170508i 0.407111 0.913379i \(-0.366536\pi\)
0.669435 + 0.742871i \(0.266536\pi\)
\(564\) 0 0
\(565\) −3.63532 + 8.53235i −0.152939 + 0.358959i
\(566\) −28.0219 + 20.3591i −1.17785 + 0.855756i
\(567\) 0 0
\(568\) −26.2257 13.3626i −1.10040 0.560684i
\(569\) −8.39651 + 25.8418i −0.352000 + 1.08334i 0.605729 + 0.795671i \(0.292882\pi\)
−0.957729 + 0.287673i \(0.907118\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i −0.529308 0.848430i \(-0.677549\pi\)
0.529308 0.848430i \(-0.322451\pi\)
\(572\) 2.74464 + 1.62343i 0.114759 + 0.0678791i
\(573\) 0 0
\(574\) −1.57665 1.14550i −0.0658081 0.0478124i
\(575\) 6.66701 4.64161i 0.278034 0.193569i
\(576\) 0 0
\(577\) 5.28872 33.3917i 0.220172 1.39011i −0.591643 0.806200i \(-0.701521\pi\)
0.811815 0.583914i \(-0.198479\pi\)
\(578\) 0.775613 4.89703i 0.0322612 0.203689i
\(579\) 0 0
\(580\) −6.43143 1.61273i −0.267051 0.0669649i
\(581\) −2.58426 1.87757i −0.107213 0.0778948i
\(582\) 0 0
\(583\) 22.4673 19.8048i 0.930502 0.820233i
\(584\) 6.16801i 0.255234i
\(585\) 0 0
\(586\) −3.39505 + 10.4489i −0.140248 + 0.431640i
\(587\) −8.62859 4.39649i −0.356140 0.181462i 0.266762 0.963763i \(-0.414046\pi\)
−0.622902 + 0.782300i \(0.714046\pi\)
\(588\) 0 0
\(589\) −0.211163 + 0.153419i −0.00870081 + 0.00632151i
\(590\) −30.1005 12.8247i −1.23922 0.527986i
\(591\) 0 0
\(592\) 24.1566 3.82603i 0.992829 0.157249i
\(593\) 14.0452 14.0452i 0.576769 0.576769i −0.357243 0.934012i \(-0.616283\pi\)
0.934012 + 0.357243i \(0.116283\pi\)
\(594\) 0 0
\(595\) −0.108568 1.58320i −0.00445086 0.0649048i
\(596\) −1.05199 + 1.44794i −0.0430912 + 0.0593099i
\(597\) 0 0
\(598\) −3.47084 + 6.81191i −0.141933 + 0.278560i
\(599\) −2.65433 3.65338i −0.108453 0.149273i 0.751340 0.659915i \(-0.229408\pi\)
−0.859793 + 0.510642i \(0.829408\pi\)
\(600\) 0 0
\(601\) −7.96746 + 2.58878i −0.324999 + 0.105599i −0.466973 0.884272i \(-0.654655\pi\)
0.141973 + 0.989871i \(0.454655\pi\)
\(602\) −1.36688 + 0.696458i −0.0557097 + 0.0283855i
\(603\) 0 0
\(604\) 4.64774 0.189114
\(605\) 6.24783 + 23.7900i 0.254011 + 0.967201i
\(606\) 0 0
\(607\) 1.20123 + 7.58425i 0.0487563 + 0.307835i 1.00000 0.000605683i \(-0.000192795\pi\)
−0.951244 + 0.308441i \(0.900193\pi\)
\(608\) −1.15435 + 0.588172i −0.0468152 + 0.0238535i
\(609\) 0 0
\(610\) 1.77258 19.9516i 0.0717698 0.807816i
\(611\) −22.4971 30.9646i −0.910134 1.25269i
\(612\) 0 0
\(613\) 19.4882 + 38.2477i 0.787120 + 1.54481i 0.837726 + 0.546091i \(0.183885\pi\)
−0.0506058 + 0.998719i \(0.516115\pi\)
\(614\) −25.4319 + 35.0041i −1.02635 + 1.41265i
\(615\) 0 0
\(616\) −0.873721 1.37698i −0.0352032 0.0554799i
\(617\) −33.4407 + 33.4407i −1.34627 + 1.34627i −0.456601 + 0.889671i \(0.650933\pi\)
−0.889671 + 0.456601i \(0.849067\pi\)
\(618\) 0 0
\(619\) −20.0674 6.52029i −0.806576 0.262073i −0.123429 0.992353i \(-0.539389\pi\)
