Properties

Label 880.2.cm.a.337.4
Level $880$
Weight $2$
Character 880.337
Analytic conductor $7.027$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(17,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 5, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 337.4
Character \(\chi\) \(=\) 880.337
Dual form 880.2.cm.a.833.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.361933 + 0.710333i) q^{3} +(-1.89470 + 1.18749i) q^{5} +(-0.170602 - 0.0869260i) q^{7} +(1.38978 - 1.91287i) q^{9} +(-1.77694 - 2.80044i) q^{11} +(-0.484259 - 3.05749i) q^{13} +(-1.52926 - 0.916076i) q^{15} +(0.579827 - 3.66088i) q^{17} +(0.229844 - 0.707388i) q^{19} -0.152646i q^{21} +(1.14886 - 1.14886i) q^{23} +(2.17976 - 4.49985i) q^{25} +(4.22401 + 0.669017i) q^{27} +(2.95025 + 9.07993i) q^{29} +(0.283900 + 0.206266i) q^{31} +(1.34611 - 2.27579i) q^{33} +(0.426463 - 0.0378887i) q^{35} +(2.45398 - 4.81621i) q^{37} +(1.99657 - 1.45059i) q^{39} +(6.36824 + 2.06917i) q^{41} +(-3.72708 - 3.72708i) q^{43} +(-0.361710 + 5.27464i) q^{45} +(11.0165 - 5.61318i) q^{47} +(-4.09295 - 5.63346i) q^{49} +(2.81030 - 0.913123i) q^{51} +(-8.91914 + 1.41265i) q^{53} +(6.69225 + 3.19590i) q^{55} +(0.585669 - 0.0927608i) q^{57} +(9.15496 - 2.97463i) q^{59} +(-3.46383 - 4.76756i) q^{61} +(-0.403377 + 0.205531i) q^{63} +(4.54825 + 5.21797i) q^{65} +(-4.13426 - 4.13426i) q^{67} +(1.23188 + 0.400262i) q^{69} +(-9.27272 + 6.73702i) q^{71} +(1.09042 - 2.14008i) q^{73} +(3.98532 - 0.0802892i) q^{75} +(0.0597184 + 0.632224i) q^{77} +(0.542434 + 0.394101i) q^{79} +(-1.13837 - 3.50353i) q^{81} +(-16.4776 - 2.60980i) q^{83} +(3.24865 + 7.62480i) q^{85} +(-5.38198 + 5.38198i) q^{87} -7.92190i q^{89} +(-0.183160 + 0.563709i) q^{91} +(-0.0437645 + 0.276318i) q^{93} +(0.404527 + 1.61322i) q^{95} +(-0.215721 - 1.36201i) q^{97} +(-7.82643 - 0.492943i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} - 2 q^{5} + 24 q^{11} - 10 q^{13} - 14 q^{15} + 24 q^{23} + 16 q^{25} + 16 q^{27} + 28 q^{31} + 66 q^{33} + 10 q^{35} - 8 q^{37} + 40 q^{41} - 28 q^{45} + 28 q^{47} - 20 q^{51} - 24 q^{53}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.361933 + 0.710333i 0.208962 + 0.410111i 0.971571 0.236749i \(-0.0760819\pi\)
−0.762609 + 0.646860i \(0.776082\pi\)
\(4\) 0 0
\(5\) −1.89470 + 1.18749i −0.847335 + 0.531060i
\(6\) 0 0
\(7\) −0.170602 0.0869260i −0.0644815 0.0328550i 0.421452 0.906851i \(-0.361520\pi\)
−0.485934 + 0.873996i \(0.661520\pi\)
\(8\) 0 0
\(9\) 1.38978 1.91287i 0.463259 0.637622i
\(10\) 0 0
\(11\) −1.77694 2.80044i −0.535768 0.844365i
\(12\) 0 0
\(13\) −0.484259 3.05749i −0.134309 0.847995i −0.959205 0.282711i \(-0.908766\pi\)
0.824896 0.565285i \(-0.191234\pi\)
\(14\) 0 0
\(15\) −1.52926 0.916076i −0.394854 0.236530i
\(16\) 0 0
\(17\) 0.579827 3.66088i 0.140629 0.887894i −0.811978 0.583688i \(-0.801609\pi\)
0.952606 0.304206i \(-0.0983910\pi\)
\(18\) 0 0
\(19\) 0.229844 0.707388i 0.0527299 0.162286i −0.921224 0.389033i \(-0.872809\pi\)
0.973954 + 0.226747i \(0.0728091\pi\)
\(20\) 0 0
\(21\) 0.152646i 0.0333100i
\(22\) 0 0
\(23\) 1.14886 1.14886i 0.239553 0.239553i −0.577112 0.816665i \(-0.695820\pi\)
0.816665 + 0.577112i \(0.195820\pi\)
\(24\) 0 0
\(25\) 2.17976 4.49985i 0.435952 0.899970i
\(26\) 0 0
\(27\) 4.22401 + 0.669017i 0.812911 + 0.128752i
\(28\) 0 0
\(29\) 2.95025 + 9.07993i 0.547847 + 1.68610i 0.714122 + 0.700021i \(0.246826\pi\)
−0.166275 + 0.986079i \(0.553174\pi\)
\(30\) 0 0
\(31\) 0.283900 + 0.206266i 0.0509900 + 0.0370464i 0.612988 0.790092i \(-0.289967\pi\)
−0.561998 + 0.827138i \(0.689967\pi\)
\(32\) 0 0
\(33\) 1.34611 2.27579i 0.234328 0.396165i
\(34\) 0 0
\(35\) 0.426463 0.0378887i 0.0720853 0.00640437i
\(36\) 0 0
\(37\) 2.45398 4.81621i 0.403432 0.791780i −0.596510 0.802606i \(-0.703446\pi\)
0.999941 + 0.0108264i \(0.00344622\pi\)
\(38\) 0 0
\(39\) 1.99657 1.45059i 0.319707 0.232280i
\(40\) 0 0
\(41\) 6.36824 + 2.06917i 0.994552 + 0.323150i 0.760687 0.649119i \(-0.224862\pi\)
0.233866 + 0.972269i \(0.424862\pi\)
\(42\) 0 0
\(43\) −3.72708 3.72708i −0.568374 0.568374i 0.363299 0.931673i \(-0.381650\pi\)
−0.931673 + 0.363299i \(0.881650\pi\)
\(44\) 0 0
\(45\) −0.361710 + 5.27464i −0.0539205 + 0.786297i
\(46\) 0 0
\(47\) 11.0165 5.61318i 1.60692 0.818766i 0.607213 0.794539i \(-0.292287\pi\)
0.999706 0.0242272i \(-0.00771250\pi\)
\(48\) 0 0
\(49\) −4.09295 5.63346i −0.584707 0.804780i
\(50\) 0 0
\(51\) 2.81030 0.913123i 0.393521 0.127863i
\(52\) 0 0
\(53\) −8.91914 + 1.41265i −1.22514 + 0.194043i −0.735282 0.677761i \(-0.762950\pi\)
−0.489855 + 0.871804i \(0.662950\pi\)
\(54\) 0 0
\(55\) 6.69225 + 3.19590i 0.902383 + 0.430935i
\(56\) 0 0
\(57\) 0.585669 0.0927608i 0.0775737 0.0122865i