−0.683147 + 0.730281i \(0.739389\pi\)
\(620\) 0.226091 0.0909931i 0.00908003 0.00365437i
\(621\) 0 0
\(622\) 11.2840 + 1.78720i 0.452445 + 0.0716603i
\(623\) −1.35149 0.688620i −0.0541464 0.0275890i
\(624\) 0 0
\(625\) −23.4460 8.67678i −0.937839 0.347071i
\(626\) 2.04613i 0.0817798i
\(627\) 0 0
\(628\) 1.08671 + 1.08671i 0.0433645 + 0.0433645i
\(629\) −16.2087 11.7763i −0.646282 0.469552i
\(630\) 0 0
\(631\) −8.72043 26.8387i −0.347155 1.06843i −0.960420 0.278555i \(-0.910144\pi\)
0.613265 0.789877i \(-0.289856\pi\)
\(632\) −0.269351 + 1.70061i −0.0107142 + 0.0676467i
\(633\) 0 0
\(634\) 5.32290 + 16.3822i 0.211399 + 0.650621i
\(635\) 27.9433 16.7389i 1.10889 0.664263i
\(636\) 0 0
\(637\) 15.2422 + 15.2422i 0.603918 + 0.603918i
\(638\) 41.4275 + 24.5041i 1.64013 + 0.970125i
\(639\) 0 0
\(640\) −28.8006 + 6.60834i −1.13844 + 0.261218i
\(641\) 5.23436 16.1097i 0.206745 0.636295i −0.792893 0.609362i \(-0.791426\pi\)
0.999637 0.0269333i \(-0.00857417\pi\)
\(642\) 0 0
\(643\) 6.19838 + 0.981726i 0.244440 + 0.0387155i 0.277452 0.960739i \(-0.410510\pi\)
−0.0330121 + 0.999455i \(0.510510\pi\)
\(644\) −0.0781682 + 0.0567925i −0.00308026 + 0.00223794i
\(645\) 0 0
\(646\) 3.98552 + 1.29497i 0.156808 + 0.0509500i
\(647\) 42.9518 6.80289i 1.68861 0.267449i 0.763128 0.646247i \(-0.223662\pi\)
0.925479 + 0.378798i \(0.123662\pi\)
\(648\) 0 0
\(649\) 24.5981 + 20.3522i 0.965559 + 0.798893i
\(650\) 23.3073 3.21171i 0.914188 0.125974i
\(651\) 0 0
\(652\) 1.41240 + 2.77200i 0.0553140 + 0.108560i
\(653\) 4.41780 8.67042i 0.172882 0.339300i −0.788266 0.615335i \(-0.789021\pi\)
0.961147 + 0.276035i \(0.0890207\pi\)
\(654\) 0 0
\(655\) 14.0190 + 16.7529i 0.547767 + 0.654590i
\(656\) 28.8145 9.36239i 1.12502 0.365540i
\(657\) 0 0
\(658\) −0.562936 3.55424i −0.0219455 0.138559i
\(659\) 3.37375 0.131423 0.0657113 0.997839i \(-0.479068\pi\)
0.0657113 + 0.997839i \(0.479068\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) −4.21003 26.5811i −0.163628 1.03310i
\(663\) 0 0
\(664\) 40.7453 13.2389i 1.58122 0.513771i
\(665\) −0.317199 0.0281813i −0.0123005 0.00109282i
\(666\) 0 0
\(667\) −7.04213 + 13.8210i −0.272672 + 0.535150i
\(668\) −1.70084 3.33809i −0.0658075 0.129154i
\(669\) 0 0
\(670\) 19.8263 1.35959i 0.765955 0.0525256i
\(671\) −7.19624 + 18.1719i −0.277808 + 0.701520i
\(672\) 0 0
\(673\) −37.7823 + 5.98412i −1.45640 + 0.230671i −0.833885 0.551938i \(-0.813889\pi\)
−0.622514 + 0.782609i \(0.713889\pi\)
\(674\) 11.0161 + 3.57935i 0.424324 + 0.137871i
\(675\) 0 0
\(676\) 0.858662 0.623855i 0.0330255 0.0239944i
\(677\) 31.7956 + 5.03592i 1.22200 + 0.193546i 0.733911 0.679246i \(-0.237693\pi\)
0.488092 + 0.872792i \(0.337693\pi\)
\(678\) 0 0
\(679\) −0.0815917 + 0.251113i −0.00313120 + 0.00963684i