\(58\) 0 0
\(59\) 9.15496 2.97463i 1.19187 0.387263i 0.355108 0.934825i \(-0.384444\pi\)
0.836765 + 0.547562i \(0.184444\pi\)
\(60\) 0 0
\(61\) −3.46383 4.76756i −0.443498 0.610423i 0.527487 0.849563i \(-0.323134\pi\)
−0.970985 + 0.239140i \(0.923134\pi\)
\(62\) 0 0
\(63\) −0.403377 + 0.205531i −0.0508207 + 0.0258944i
\(64\) 0 0
\(65\) 4.54825 + 5.21797i 0.564141 + 0.647209i
\(66\) 0 0
\(67\) −4.13426 4.13426i −0.505081 0.505081i 0.407932 0.913012i \(-0.366250\pi\)
−0.913012 + 0.407932i \(0.866250\pi\)
\(68\) 0 0
\(69\) 1.23188 + 0.400262i 0.148301 + 0.0481859i
\(70\) 0 0
\(71\) −9.27272 + 6.73702i −1.10047 + 0.799538i −0.981136 0.193317i \(-0.938075\pi\)
−0.119333 + 0.992854i \(0.538075\pi\)
\(72\) 0 0
\(73\) 1.09042 2.14008i 0.127624 0.250477i −0.818349 0.574722i \(-0.805110\pi\)
0.945973 + 0.324245i \(0.105110\pi\)
\(74\) 0 0
\(75\) 3.98532 0.0802892i 0.460185 0.00927099i
\(76\) 0 0
\(77\) 0.0597184 + 0.632224i 0.00680554 + 0.0720486i
\(78\) 0 0
\(79\) 0.542434 + 0.394101i 0.0610286 + 0.0443399i 0.617881 0.786271i \(-0.287991\pi\)
−0.556853 + 0.830611i \(0.687991\pi\)
\(80\) 0 0
\(81\) −1.13837 3.50353i −0.126485 0.389282i
\(82\) 0 0
\(83\) −16.4776 2.60980i −1.80865 0.286463i −0.841426 0.540372i \(-0.818284\pi\)
−0.967228 + 0.253909i \(0.918284\pi\)
\(84\) 0 0
\(85\) 3.24865 + 7.62480i 0.352365 + 0.827025i
\(86\) 0 0
\(87\) −5.38198 + 5.38198i −0.577009 + 0.577009i
\(88\) 0 0
\(89\) 7.92190i 0.839720i −0.907589 0.419860i \(-0.862079\pi\)
0.907589 0.419860i \(-0.137921\pi\)
\(90\) 0 0
\(91\) −0.183160 + 0.563709i −0.0192004 + 0.0590927i
\(92\) 0 0
\(93\) −0.0437645 + 0.276318i −0.00453817 + 0.0286528i
\(94\) 0 0
\(95\) 0.404527 + 1.61322i 0.0415036 + 0.165513i
\(96\) 0 0
\(97\) −0.215721 1.36201i −0.0219032 0.138291i 0.974313 0.225196i \(-0.0723023\pi\)
−0.996217 + 0.0869051i \(0.972302\pi\)
\(98\) 0 0
\(99\) −7.82643 0.492943i −0.786585 0.0495427i
\(100\) 0 0
\(101\) −2.83633 + 3.90387i −0.282225 + 0.388449i −0.926469 0.376370i \(-0.877172\pi\)
0.644244 + 0.764820i \(0.277172\pi\)
\(102\) 0 0
\(103\) −2.88449 1.46972i −0.284217 0.144816i 0.306071 0.952009i \(-0.400986\pi\)
−0.590287 + 0.807193i \(0.700986\pi\)
\(104\) 0 0
\(105\) 0.181264 + 0.289217i 0.0176896 + 0.0282247i
\(106\) 0 0
\(107\) 5.01911 + 9.85055i 0.485215 + 0.952289i 0.995721 + 0.0924142i \(0.0294584\pi\)
−0.510505 + 0.859875i \(0.670542\pi\)
\(108\) 0 0
\(109\) 9.54212 0.913969 0.456985 0.889475i \(-0.348929\pi\)
0.456985 + 0.889475i \(0.348929\pi\)
\(110\) 0 0
\(111\) 4.30929 0.409019
\(112\) 0 0
\(113\) −1.88301 3.69562i −0.177139 0.347654i 0.785317 0.619094i \(-0.212500\pi\)
−0.962455 + 0.271440i \(0.912500\pi\)
\(114\) 0 0
\(115\) −0.812486 + 3.54099i −0.0757647 + 0.330199i
\(116\) 0 0
\(117\) −6.52158 3.32291i −0.602920 0.307203i
\(118\) 0 0
\(119\) −0.417145 + 0.574151i −0.0382397 + 0.0526324i
\(120\) 0 0
\(121\) −4.68496 + 9.95245i −0.425905 + 0.904768i
\(122\) 0 0
\(123\) 0.835077 + 5.27247i 0.0752964 + 0.475403i
\(124\) 0 0
\(125\) 1.21352 + 11.1143i 0.108541 + 0.994092i
\(126\) 0 0
\(127\) 2.27881 14.3879i 0.202212 1.27672i −0.652570 0.757728i \(-0.726309\pi\)
0.854782 0.518987i \(-0.173691\pi\)
\(128\) 0 0
\(129\) 1.29851 3.99642i 0.114328 0.351865i
\(130\) 0 0
\(131\) 9.76926i 0.853544i 0.904359 + 0.426772i \(0.140349\pi\)
−0.904359 + 0.426772i \(0.859651\pi\)
\(132\) 0 0
\(133\) −0.100702 + 0.100702i −0.00873200 + 0.00873200i
\(134\) 0 0
\(135\) −8.79767 + 3.74836i −0.757182 + 0.322608i
\(136\) 0 0
\(137\) 4.27681 + 0.677380i 0.365392 + 0.0578725i 0.336431 0.941708i \(-0.390780\pi\)
0.0289612 + 0.999581i \(0.490780\pi\)
\(138\) 0 0
\(139\) −3.24794 9.99613i −0.275487 0.847860i −0.989090 0.147311i \(-0.952938\pi\)
0.713604 0.700550i \(-0.247062\pi\)
\(140\) 0 0
\(141\) 7.97445 + 5.79378i 0.671570 + 0.487924i
\(142\) 0 0
\(143\) −7.70183 + 6.78912i −0.644059 + 0.567735i
\(144\) 0 0
\(145\) −16.3721 13.7003i −1.35963 1.13775i
\(146\) 0 0
\(147\) 2.52026 4.94629i 0.207868 0.407963i
\(148\) 0 0
\(149\) 4.66189 3.38706i 0.381917 0.277479i −0.380218 0.924897i \(-0.624151\pi\)
0.762135 + 0.647418i \(0.224151\pi\)
\(150\) 0 0
\(151\) 14.2318 + 4.62419i 1.15817 + 0.376311i 0.824214 0.566278i \(-0.191617\pi\)
0.333953 + 0.942590i \(0.391617\pi\)
\(152\) 0 0
\(153\) −6.19694 6.19694i −0.500993 0.500993i
\(154\) 0 0
\(155\) −0.782843 0.0536836i −0.0628795 0.00431197i
\(156\) 0 0
\(157\) 4.40881 2.24640i 0.351861 0.179282i −0.269122 0.963106i \(-0.586733\pi\)
0.620983 + 0.783824i \(0.286733\pi\)
\(158\) 0 0
\(159\) −4.23158 5.82427i −0.335586 0.461895i
\(160\) 0 0
\(161\) −0.295863 + 0.0961317i −0.0233173 + 0.00757624i
\(162\) 0 0
\(163\) 9.89335 1.56695i 0.774907 0.122733i 0.243558 0.969886i \(-0.421685\pi\)