\(680\) 18.0344 + 11.3029i 0.691588 + 0.433447i
\(681\) 0 0
\(682\) −1.76132 + 0.166370i −0.0674443 + 0.00637063i
\(683\) 28.7223 + 28.7223i 1.09903 + 1.09903i 0.994524 + 0.104505i \(0.0333260\pi\)
0.104505 + 0.994524i \(0.466674\pi\)
\(684\) 0 0
\(685\) 4.97566 + 8.30617i 0.190110 + 0.317363i
\(686\) 1.25585 + 3.86510i 0.0479484 + 0.147570i
\(687\) 0 0
\(688\) 3.73084 23.5556i 0.142237 0.898050i
\(689\) 8.63834 + 26.5861i 0.329095 + 1.01285i
\(690\) 0 0
\(691\) 20.4397 + 14.8503i 0.777564 + 0.564933i 0.904247 0.427010i \(-0.140433\pi\)
−0.126683 + 0.991943i \(0.540433\pi\)
\(692\) −2.73759 2.73759i −0.104068 0.104068i
\(693\) 0 0
\(694\) 14.1878i 0.538562i
\(695\) −19.9143 12.4811i −0.755393 0.473436i
\(696\) 0 0
\(697\) −22.1136 11.2675i −0.837613 0.426785i
\(698\) 2.25468 + 0.357107i 0.0853410 + 0.0135167i
\(699\) 0 0
\(700\) 0.280884 + 0.0975622i 0.0106164 + 0.00368751i
\(701\) −26.8458 8.72273i −1.01395 0.329453i −0.245525 0.969390i \(-0.578960\pi\)
−0.768427 + 0.639937i \(0.778960\pi\)
\(702\) 0 0
\(703\) −2.84289 + 2.84289i −0.107222 + 0.107222i
\(704\) 21.1902 + 1.33465i 0.798634 + 0.0503015i
\(705\) 0 0
\(706\) 5.56255 7.65620i 0.209349 0.288145i
\(707\) −0.419457 0.823230i −0.0157753 0.0309608i
\(708\) 0 0
\(709\) 4.79615 + 6.60134i 0.180123 + 0.247918i 0.889526 0.456885i \(-0.151035\pi\)
−0.709402 + 0.704804i \(0.751035\pi\)
\(710\) −38.8051 3.44761i −1.45633 0.129386i
\(711\) 0 0
\(712\) 18.1262 9.23576i 0.679308 0.346125i
\(713\) −0.0891912 0.563131i −0.00334024 0.0210894i
\(714\) 0 0
\(715\) −22.6946 3.46508i −0.848730 0.129587i
\(716\) 6.26727 0.234219
\(717\) 0 0
\(718\) 35.6261 18.1524i 1.32955 0.677441i
\(719\) −0.986856 + 0.320649i −0.0368035 + 0.0119582i −0.327361 0.944899i \(-0.606159\pi\)
0.290557 + 0.956858i \(0.406159\pi\)
\(720\) 0 0
\(721\) 0.364342 + 0.501474i 0.0135688 + 0.0186759i
\(722\) −12.7300 + 24.9840i −0.473762 + 0.929810i
\(723\) 0 0
\(724\) 0.841554 1.15830i 0.0312761 0.0430479i
\(725\) 47.2892 6.51637i 1.75627 0.242012i
\(726\) 0 0
\(727\) −3.27903 + 3.27903i −0.121612 + 0.121612i −0.765294 0.643681i \(-0.777406\pi\)
0.643681 + 0.765294i \(0.277406\pi\)
\(728\) 1.50337 0.238110i 0.0557184 0.00882493i
\(729\) 0 0
\(730\) 3.04805 + 7.57350i 0.112813 + 0.280308i
\(731\) −15.8055 + 11.4833i −0.584586 + 0.424726i
\(732\) 0 0
\(733\) 40.6968 + 20.7361i 1.50317 + 0.765904i 0.995420 0.0956003i \(-0.0304771\pi\)
0.507751 + 0.861504i \(0.330477\pi\)
\(734\) −3.83723 + 11.8098i −0.141635 + 0.435907i
\(735\) 0 0
\(736\) 2.83001i 0.104315i
\(737\) −18.9241 4.23142i −0.697079 0.155866i
\(738\) 0 0
\(739\) −3.07164 2.23167i −0.112992 0.0820934i 0.529854 0.848089i \(-0.322247\pi\)
−0.642846 + 0.765995i \(0.722247\pi\)
\(740\) 3.22043 1.92914i 0.118385 0.0709165i
\(741\) 0 0
\(742\) −0.411150 + 2.59590i −0.0150938 + 0.0952984i