0.531349 + 0.847153i \(0.321685\pi\)
\(164\) 0 0
\(165\) 0.151992 + 5.91043i 0.0118325 + 0.460126i
\(166\) 0 0
\(167\) −11.9137 + 1.88695i −0.921913 + 0.146017i −0.599310 0.800517i \(-0.704558\pi\)
−0.322604 + 0.946534i \(0.604558\pi\)
\(168\) 0 0
\(169\) 3.24999 1.05599i 0.250000 0.0812298i
\(170\) 0 0
\(171\) −1.03371 1.42277i −0.0790494 0.108802i
\(172\) 0 0
\(173\) −11.1065 + 5.65903i −0.844410 + 0.430248i −0.821991 0.569501i \(-0.807137\pi\)
−0.0224186 + 0.999749i \(0.507137\pi\)
\(174\) 0 0
\(175\) −0.763025 + 0.578206i −0.0576793 + 0.0437082i
\(176\) 0 0
\(177\) 5.42645 + 5.42645i 0.407877 + 0.407877i
\(178\) 0 0
\(179\) 19.1909 + 6.23551i 1.43440 + 0.466064i 0.920146 0.391575i \(-0.128070\pi\)
0.514252 + 0.857639i \(0.328070\pi\)
\(180\) 0 0
\(181\) −3.72935 + 2.70953i −0.277200 + 0.201398i −0.717695 0.696357i \(-0.754803\pi\)
0.440495 + 0.897755i \(0.354803\pi\)
\(182\) 0 0
\(183\) 2.13288 4.18601i 0.157667 0.309439i
\(184\) 0 0
\(185\) 1.06962 + 12.0393i 0.0786403 + 0.885148i
\(186\) 0 0
\(187\) −11.2824 + 4.88140i −0.825051 + 0.356963i
\(188\) 0 0
\(189\) −0.662469 0.481312i −0.0481875 0.0350103i
\(190\) 0 0
\(191\) −1.95493 6.01667i −0.141454 0.435351i 0.855084 0.518490i \(-0.173505\pi\)
−0.996538 + 0.0831389i \(0.973505\pi\)
\(192\) 0 0
\(193\) 5.85885 + 0.927951i 0.421729 + 0.0667954i 0.363692 0.931519i \(-0.381516\pi\)
0.0580368 + 0.998314i \(0.481516\pi\)
\(194\) 0 0
\(195\) −2.06034 + 5.11932i −0.147544 + 0.366602i
\(196\) 0 0
\(197\) −9.90515 + 9.90515i −0.705713 + 0.705713i −0.965631 0.259918i \(-0.916304\pi\)
0.259918 + 0.965631i \(0.416304\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(200\) 0 0
\(201\) 1.44038 4.43303i 0.101596 0.312682i
\(202\) 0 0
\(203\) 0.285964 1.80551i 0.0200708 0.126722i
\(204\) 0 0
\(205\) −14.5230 + 3.64175i −1.01433 + 0.254351i
\(206\) 0 0
\(207\) −0.600953 3.79427i −0.0417691 0.263720i
\(208\) 0 0
\(209\) −2.38942 + 0.613321i −0.165280 + 0.0424243i
\(210\) 0 0
\(211\) −3.48696 + 4.79939i −0.240052 + 0.330404i −0.911996 0.410198i \(-0.865460\pi\)
0.671944 + 0.740602i \(0.265460\pi\)
\(212\) 0 0
\(213\) −8.14163 4.14837i −0.557855 0.284241i
\(214\) 0 0
\(215\) 11.4875 + 2.63584i 0.783444 + 0.179763i
\(216\) 0 0
\(217\) −0.0305041 0.0598677i −0.00207075 0.00406408i
\(218\) 0 0
\(219\) 1.91483 0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) 0 0
\(223\) −9.64984 18.9389i −0.646201 1.26824i −0.949027 0.315195i \(-0.897930\pi\)
0.302826 0.953046i \(-0.402070\pi\)
\(224\) 0 0
\(225\) −5.57823 10.4234i −0.371882 0.694892i
\(226\) 0 0
\(227\) −11.6456 5.93372i −0.772944 0.393835i 0.0225888 0.999745i \(-0.492809\pi\)
−0.795533 + 0.605910i \(0.792809\pi\)
\(228\) 0 0
\(229\) −9.65796 + 13.2930i −0.638216 + 0.878429i −0.998519 0.0544066i \(-0.982673\pi\)
0.360303 + 0.932835i \(0.382673\pi\)
\(230\) 0 0
\(231\) −0.427475 + 0.271242i −0.0281258 + 0.0178464i
\(232\) 0 0
\(233\) 2.44720 + 15.4510i 0.160321 + 1.01223i 0.928321 + 0.371779i \(0.121252\pi\)
−0.768000 + 0.640450i \(0.778748\pi\)
\(234\) 0 0
\(235\) −14.2073 + 23.7172i −0.926785 + 1.54714i
\(236\) 0 0
\(237\) −0.0836185 + 0.527947i −0.00543161 + 0.0342938i
\(238\) 0 0
\(239\) −1.63214 + 5.02322i −0.105575 + 0.324925i −0.989865 0.142012i \(-0.954643\pi\)
0.884290 + 0.466938i \(0.154643\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i 0.853726 + 0.520722i \(0.174337\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(242\) 0 0
\(243\) 11.1488 11.1488i 0.715198 0.715198i
\(244\) 0 0
\(245\) 14.4445 + 5.81339i 0.922828 + 0.371404i
\(246\) 0 0
\(247\) −2.27413 0.360188i −0.144700 0.0229182i
\(248\) 0 0
\(249\) −4.10997 12.6492i −0.260458 0.801609i
\(250\) 0 0
\(251\) 15.6486 + 11.3694i 0.987729 + 0.717627i 0.959423 0.281972i \(-0.0909886\pi\)
0.0283063 + 0.999599i \(0.490989\pi\)
\(252\) 0 0
\(253\) −5.25876 1.17586i −0.330615 0.0739254i
\(254\) 0 0
\(255\) −4.24035 + 5.06728i −0.265541 + 0.317326i
\(256\) 0 0
\(257\) 2.13653 4.19318i 0.133273 0.261563i −0.814720 0.579855i \(-0.803109\pi\)
0.947993 + 0.318292i \(0.103109\pi\)
\(258\) 0 0
\(259\) −0.837308 + 0.608340i −0.0520278 + 0.0378004i
\(260\) 0 0
\(261\) 21.4689 + 6.97566i 1.32889 + 0.431783i
\(262\) 0 0
\(263\) 11.2218 + 11.2218i 0.691964 + 0.691964i 0.962664 0.270700i \(-0.0872550\pi\)
−0.270700 + 0.962664i \(0.587255\pi\)
\(264\) 0 0
\(265\) 15.2216 13.2679i 0.935053 0.815040i
\(266\) 0 0
\(267\) 5.62719 2.86720i 0.344378 0.175470i
\(268\) 0 0
\(269\) 6.64926 + 9.15192i 0.405412 + 0.558002i 0.962092 0.272725i \(-0.0879249\pi\)
−0.556680 + 0.830727i \(0.687925\pi\)
\(270\) 0 0
\(271\) −16.9556 + 5.50921i −1.02998 + 0.334661i −0.774782 0.632228i \(-0.782141\pi\)