\(743\) −6.63736 + 41.9067i −0.243501 + 1.53741i 0.498430 + 0.866930i \(0.333910\pi\)
−0.741931 + 0.670476i \(0.766090\pi\)
\(744\) 0 0
\(745\) 3.13401 12.4982i 0.114821 0.457899i
\(746\) 10.6517 + 7.73895i 0.389988 + 0.283343i
\(747\) 0 0
\(748\) 2.52477 + 2.86419i 0.0923149 + 0.104725i
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) −3.08775 + 9.50312i −0.112674 + 0.346774i −0.991455 0.130451i \(-0.958357\pi\)
0.878781 + 0.477225i \(0.158357\pi\)
\(752\) 49.8464 + 25.3980i 1.81771 + 0.926171i
\(753\) 0 0
\(754\) −36.3446 + 26.4059i −1.32359 + 0.961647i
\(755\) −31.0413 + 12.4930i −1.12971 + 0.454665i
\(756\) 0 0
\(757\) 29.0217 4.59658i 1.05481 0.167065i 0.395140 0.918621i \(-0.370696\pi\)
0.659670 + 0.751555i \(0.270696\pi\)
\(758\) 0.664675 0.664675i 0.0241421 0.0241421i
\(759\) 0 0
\(760\) 2.80638 3.21961i 0.101798 0.116788i
\(761\) 17.8404 24.5552i 0.646713 0.890124i −0.352238 0.935910i \(-0.614579\pi\)
0.998951 + 0.0457864i \(0.0145794\pi\)
\(762\) 0 0
\(763\) −0.829459 + 1.62790i −0.0300284 + 0.0589341i
\(764\) 1.15493 + 1.58963i 0.0417840 + 0.0575107i
\(765\) 0 0
\(766\) 15.0044 4.87523i 0.542131 0.176149i
\(767\) −26.5507 + 13.5283i −0.958690 + 0.488477i
\(768\) 0 0
\(769\) 37.6421 1.35741 0.678705 0.734411i \(-0.262542\pi\)
0.678705 + 0.734411i \(0.262542\pi\)
\(770\) −1.75327 1.25898i −0.0631836 0.0453704i
\(771\) 0 0
\(772\) −0.288213 1.81970i −0.0103730 0.0654926i
\(773\) −22.9995 + 11.7188i −0.827234 + 0.421497i −0.815727 0.578437i \(-0.803663\pi\)
−0.0115072 + 0.999934i \(0.503663\pi\)
\(774\) 0 0
\(775\) −1.26543 + 1.21545i −0.0454555 + 0.0436602i
\(776\) −2.08149 2.86493i −0.0747213 0.102845i
\(777\) 0 0
\(778\) 15.2835 + 29.9955i 0.547939 + 1.07539i
\(779\) −2.92741 + 4.02923i −0.104885 + 0.144362i
\(780\) 0 0
\(781\) 35.3437 + 13.9964i 1.26470 + 0.500831i
\(782\) −6.47282 + 6.47282i −0.231467 + 0.231467i
\(783\) 0 0
\(784\) −29.9651 9.73624i −1.07018 0.347723i
\(785\) −10.1790 4.33688i −0.363302 0.154790i
\(786\) 0 0
\(787\) −17.0625 2.70244i −0.608213 0.0963315i −0.155272 0.987872i \(-0.549625\pi\)
−0.452942 + 0.891540i \(0.649625\pi\)
\(788\) 3.87655 + 1.97520i 0.138096 + 0.0703636i
\(789\) 0 0
\(790\) 0.509666 + 2.22123i 0.0181331 + 0.0790279i
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 12.8994i −0.458070 0.458070i
\(794\) 18.7425 + 13.6172i 0.665145 + 0.483256i
\(795\) 0 0
\(796\) −1.28445 3.95313i −0.0455261 0.140115i
\(797\) 6.97213 44.0203i 0.246965 1.55928i −0.482892 0.875680i \(-0.660414\pi\)
0.729858 0.683599i \(-0.239586\pi\)
\(798\) 0 0
\(799\) −14.1615 43.5847i −0.500999 1.54192i
\(800\) −7.14755 + 4.97616i −0.252704 + 0.175934i
\(801\) 0 0
\(802\) −4.60219 4.60219i −0.162509 0.162509i
\(803\) −0.749124 7.93078i −0.0264360 0.279871i
\(804\) 0 0