−0.255198 + 0.966889i \(0.582141\pi\)
\(272\) 0 0
\(273\) −0.466712 + 0.0739200i −0.0282467 + 0.00447384i
\(274\) 0 0
\(275\) −16.4749 + 1.89169i −0.993472 + 0.114073i
\(276\) 0 0
\(277\) −4.62395 + 0.732361i −0.277826 + 0.0440033i −0.293793 0.955869i \(-0.594917\pi\)
0.0159666 + 0.999873i \(0.494917\pi\)
\(278\) 0 0
\(279\) 0.789117 0.256400i 0.0472432 0.0153502i
\(280\) 0 0
\(281\) −7.75247 10.6704i −0.462474 0.636541i 0.512546 0.858660i \(-0.328703\pi\)
−0.975019 + 0.222119i \(0.928703\pi\)
\(282\) 0 0
\(283\) −20.3029 + 10.3449i −1.20688 + 0.614938i −0.937463 0.348084i \(-0.886832\pi\)
−0.269421 + 0.963022i \(0.586832\pi\)
\(284\) 0 0
\(285\) −0.999513 + 0.871227i −0.0592061 + 0.0516070i
\(286\) 0 0
\(287\) −0.906570 0.906570i −0.0535131 0.0535131i
\(288\) 0 0
\(289\) 3.10211 + 1.00794i 0.182477 + 0.0592904i
\(290\) 0 0
\(291\) 0.889404 0.646190i 0.0521378 0.0378803i
\(292\) 0 0
\(293\) −3.28132 + 6.43996i −0.191697 + 0.376226i −0.966771 0.255644i \(-0.917713\pi\)
0.775074 + 0.631870i \(0.217713\pi\)
\(294\) 0 0
\(295\) −13.8135 + 16.5074i −0.804256 + 0.961097i
\(296\) 0 0
\(297\) −5.63227 13.0179i −0.326818 0.755375i
\(298\) 0 0
\(299\) −4.06896 2.95628i −0.235314 0.170966i
\(300\) 0 0
\(301\) 0.311867 + 0.959827i 0.0179757 + 0.0553235i
\(302\) 0 0
\(303\) −3.79960 0.601798i −0.218282 0.0345724i
\(304\) 0 0
\(305\) 12.2243 + 4.91983i 0.699963 + 0.281709i
\(306\) 0 0
\(307\) 20.1272 20.1272i 1.14872 1.14872i 0.161918 0.986804i \(-0.448232\pi\)
0.986804 0.161918i \(-0.0517681\pi\)
\(308\) 0 0
\(309\) 2.58088i 0.146821i
\(310\) 0 0
\(311\) 2.32254 7.14803i 0.131699 0.405328i −0.863363 0.504583i \(-0.831646\pi\)
0.995062 + 0.0992557i \(0.0316462\pi\)
\(312\) 0 0
\(313\) −0.210574 + 1.32951i −0.0119023 + 0.0751483i −0.992925 0.118747i \(-0.962112\pi\)
0.981022 + 0.193895i \(0.0621122\pi\)
\(314\) 0 0
\(315\) 0.520212 0.868422i 0.0293106 0.0489301i
\(316\) 0 0
\(317\) −1.77271 11.1924i −0.0995652 0.628630i −0.986124 0.166013i \(-0.946911\pi\)
0.886558 0.462617i \(-0.153089\pi\)
\(318\) 0 0
\(319\) 20.1854 24.3965i 1.13017 1.36594i
\(320\) 0 0
\(321\) −5.18059 + 7.13047i −0.289152 + 0.397984i
\(322\) 0 0
\(323\) −2.45639 1.25159i −0.136677 0.0696406i
\(324\) 0 0
\(325\) −14.8138 4.48550i −0.821723 0.248811i
\(326\) 0 0
\(327\) 3.45360 + 6.77808i 0.190985 + 0.374829i
\(328\) 0 0
\(329\) −2.36737 −0.130517
\(330\) 0 0
\(331\) 17.7048 0.973145 0.486572 0.873640i \(-0.338247\pi\)
0.486572 + 0.873640i \(0.338247\pi\)
\(332\) 0 0
\(333\) −5.80227 11.3876i −0.317962 0.624036i
\(334\) 0 0
\(335\) 12.7426 + 2.92380i 0.696200 + 0.159744i
\(336\) 0 0
\(337\) 6.78954 + 3.45945i 0.369850 + 0.188448i 0.629030 0.777381i \(-0.283452\pi\)
−0.259180 + 0.965829i \(0.583452\pi\)
\(338\) 0 0
\(339\) 1.94359 2.67513i 0.105562 0.145293i
\(340\) 0 0
\(341\) 0.0731608 1.16157i 0.00396188 0.0629025i
\(342\) 0 0
\(343\) 0.418239 + 2.64066i 0.0225828 + 0.142582i
\(344\) 0 0
\(345\) −2.80935 + 0.704464i −0.151250 + 0.0379270i
\(346\) 0 0
\(347\) −1.46011 + 9.21879i −0.0783830 + 0.494891i 0.916998 + 0.398891i \(0.130605\pi\)
−0.995381 + 0.0959998i \(0.969395\pi\)
\(348\) 0 0
\(349\) −0.464073 + 1.42827i −0.0248413 + 0.0764536i −0.962709 0.270540i \(-0.912798\pi\)
0.937867 + 0.346994i \(0.112798\pi\)
\(350\) 0 0
\(351\) 13.2388i 0.706637i
\(352\) 0 0
\(353\) 4.40229 4.40229i 0.234310 0.234310i −0.580179 0.814489i \(-0.697017\pi\)
0.814489 + 0.580179i \(0.197017\pi\)
\(354\) 0 0
\(355\) 9.56888 23.7758i 0.507863 1.26189i
\(356\) 0 0
\(357\) −0.558817 0.0885080i −0.0295757 0.00468434i
\(358\) 0 0
\(359\) 8.12845 + 25.0168i 0.429003 + 1.32034i 0.899108 + 0.437726i \(0.144216\pi\)
−0.470105 + 0.882611i \(0.655784\pi\)
\(360\) 0 0
\(361\) 14.9238 + 10.8427i 0.785461 + 0.570671i
\(362\) 0 0
\(363\) −8.76519 + 0.274237i −0.460053 + 0.0143937i
\(364\) 0 0
\(365\) 0.475287 + 5.34966i 0.0248776 + 0.280014i
\(366\) 0 0
\(367\) 3.70869 7.27872i 0.193592 0.379946i −0.773723 0.633524i \(-0.781608\pi\)
0.967315 + 0.253579i \(0.0816076\pi\)
\(368\) 0 0
\(369\) 12.8085 9.30591i 0.666783 0.484446i
\(370\) 0 0
\(371\) 1.64442 + 0.534304i 0.0853740 + 0.0277397i
\(372\) 0 0
\(373\) −6.12473 6.12473i −0.317126 0.317126i 0.530536 0.847662i \(-0.321991\pi\)
−0.847662 + 0.530536i \(0.821991\pi\)
\(374\) 0 0
\(375\) −7.45563 + 4.88463i −0.385007 + 0.252241i
\(376\) 0 0
\(377\) 26.3331 13.4174i 1.35622 0.691031i
\(378\) 0 0
\(379\) −0.363481 0.500288i −0.0186708 0.0256981i 0.799580 0.600560i \(-0.205056\pi\)
−0.818250 + 0.574862i \(0.805056\pi\)
\(380\) 0 0
\(381\) 11.0449 3.58872i 0.565849 0.183856i
\(382\) 0 0
\(383\) −10.2511 + 1.62362i −0.523807 + 0.0829629i −0.412738 0.910850i \(-0.635428\pi\)
−0.111069 + 0.993813i \(0.535428\pi\)
\(384\) 0 0
\(385\) −0.863904 1.12696i −0.0440286 0.0574351i
\(386\) 0 0
\(387\) −12.3092 + 1.94959i −0.625712 + 0.0991031i
\(388\) 0 0
\(389\) 21.0630 6.84378i 1.06794 0.346993i 0.278252 0.960508i \(-0.410245\pi\)
0.789683 + 0.613515i \(0.210245\pi\)
\(390\) 0 0
\(391\) −3.53969 4.87197i −0.179010 0.246386i
\(392\) 0 0
\(393\) −6.93942 + 3.53581i −0.350048 + 0.178358i
\(394\) 0 0
\(395\) −1.49574 0.102571i −0.0752587 0.00516089i
\(396\) 0 0
\(397\) 10.7769 + 10.7769i 0.540876 + 0.540876i 0.923786 0.382910i \(-0.125078\pi\)
−0.382910 + 0.923786i \(0.625078\pi\)
\(398\) 0 0
\(399\) −0.107980 0.0350847i −0.00540574 0.00175643i
\(400\) 0 0
\(401\) 3.46399 2.51673i 0.172983 0.125680i −0.497925 0.867220i \(-0.665904\pi\)
0.670908 + 0.741540i \(0.265904\pi\)
\(402\) 0 0
\(403\) 0.493174 0.967909i 0.0245668 0.0482150i
\(404\) 0 0
\(405\) 6.31726 + 5.28634i 0.313907 + 0.262681i
\(406\) 0 0
\(407\) −17.8481 + 1.68589i −0.884697 + 0.0835664i
\(408\) 0 0
\(409\) −3.47523 2.52490i −0.171839 0.124848i 0.498541 0.866866i \(-0.333869\pi\)
−0.670381 + 0.742017i \(0.733869\pi\)
\(410\) 0 0
\(411\) 1.06675 + 3.28312i 0.0526190 + 0.161945i
\(412\) 0 0
\(413\) −1.82043 0.288327i −0.0895773 0.0141877i
\(414\) 0 0
\(415\) 34.3192 14.6222i 1.68466 0.717773i
\(416\) 0 0
\(417\) 5.92504 5.92504i 0.290151 0.290151i
\(418\) 0 0
\(419\) 1.20241i 0.0587414i −0.999569 0.0293707i \(-0.990650\pi\)
0.999569 0.0293707i \(-0.00935032\pi\)
\(420\) 0 0
\(421\) 9.67493 29.7764i 0.471527 1.45121i −0.379057 0.925373i \(-0.623752\pi\)
0.850584 0.525839i \(-0.176248\pi\)
\(422\) 0 0
\(423\) 4.57321 28.8741i 0.222357 1.40391i
\(424\) 0 0
\(425\) −15.2095 10.5890i −0.737771 0.513640i
\(426\) 0 0
\(427\) 0.176512 + 1.11445i 0.00854201 + 0.0539321i
\(428\) 0 0
\(429\) −7.61008 3.01366i −0.367418 0.145501i
\(430\) 0 0
\(431\) 5.81395 8.00222i 0.280048 0.385453i −0.645702 0.763590i \(-0.723435\pi\)
0.925750 + 0.378137i \(0.123435\pi\)
\(432\) 0 0
\(433\) −24.0414 12.2497i −1.15536 0.588683i −0.232033 0.972708i \(-0.574538\pi\)
−0.923323 + 0.384025i \(0.874538\pi\)
\(434\) 0 0
\(435\) 3.80620 16.5882i 0.182494 0.795346i
\(436\) 0 0
\(437\) −0.548629 1.07675i −0.0262445 0.0515077i
\(438\) 0 0
\(439\) −24.5862 −1.17344 −0.586718 0.809791i \(-0.699580\pi\)
−0.586718 + 0.809791i \(0.699580\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) 0 0
\(443\) 13.9816 + 27.4404i 0.664286 + 1.30373i 0.939565 + 0.342370i \(0.111230\pi\)
−0.275279 + 0.961364i \(0.588770\pi\)
\(444\) 0 0
\(445\) 9.40714 + 15.0096i 0.445941 + 0.711524i
\(446\) 0 0
\(447\) 4.09323 + 2.08561i 0.193603 + 0.0986458i
\(448\) 0 0
\(449\) 4.30536 5.92582i 0.203182 0.279657i −0.695250 0.718768i \(-0.744707\pi\)
0.898433 + 0.439111i \(0.144707\pi\)
\(450\) 0 0
\(451\) −5.52141 21.5107i −0.259993 1.01290i
\(452\) 0 0
\(453\) 1.86624 + 11.7830i 0.0876835 + 0.553612i
\(454\) 0 0
\(455\) −0.322363 1.28556i −0.0151126 0.0602678i
\(456\) 0 0
\(457\) 1.05368 6.65265i 0.0492889 0.311198i −0.950710 0.310080i \(-0.899644\pi\)
0.999999 0.00111791i \(-0.000355842\pi\)
\(458\) 0 0
\(459\) 4.89838 15.0757i 0.228637 0.703672i
\(460\) 0 0
\(461\) 29.0801i 1.35440i −0.735801 0.677198i \(-0.763194\pi\)
0.735801 0.677198i \(-0.236806\pi\)
\(462\) 0 0
\(463\) −17.5146 + 17.5146i −0.813970 + 0.813970i −0.985227 0.171256i \(-0.945217\pi\)
0.171256 + 0.985227i \(0.445217\pi\)
\(464\) 0 0
\(465\) −0.245203 0.575509i −0.0113710 0.0266886i
\(466\) 0 0
\(467\) 26.1320 + 4.13890i 1.20924 + 0.191525i 0.728320 0.685237i \(-0.240302\pi\)
0.480923 + 0.876763i \(0.340302\pi\)
\(468\) 0 0
\(469\) 0.345938 + 1.06469i 0.0159739 + 0.0491627i
\(470\) 0 0
\(471\) 3.19138 + 2.31868i 0.147051 + 0.106839i
\(472\) 0 0
\(473\) −3.81467 + 17.0603i −0.175399 + 0.784432i
\(474\) 0 0
\(475\) −2.68213 2.57620i −0.123065 0.118204i
\(476\) 0 0
\(477\) −9.69341 + 19.0244i −0.443831 + 0.871067i
\(478\) 0 0
\(479\) 21.2408 15.4324i 0.970519 0.705123i 0.0149492 0.999888i \(-0.495241\pi\)
0.955570 + 0.294765i \(0.0952413\pi\)
\(480\) 0 0
\(481\) −15.9139 5.17073i −0.725610 0.235765i
\(482\) 0 0
\(483\) −0.175368 0.175368i −0.00797952 0.00797952i
\(484\) 0 0
\(485\) 2.02609 + 2.32443i 0.0920001 + 0.105547i
\(486\) 0 0
\(487\) 20.7917 10.5939i 0.942163 0.480056i 0.0857326 0.996318i \(-0.472677\pi\)
0.856431 + 0.516262i \(0.172677\pi\)
\(488\) 0 0
\(489\) 4.69379 + 6.46044i 0.212260 + 0.292151i
\(490\) 0 0
\(491\) −17.4497 + 5.66974i −0.787493 + 0.255872i −0.675036 0.737785i \(-0.735872\pi\)
−0.112457 + 0.993657i \(0.535872\pi\)
\(492\) 0 0
\(493\) 34.9512 5.53572i 1.57412 0.249316i
\(494\) 0 0
\(495\) 15.4141 8.35979i 0.692811 0.375744i
\(496\) 0 0