\(805\) 0.369413 0.589419i 0.0130201 0.0207743i
\(806\) 0.510267 1.57044i 0.0179734 0.0553164i
\(807\) 0 0
\(808\) 12.2392 + 1.93850i 0.430574 + 0.0681962i
\(809\) −12.3255 + 8.95497i −0.433340 + 0.314840i −0.782983 0.622043i \(-0.786303\pi\)
0.349643 + 0.936883i \(0.386303\pi\)
\(810\) 0 0
\(811\) −43.3276 14.0780i −1.52144 0.494345i −0.575253 0.817976i \(-0.695096\pi\)
−0.946183 + 0.323631i \(0.895096\pi\)
\(812\) −0.560774 + 0.0888178i −0.0196793 + 0.00311689i
\(813\) 0 0
\(814\) −26.3953 + 6.77521i −0.925155 + 0.237471i
\(815\) −16.8842 14.7171i −0.591427 0.515518i
\(816\) 0 0
\(817\) 1.77984 + 3.49314i 0.0622688 + 0.122209i
\(818\) −2.96438 + 5.81793i −0.103647 + 0.203419i
\(819\) 0 0
\(820\) 3.56640 2.98440i 0.124544 0.104220i
\(821\) 27.3071 8.87260i 0.953023 0.309656i 0.209079 0.977899i \(-0.432953\pi\)
0.743943 + 0.668243i \(0.232953\pi\)
\(822\) 0 0
\(823\) −4.21701 26.6252i −0.146996 0.928095i −0.945386 0.325954i \(-0.894314\pi\)
0.798390 0.602141i \(-0.205686\pi\)
\(824\) −8.31350 −0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) 6.20779 + 39.1944i 0.215866 + 1.36292i 0.822872 + 0.568227i \(0.192370\pi\)
−0.607006 + 0.794697i \(0.707630\pi\)
\(828\) 0 0
\(829\) 10.3353 3.35814i 0.358959 0.116633i −0.123985 0.992284i \(-0.539567\pi\)
0.482944 + 0.875651i \(0.339567\pi\)
\(830\) 43.4875 36.3908i 1.50947 1.26314i
\(831\) 0 0
\(832\) −8.99683 + 17.6573i −0.311909 + 0.612156i
\(833\) 11.7174 + 22.9966i 0.405983 + 0.796786i
\(834\) 0 0
\(835\) 20.3322 + 17.7226i 0.703625 + 0.613316i
\(836\) 0.646943 0.410500i 0.0223750 0.0141974i
\(837\) 0 0
\(838\) −1.80523 + 0.285920i −0.0623606 + 0.00987695i
\(839\) 38.3426 + 12.4583i 1.32373 + 0.430107i 0.883775 0.467912i \(-0.154993\pi\)
0.439958 + 0.898019i \(0.354993\pi\)
\(840\) 0 0
\(841\) −50.2797 + 36.5303i −1.73378 + 1.25967i
\(842\) 47.0053 + 7.44491i 1.61991 + 0.256569i
\(843\) 0 0
\(844\) −0.569376 + 1.75236i −0.0195987 + 0.0603187i
\(845\) −4.05793 + 6.47465i −0.139597 + 0.222735i
\(846\) 0 0
\(847\) 1.29066 + 1.66439i 0.0443477 + 0.0571891i
\(848\) −28.8921 28.8921i −0.992159 0.992159i
\(849\) 0 0
\(850\) 27.7294 + 4.96640i 0.951112 + 0.170346i
\(851\) −2.71386 8.35241i −0.0930300 0.286317i
\(852\) 0 0
\(853\) −2.18326 + 13.7845i −0.0747533 + 0.471974i 0.921705 + 0.387890i \(0.126796\pi\)
−0.996459 + 0.0840831i \(0.973204\pi\)
\(854\) −0.530012 1.63121i −0.0181366 0.0558188i
\(855\) 0 0
\(856\) 22.9686 + 16.6876i 0.785049 + 0.570372i
\(857\) −26.9229 26.9229i −0.919668 0.919668i 0.0773373 0.997005i \(-0.475358\pi\)
−0.997005 + 0.0773373i \(0.975358\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i −0.949906 0.312535i \(-0.898822\pi\)
0.949906 0.312535i \(-0.101178\pi\)
\(860\) −0.818666 3.56792i −0.0279163 0.121665i
\(861\) 0 0
\(862\) 13.3966 + 6.82592i 0.456291 + 0.232492i