\(497\) 2.16757 0.343309i 0.0972286 0.0153995i
\(498\) 0 0
\(499\) 11.1824 3.63339i 0.500595 0.162653i −0.0478260 0.998856i \(-0.515229\pi\)
0.548421 + 0.836203i \(0.315229\pi\)
\(500\) 0 0
\(501\) −5.65234 7.77978i −0.252528 0.347575i
\(502\) 0 0
\(503\) 4.75855 2.42460i 0.212173 0.108108i −0.344674 0.938722i \(-0.612011\pi\)
0.556848 + 0.830615i \(0.312011\pi\)
\(504\) 0 0
\(505\) 0.738195 10.7647i 0.0328492 0.479025i
\(506\) 0 0
\(507\) 1.92638 + 1.92638i 0.0855536 + 0.0855536i
\(508\) 0 0
\(509\) 18.6283 + 6.05272i 0.825687 + 0.268282i 0.691228 0.722637i \(-0.257070\pi\)
0.134459 + 0.990919i \(0.457070\pi\)
\(510\) 0 0
\(511\) −0.372057 + 0.270315i −0.0164588 + 0.0119580i
\(512\) 0 0
\(513\) 1.44412 2.83424i 0.0637594 0.125135i
\(514\) 0 0
\(515\) 7.21050 0.640611i 0.317732 0.0282287i
\(516\) 0 0
\(517\) −35.2950 20.8767i −1.55227 0.918158i
\(518\) 0 0
\(519\) −8.03959 5.84110i −0.352899 0.256396i
\(520\) 0 0
\(521\) 5.78913 + 17.8171i 0.253626 + 0.780582i 0.994097 + 0.108493i \(0.0346026\pi\)
−0.740471 + 0.672089i \(0.765397\pi\)
\(522\) 0 0
\(523\) 2.55051 + 0.403961i 0.111526 + 0.0176640i 0.211948 0.977281i \(-0.432019\pi\)
−0.100422 + 0.994945i \(0.532019\pi\)
\(524\) 0 0
\(525\) −0.686882 0.332730i −0.0299780 0.0145215i
\(526\) 0 0
\(527\) 0.919727 0.919727i 0.0400639 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) 0 0
\(531\) 7.03330 21.6463i 0.305219 0.939368i
\(532\) 0 0
\(533\) 3.24258 20.4729i 0.140452 0.886778i
\(534\) 0 0
\(535\) −21.2071 12.7037i −0.916862 0.549229i
\(536\) 0 0
\(537\) 2.51654 + 15.8888i 0.108597 + 0.685652i
\(538\) 0 0
\(539\) −8.50325 + 21.4724i −0.366261 + 0.924881i
\(540\) 0 0
\(541\) 5.42829 7.47139i 0.233380 0.321220i −0.676224 0.736696i \(-0.736385\pi\)
0.909604 + 0.415476i \(0.136385\pi\)
\(542\) 0 0
\(543\) −3.27444 1.66841i −0.140520 0.0715983i
\(544\) 0 0
\(545\) −18.0794 + 11.3311i −0.774438 + 0.485372i
\(546\) 0 0
\(547\) −0.486237 0.954295i −0.0207900 0.0408027i 0.880378 0.474273i \(-0.157289\pi\)
−0.901168 + 0.433470i \(0.857289\pi\)
\(548\) 0 0
\(549\) −13.9337 −0.594674
\(550\) 0 0
\(551\) 7.10113 0.302518
\(552\) 0 0
\(553\) −0.0582826 0.114386i −0.00247843 0.00486419i
\(554\) 0 0
\(555\) −8.16479 + 5.11721i −0.346576 + 0.217214i
\(556\) 0 0
\(557\) −38.3462 19.5384i −1.62478 0.827868i −0.998848 0.0479915i \(-0.984718\pi\)
−0.625934 0.779876i \(-0.715282\pi\)
\(558\) 0 0
\(559\) −9.59064 + 13.2004i −0.405641 + 0.558316i
\(560\) 0 0
\(561\) −7.55089 6.24752i −0.318799 0.263771i
\(562\) 0 0
\(563\) −4.04575 25.5439i −0.170508 1.07655i −0.913379 0.407111i \(-0.866536\pi\)
0.742871 0.669435i \(-0.233464\pi\)
\(564\) 0 0
\(565\) 7.95622 + 4.76603i 0.334721 + 0.200508i
\(566\) 0 0
\(567\) −0.110341 + 0.696664i −0.00463387 + 0.0292571i
\(568\) 0 0
\(569\) −8.39651 + 25.8418i −0.352000 + 1.08334i 0.605729 + 0.795671i \(0.292882\pi\)
−0.957729 + 0.287673i \(0.907118\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i 0.529308 + 0.848430i \(0.322451\pi\)
−0.529308 + 0.848430i \(0.677549\pi\)
\(572\) 0 0
\(573\) 3.56628 3.56628i 0.148984 0.148984i
\(574\) 0 0
\(575\) −2.66546 7.67392i −0.111157 0.320024i
\(576\) 0 0
\(577\) 33.3917 + 5.28872i 1.39011 + 0.220172i 0.806200 0.591643i \(-0.201521\pi\)
0.583914 + 0.811815i \(0.301521\pi\)
\(578\) 0 0
\(579\) 1.46136 + 4.49759i 0.0607319 + 0.186913i
\(580\) 0 0
\(581\) 2.58426 + 1.87757i 0.107213 + 0.0778948i
\(582\) 0 0
\(583\) 19.8048 + 22.4673i 0.820233 + 0.930502i
\(584\) 0 0
\(585\) 16.3023 1.44837i 0.674018 0.0598826i
\(586\) 0 0
\(587\) 4.39649 8.62859i 0.181462 0.356140i −0.782300 0.622902i \(-0.785954\pi\)
0.963763 + 0.266762i \(0.0859536\pi\)
\(588\) 0 0
\(589\) 0.211163 0.153419i 0.00870081 0.00632151i
\(590\) 0 0
\(591\) −10.6210 3.45096i −0.436888 0.141953i
\(592\) 0 0
\(593\) 14.0452 + 14.0452i 0.576769 + 0.576769i 0.934012 0.357243i \(-0.116283\pi\)
−0.357243 + 0.934012i \(0.616283\pi\)
\(594\) 0 0
\(595\) 0.108568 1.58320i 0.00445086 0.0649048i
\(596\) 0 0
\(597\) −9.50623 + 4.84367i −0.389064 + 0.198238i
\(598\) 0 0
\(599\) 2.65433 + 3.65338i 0.108453 + 0.149273i 0.859793 0.510642i \(-0.170592\pi\)
−0.751340 + 0.659915i \(0.770592\pi\)
\(600\) 0 0
\(601\) −7.96746 + 2.58878i −0.324999 + 0.105599i −0.466973 0.884272i \(-0.654655\pi\)
0.141973 + 0.989871i \(0.454655\pi\)
\(602\) 0 0
\(603\) −13.6540 + 2.16258i −0.556034 + 0.0880671i
\(604\) 0 0
\(605\) −2.94181 24.4202i −0.119601 0.992822i
\(606\) 0 0
\(607\) 7.58425 1.20123i 0.307835 0.0487563i −0.000605683 1.00000i \(-0.500193\pi\)
0.308441 + 0.951244i \(0.400193\pi\)
\(608\) 0 0
\(609\) 1.38601 0.450342i 0.0561640 0.0182488i
\(610\) 0 0
\(611\) −22.4971 30.9646i −0.910134 1.25269i
\(612\) 0 0
\(613\) 38.2477 19.4882i 1.54481 0.787120i 0.546091 0.837726i \(-0.316115\pi\)
0.998719 + 0.0506058i \(0.0161152\pi\)
\(614\) 0 0
\(615\) −7.84320 8.99810i −0.316268 0.362838i
\(616\) 0 0
\(617\) 33.4407 + 33.4407i 1.34627 + 1.34627i 0.889671 + 0.456601i \(0.150933\pi\)
0.456601 + 0.889671i \(0.349067\pi\)
\(618\) 0 0
\(619\) −20.0674 6.52029i −0.806576 0.262073i −0.123429 0.992353i \(-0.539389\pi\)
−0.683147 + 0.730281i \(0.739389\pi\)
\(620\) 0 0
\(621\) 5.62139 4.08418i 0.225578 0.163892i
\(622\) 0 0
\(623\) −0.688620 + 1.35149i −0.0275890 + 0.0541464i
\(624\) 0 0
\(625\) −15.4973 19.6172i −0.619892 0.784687i
\(626\) 0 0
\(627\) −1.30047 1.47530i −0.0519358 0.0589179i
\(628\) 0 0
\(629\) −16.2087 11.7763i −0.646282 0.469552i
\(630\) 0 0
\(631\) 8.72043 + 26.8387i 0.347155 + 1.06843i 0.960420 + 0.278555i \(0.0898556\pi\)
−0.613265 + 0.789877i \(0.710144\pi\)
\(632\) 0 0
\(633\) −4.67121 0.739847i −0.185664 0.0294063i
\(634\) 0 0
\(635\) 12.7677 + 29.9667i 0.506671 + 1.18919i
\(636\) 0 0
\(637\) −15.2422 + 15.2422i −0.603918 + 0.603918i
\(638\) 0 0
\(639\) 27.1004i 1.07208i
\(640\) 0 0
\(641\) −5.23436 + 16.1097i −0.206745 + 0.636295i 0.792893 + 0.609362i \(0.208574\pi\)
−0.999637 + 0.0269333i \(0.991426\pi\)
\(642\) 0 0
\(643\) −0.981726 + 6.19838i −0.0387155 + 0.244440i −0.999455 0.0330121i \(-0.989490\pi\)
0.960739 + 0.277452i \(0.0894900\pi\)
\(644\) 0 0
\(645\) 2.28539 + 9.11397i 0.0899873 + 0.358862i
\(646\) 0 0
\(647\) 6.80289 + 42.9518i 0.267449 + 1.68861i 0.646247 + 0.763128i \(0.276338\pi\)
−0.378798 + 0.925479i \(0.623662\pi\)
\(648\) 0 0
\(649\) −24.5981 20.3522i −0.965559 0.798893i
\(650\) 0 0
\(651\) 0.0314855 0.0433361i 0.00123402 0.00169848i
\(652\) 0 0
\(653\) 8.67042 + 4.41780i 0.339300 + 0.172882i 0.615335 0.788266i \(-0.289021\pi\)
−0.276035 + 0.961147i \(0.589021\pi\)
\(654\) 0 0
\(655\) −11.6008 18.5098i −0.453283 0.723237i
\(656\) 0 0
\(657\) −2.57823 5.06007i −0.100586 0.197412i
\(658\) 0 0
\(659\) −3.37375 −0.131423 −0.0657113 0.997839i \(-0.520932\pi\)
−0.0657113 + 0.997839i \(0.520932\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) 0 0
\(663\) −4.15278 8.15028i −0.161280 0.316531i
\(664\) 0 0
\(665\) 0.0712179 0.310383i 0.00276171 0.0120361i
\(666\) 0 0
\(667\) 13.8210 + 7.04213i 0.535150 + 0.272672i
\(668\) 0 0
\(669\) 9.96031 13.7092i 0.385088 0.530028i
\(670\) 0 0
\(671\) −7.19624 + 18.1719i −0.277808 + 0.701520i
\(672\) 0 0
\(673\) 5.98412 + 37.7823i 0.230671 + 1.45640i 0.782609 + 0.622514i \(0.213889\pi\)
−0.551938 + 0.833885i \(0.686111\pi\)
\(674\) 0 0
\(675\) 12.2178 17.5491i 0.470263 0.675465i
\(676\) 0 0
\(677\) 5.03592 31.7956i 0.193546 1.22200i −0.679246 0.733911i \(-0.737693\pi\)
0.872792 0.488092i \(-0.162307\pi\)
\(678\) 0 0
\(679\) −0.0815917 + 0.251113i −0.00313120 + 0.00963684i
\(680\) 0 0
\(681\) 10.4198i 0.399289i
\(682\) 0 0
\(683\) 28.7223 28.7223i 1.09903 1.09903i 0.104505 0.994524i \(-0.466674\pi\)
0.994524 0.104505i \(-0.0333260\pi\)
\(684\) 0 0
\(685\) −8.90764 + 3.79522i −0.340343 + 0.145008i
\(686\) 0 0
\(687\) −12.9380 2.04918i −0.493616 0.0781811i
\(688\) 0 0
\(689\) 8.63834 + 26.5861i 0.329095 + 1.01285i
\(690\) 0 0
\(691\) −20.4397 14.8503i −0.777564 0.564933i 0.126683 0.991943i \(-0.459567\pi\)
−0.904247 + 0.427010i \(0.859567\pi\)
\(692\) 0 0
\(693\) 1.29235 + 0.764417i 0.0490925 + 0.0290378i
\(694\) 0 0
\(695\) 18.0241 + 15.0828i 0.683694 + 0.572122i
\(696\) 0 0
\(697\) 11.2675 22.1136i 0.426785 0.837613i
\(698\) 0 0
\(699\) −10.0896 + 7.33055i −0.381625 + 0.277267i
\(700\) 0 0
\(701\) 26.8458 + 8.72273i 1.01395 + 0.329453i 0.768427 0.639937i \(-0.221040\pi\)
0.245525 + 0.969390i \(0.421040\pi\)
\(702\) 0 0
\(703\) −2.84289 2.84289i −0.107222 0.107222i
\(704\) 0 0
\(705\) −21.9892 1.50791i −0.828161 0.0567914i
\(706\) 0 0
\(707\) 0.823230 0.419457i 0.0309608 0.0157753i
\(708\) 0 0
\(709\) −4.79615 6.60134i −0.180123 0.247918i 0.709402 0.704804i \(-0.248965\pi\)
−0.889526 + 0.456885i \(0.848965\pi\)
\(710\) 0 0
\(711\) 1.50773 0.489890i 0.0565441 0.0183723i
\(712\) 0 0
\(713\) 0.563131 0.0891912i 0.0210894 0.00334024i
\(714\) 0 0
\(715\) 6.53065 22.0091i 0.244232 0.823095i
\(716\) 0 0
\(717\) −4.15889 + 0.658703i −0.155317 + 0.0245997i
\(718\) 0 0
\(719\) 0.986856 0.320649i 0.0368035 0.0119582i −0.290557 0.956858i \(-0.593841\pi\)
0.327361 + 0.944899i \(0.393841\pi\)
\(720\) 0 0
\(721\) 0.364342 + 0.501474i 0.0135688 + 0.0186759i
\(722\) 0 0
\(723\) −11.4843 + 5.85157i −0.427107 + 0.217622i
\(724\) 0 0
\(725\) 47.2892 + 6.51637i 1.75627 + 0.242012i
\(726\) 0 0
\(727\) 3.27903 + 3.27903i 0.121612 + 0.121612i 0.765294 0.643681i \(-0.222594\pi\)
−0.643681 + 0.765294i \(0.722594\pi\)
\(728\) 0 0