\(863\) 12.0033 + 1.90114i 0.408597 + 0.0647154i 0.357350 0.933971i \(-0.383680\pi\)
0.0512472 + 0.998686i \(0.483680\pi\)
\(864\) 0 0
\(865\) 25.6424 + 10.9253i 0.871866 + 0.371470i
\(866\) 39.0074 + 12.6743i 1.32552 + 0.430689i
\(867\) 0 0
\(868\) 0.0147565 0.0147565i 0.000500870 0.000500870i
\(869\) 0.139785 2.21935i 0.00474187 0.0752863i
\(870\) 0 0
\(871\) 10.6384 14.6425i 0.360469 0.496143i
\(872\) −11.1247 21.8334i −0.376730 0.739374i
\(873\) 0 0
\(874\) 1.07972 + 1.48611i 0.0365222 + 0.0502685i
\(875\) −2.13821 + 0.103409i −0.0722848 + 0.00349585i
\(876\) 0 0
\(877\) −11.4361 + 5.82698i −0.386169 + 0.196763i −0.636287 0.771452i \(-0.719531\pi\)
0.250118 + 0.968215i \(0.419531\pi\)
\(878\) −5.84636 36.9125i −0.197305 1.24574i
\(879\) 0 0
\(880\) 31.8556 10.5469i 1.07385 0.355537i
\(881\) −13.8380 −0.466216 −0.233108 0.972451i \(-0.574890\pi\)
−0.233108 + 0.972451i \(0.574890\pi\)
\(882\) 0 0
\(883\) 38.8377 19.7888i 1.30699 0.665947i 0.344893 0.938642i \(-0.387915\pi\)
0.962100 + 0.272695i \(0.0879150\pi\)
\(884\) −3.38926 + 1.10124i −0.113993 + 0.0370387i
\(885\) 0 0
\(886\) −27.5163 37.8730i −0.924429 1.27237i
\(887\) 4.72114 9.26576i 0.158520 0.311114i −0.798062 0.602575i \(-0.794141\pi\)
0.956583 + 0.291461i \(0.0941414\pi\)
\(888\) 0 0
\(889\) 1.63945 2.25651i 0.0549853 0.0756808i
\(890\) 17.6925 20.2977i 0.593055 0.680381i
\(891\) 0 0
\(892\) 4.66817 4.66817i 0.156302 0.156302i
\(893\) −9.08308 + 1.43862i −0.303954 + 0.0481415i
\(894\) 0 0
\(895\) −41.8578 + 16.8462i −1.39915 + 0.563106i
\(896\) −2.04700 + 1.48723i −0.0683855 + 0.0496850i
\(897\) 0 0
\(898\) 9.92048 + 5.05474i 0.331051 + 0.168679i
\(899\) 1.03530 3.18633i 0.0345292 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) −30.9821 + 13.4046i −1.03159 + 0.446324i
\(903\) 0 0
\(904\) −8.61708 6.26067i −0.286600 0.208227i
\(905\) −2.50710 + 9.99811i −0.0833388 + 0.332349i
\(906\) 0 0
\(907\) 2.55097 16.1062i 0.0847036 0.534798i −0.908451 0.417991i \(-0.862734\pi\)
0.993155 0.116806i \(-0.0372657\pi\)
\(908\) 0.635040 4.00948i 0.0210745 0.133059i
\(909\) 0 0
\(910\) 1.72827 1.03529i 0.0572915 0.0343194i
\(911\) −14.3281 10.4099i −0.474710 0.344897i 0.324564 0.945864i \(-0.394782\pi\)
−0.799274 + 0.600967i \(0.794782\pi\)
\(912\) 0 0
\(913\) −50.7821 + 21.9712i −1.68064 + 0.727140i
\(914\) 10.2385i 0.338659i
\(915\) 0 0
\(916\) −1.57702 + 4.85357i −0.0521062 + 0.160366i
\(917\) 1.66665 + 0.849203i 0.0550378 + 0.0280431i
\(918\) 0 0
\(919\) −7.38632 + 5.36648i −0.243652 + 0.177024i −0.702909 0.711280i \(-0.748116\pi\)
0.459257 + 0.888304i \(0.348116\pi\)
\(920\) 3.48329 + 8.65494i 0.114841 + 0.285345i
\(921\) 0 0
\(922\) −43.6594 + 6.91497i −1.43785 + 0.227732i
\(923\) −25.0888 + 25.0888i −0.825807 + 0.825807i
\(924\) 0 0
\(925\) −16.3231 + 21.5407i −0.536701 + 0.708254i
\(926\) −22.1307 + 30.4602i −0.727259 + 1.00099i
\(927\) 0 0
\(928\) 7.54970 14.8171i 0.247831 0.486396i
\(929\) −1.06529 1.46625i −0.0349511 0.0481061i 0.791184 0.611578i \(-0.209465\pi\)
−0.826135 + 0.563472i \(0.809465\pi\)
\(930\) 0 0
\(931\) 4.92578 1.60048i 0.161436 0.0524537i
\(932\) −4.32918 + 2.20583i −0.141807 + 0.0722543i
\(933\) 0 0
\(934\) 40.2174 1.31595
\(935\) −24.5613 12.3429i −0.803240 0.403655i
\(936\) 0 0
\(937\) −2.37143 14.9726i −0.0774711 0.489133i −0.995666 0.0930039i \(-0.970353\pi\)
0.918195 0.396130i \(-0.129647\pi\)
\(938\) 1.51621 0.772546i 0.0495059 0.0252245i
\(939\) 0 0
\(940\) 8.55319 + 0.759902i 0.278974 + 0.0247853i
\(941\) 12.8308 + 17.6600i 0.418271 + 0.575701i 0.965211 0.261471i \(-0.0842075\pi\)
−0.546940 + 0.837172i \(0.684208\pi\)
\(942\) 0 0
\(943\) −4.93902 9.69338i −0.160837 0.315660i
\(944\) 25.6012 35.2370i 0.833247 1.14687i
\(945\) 0 0
\(946\) −1.67038 + 26.5205i −0.0543087 + 0.862256i
\(947\) −6.90662 + 6.90662i −0.224435 + 0.224435i −0.810363 0.585928i \(-0.800730\pi\)
0.585928 + 0.810363i \(0.300730\pi\)
\(948\) 0 0
\(949\) 7.07131 + 2.29761i 0.229545 + 0.0745835i
\(950\) 1.85483 5.34009i 0.0601785 0.173255i
\(951\) 0 0
\(952\) 1.80005 + 0.285100i 0.0583400 + 0.00924015i
\(953\) 11.6216 + 5.92153i 0.376462 + 0.191817i 0.631975 0.774989i \(-0.282244\pi\)
−0.255513 + 0.966806i \(0.582244\pi\)
\(954\) 0 0
\(955\) −11.9864 7.51238i −0.387871 0.243095i
\(956\) 1.64046i 0.0530561i
\(957\) 0 0
\(958\) −28.2202 28.2202i −0.911755 0.911755i
\(959\) 0.670750 + 0.487328i 0.0216596 + 0.0157367i
\(960\) 0 0
\(961\) −9.54147 29.3656i −0.307789 0.947279i
\(962\) 3.97890 25.1218i 0.128285 0.809960i
\(963\) 0 0
\(964\) −1.55173 4.77572i −0.0499777 0.153816i
\(965\) 6.81621 + 11.3787i 0.219422 + 0.366294i
\(966\) 0 0
\(967\) −13.6319 13.6319i −0.438372 0.438372i 0.453092 0.891464i \(-0.350321\pi\)
−0.891464 + 0.453092i \(0.850321\pi\)
\(968\) −28.2343 + 0.883368i −0.907484 + 0.0283925i
\(969\) 0 0
\(970\) −3.97156 2.48914i −0.127519 0.0799216i
\(971\) −1.26967 + 3.90765i −0.0407457 + 0.125403i −0.969360 0.245643i \(-0.921001\pi\)
0.928615 + 0.371046i \(0.121001\pi\)
\(972\) 0 0
\(973\) −1.98769 0.314819i −0.0637224 0.0100926i
\(974\) −28.6965 + 20.8492i −0.919495 + 0.668052i
\(975\) 0 0
\(976\) 25.3592 + 8.23971i 0.811729 + 0.263747i
\(977\) −30.3314 + 4.80402i −0.970386 + 0.153694i −0.621451 0.783453i \(-0.713457\pi\)
−0.348935 + 0.937147i \(0.613457\pi\)
\(978\) 0 0
\(979\) −22.1848 + 14.0768i −0.709030 + 0.449895i
\(980\) −4.82472 + 0.330856i −0.154120 + 0.0105688i
\(981\) 0 0
\(982\) −12.6616 24.8498i −0.404048 0.792990i
\(983\) 12.5871 24.7035i 0.401465 0.787919i −0.598447 0.801162i \(-0.704215\pi\)
0.999912 + 0.0132429i \(0.00421546\pi\)
\(984\) 0 0
\(985\) −31.1999 2.77194i −0.994113 0.0883212i
\(986\) −51.1575 + 16.6221i −1.62919 + 0.529355i
\(987\) 0 0
\(988\) 0.111871 + 0.706325i 0.00355909 + 0.0224712i
\(989\) −8.56376 −0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) 0.0956197 + 0.603719i 0.00303593 + 0.0191681i
\(993\) 0 0
\(994\) −3.17264 + 1.03085i −0.100630 + 0.0326966i
\(995\) 19.2044 + 22.9496i 0.608822 + 0.727551i
\(996\) 0 0
\(997\) 13.1070 25.7239i 0.415103 0.814685i −0.584891 0.811112i \(-0.698863\pi\)
0.999994 0.00357282i \(-0.00113727\pi\)
\(998\) 8.11406 + 15.9247i 0.256846 + 0.504089i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.bj.a.73.4 32
3.2 odd 2 55.2.l.a.18.1 yes 32
5.2 odd 4 inner 495.2.bj.a.172.1 32
11.8 odd 10 inner 495.2.bj.a.118.1 32
12.11 even 2 880.2.cm.a.513.1 32
15.2 even 4 55.2.l.a.7.4 32
15.8 even 4 275.2.bm.b.7.1 32
15.14 odd 2 275.2.bm.b.18.4 32
33.2 even 10 605.2.m.c.578.4 32
33.5 odd 10 605.2.e.b.483.14 32
33.8 even 10 55.2.l.a.8.4 yes 32
33.14 odd 10 605.2.m.e.118.1 32
33.17 even 10 605.2.e.b.483.3 32
33.20 odd 10 605.2.m.d.578.1 32
33.26 odd 10 605.2.m.c.233.4 32
33.29 even 10 605.2.m.d.233.1 32
33.32 even 2 605.2.m.e.403.4 32
55.52 even 20 inner 495.2.bj.a.217.4 32
60.47 odd 4 880.2.cm.a.337.4 32
132.107 odd 10 880.2.cm.a.833.4 32
165.2 odd 20 605.2.m.c.457.4 32
165.8 odd 20 275.2.bm.b.107.4 32
165.17 odd 20 605.2.e.b.362.14 32
165.32 odd 4 605.2.m.e.282.1 32
165.47 even 20 605.2.m.e.602.4 32
165.62 odd 20 605.2.m.d.112.1 32
165.74 even 10 275.2.bm.b.118.1 32
165.92 even 20 605.2.m.c.112.4 32
165.107 odd 20 55.2.l.a.52.1 yes 32
165.137 even 20 605.2.e.b.362.3 32
165.152 even 20 605.2.m.d.457.1 32
660.107 even 20 880.2.cm.a.657.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 15.2 even 4
55.2.l.a.8.4 yes 32 33.8 even 10
55.2.l.a.18.1 yes 32 3.2 odd 2
55.2.l.a.52.1 yes 32 165.107 odd 20
275.2.bm.b.7.1 32 15.8 even 4
275.2.bm.b.18.4 32 15.14 odd 2
275.2.bm.b.107.4 32 165.8 odd 20
275.2.bm.b.118.1 32 165.74 even 10
495.2.bj.a.73.4 32 1.1 even 1 trivial
495.2.bj.a.118.1 32 11.8 odd 10 inner
495.2.bj.a.172.1 32 5.2 odd 4 inner
495.2.bj.a.217.4 32 55.52 even 20 inner
605.2.e.b.362.3 32 165.137 even 20
605.2.e.b.362.14 32 165.17 odd 20
605.2.e.b.483.3 32 33.17 even 10
605.2.e.b.483.14 32 33.5 odd 10
605.2.m.c.112.4 32 165.92 even 20
605.2.m.c.233.4 32 33.26 odd 10
605.2.m.c.457.4 32 165.2 odd 20
605.2.m.c.578.4 32 33.2 even 10
605.2.m.d.112.1 32 165.62 odd 20
605.2.m.d.233.1 32 33.29 even 10
605.2.m.d.457.1 32 165.152 even 20
605.2.m.d.578.1 32 33.20 odd 10
605.2.m.e.118.1 32 33.14 odd 10
605.2.m.e.282.1 32 165.32 odd 4
605.2.m.e.403.4 32 33.32 even 2
605.2.m.e.602.4 32 165.47 even 20
880.2.cm.a.337.4 32 60.47 odd 4
880.2.cm.a.513.1 32 12.11 even 2
880.2.cm.a.657.1 32 660.107 even 20
880.2.cm.a.833.4 32 132.107 odd 10