\(729\) 1.44390 + 0.469153i 0.0534779 + 0.0173760i
\(730\) 0 0
\(731\) −15.8055 + 11.4833i −0.584586 + 0.424726i
\(732\) 0 0
\(733\) 20.7361 40.6968i 0.765904 1.50317i −0.0956003 0.995420i \(-0.530477\pi\)
0.861504 0.507751i \(-0.169523\pi\)
\(734\) 0 0
\(735\) 1.09851 + 12.3645i 0.0405193 + 0.456071i
\(736\) 0 0
\(737\) −4.23142 + 18.9241i −0.155866 + 0.697079i
\(738\) 0 0
\(739\) −3.07164 2.23167i −0.112992 0.0820934i 0.529854 0.848089i \(-0.322247\pi\)
−0.642846 + 0.765995i \(0.722247\pi\)
\(740\) 0 0
\(741\) −0.567231 1.74576i −0.0208377 0.0641320i
\(742\) 0 0
\(743\) 41.9067 + 6.63736i 1.53741 + 0.243501i 0.866930 0.498430i \(-0.166090\pi\)
0.670476 + 0.741931i \(0.266090\pi\)
\(744\) 0 0
\(745\) −4.81079 + 11.9534i −0.176254 + 0.437938i
\(746\) 0 0
\(747\) −27.8924 + 27.8924i −1.02053 + 1.02053i
\(748\) 0 0
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) 3.08775 9.50312i 0.112674 0.346774i −0.878781 0.477225i \(-0.841643\pi\)
0.991455 + 0.130451i \(0.0416427\pi\)
\(752\) 0 0
\(753\) −2.41230 + 15.2306i −0.0879089 + 0.555035i
\(754\) 0 0
\(755\) −32.4561 + 8.13861i −1.18120 + 0.296194i
\(756\) 0 0
\(757\) 4.59658 + 29.0217i 0.167065 + 1.05481i 0.918621 + 0.395140i \(0.129304\pi\)
−0.751555 + 0.659670i \(0.770696\pi\)
\(758\) 0 0
\(759\) −1.06807 4.16105i −0.0387684 0.151037i
\(760\) 0 0
\(761\) −17.8404 + 24.5552i −0.646713 + 0.890124i −0.998951 0.0457864i \(-0.985421\pi\)
0.352238 + 0.935910i \(0.385421\pi\)
\(762\) 0 0
\(763\) −1.62790 0.829459i −0.0589341 0.0300284i
\(764\) 0 0
\(765\) 19.1001 + 4.38256i 0.690566 + 0.158452i
\(766\) 0 0
\(767\) −13.5283 26.5507i −0.488477 0.958690i
\(768\) 0 0
\(769\) −37.6421 −1.35741 −0.678705 0.734411i \(-0.737458\pi\)
−0.678705 + 0.734411i \(0.737458\pi\)
\(770\) 0 0
\(771\) 3.75184 0.135119
\(772\) 0 0
\(773\) −11.7188 22.9995i −0.421497 0.827234i −0.999934 0.0115072i \(-0.996337\pi\)
0.578437 0.815727i \(-0.303663\pi\)
\(774\) 0 0
\(775\) 1.54700 0.827900i 0.0555698 0.0297390i
\(776\) 0 0
\(777\) −0.735173 0.374589i −0.0263742 0.0134383i
\(778\) 0 0
\(779\) 2.92741 4.02923i 0.104885 0.144362i
\(780\) 0 0
\(781\) 35.3437 + 13.9964i 1.26470 + 0.500831i
\(782\) 0 0
\(783\) 6.38724 + 40.3275i 0.228261 + 1.44119i
\(784\) 0 0
\(785\) −5.68579 + 9.49165i −0.202935 + 0.338771i
\(786\) 0 0
\(787\) −2.70244 + 17.0625i −0.0963315 + 0.608213i 0.891540 + 0.452942i \(0.149625\pi\)
−0.987872 + 0.155272i \(0.950375\pi\)
\(788\) 0 0
\(789\) −3.90967 + 12.0327i −0.139188 + 0.428376i
\(790\) 0 0
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 + 12.8994i −0.458070 + 0.458070i
\(794\) 0 0
\(795\) 14.9338 + 6.01029i 0.529647 + 0.213163i
\(796\) 0 0
\(797\) −44.0203 6.97213i −1.55928 0.246965i −0.683599 0.729858i \(-0.739586\pi\)
−0.875680 + 0.482892i \(0.839586\pi\)
\(798\) 0 0
\(799\) −14.1615 43.5847i −0.500999 1.54192i
\(800\) 0 0
\(801\) −15.1535 11.0097i −0.535424 0.389008i
\(802\) 0 0
\(803\) −7.93078 + 0.749124i −0.279871 + 0.0264360i
\(804\) 0 0
\(805\) 0.446416 0.533473i 0.0157341 0.0188025i
\(806\) 0 0
\(807\) −4.09432 + 8.03556i −0.144127 + 0.282865i
\(808\) 0 0
\(809\) −12.3255 + 8.95497i −0.433340 + 0.314840i −0.782983 0.622043i \(-0.786303\pi\)
0.349643 + 0.936883i \(0.386303\pi\)
\(810\) 0 0
\(811\) 43.3276 + 14.0780i 1.52144 + 0.494345i 0.946183 0.323631i \(-0.104904\pi\)
0.575253 + 0.817976i \(0.304904\pi\)
\(812\) 0 0
\(813\) −10.0502 10.0502i −0.352475 0.352475i
\(814\) 0 0
\(815\) −16.8842 + 14.7171i −0.591427 + 0.515518i
\(816\) 0 0
\(817\) −3.49314 + 1.77984i −0.122209 + 0.0622688i
\(818\) 0 0
\(819\) 0.823747 + 1.13379i 0.0287840 + 0.0396178i
\(820\) 0 0
\(821\) −27.3071 + 8.87260i −0.953023 + 0.309656i −0.743943 0.668243i \(-0.767047\pi\)
−0.209079 + 0.977899i \(0.567047\pi\)
\(822\) 0 0
\(823\) 26.6252 4.21701i 0.928095 0.146996i 0.325954 0.945386i \(-0.394314\pi\)
0.602141 + 0.798390i \(0.294314\pi\)
\(824\) 0 0
\(825\) −7.30652 11.0180i −0.254380 0.383597i
\(826\) 0 0
\(827\) −39.1944 + 6.20779i −1.36292 + 0.215866i −0.794697 0.607006i \(-0.792370\pi\)
−0.568227 + 0.822872i \(0.692370\pi\)
\(828\) 0 0
\(829\) −10.3353 + 3.35814i −0.358959 + 0.116633i −0.482944 0.875651i \(-0.660433\pi\)
0.123985 + 0.992284i \(0.460433\pi\)
\(830\) 0 0
\(831\) −2.19378 3.01948i −0.0761013 0.104744i
\(832\) 0 0
\(833\) −22.9966 + 11.7174i −0.796786 + 0.405983i
\(834\) 0 0
\(835\) 20.3322 17.7226i 0.703625 0.613316i
\(836\) 0 0
\(837\) 1.06120 + 1.06120i 0.0366805 + 0.0366805i
\(838\) 0 0
\(839\) −38.3426 12.4583i −1.32373 0.430107i −0.439958 0.898019i \(-0.645007\pi\)
−0.883775 + 0.467912i \(0.845007\pi\)
\(840\) 0 0
\(841\) −50.2797 + 36.5303i −1.73378 + 1.25967i
\(842\) 0 0
\(843\) 4.77364 9.36879i 0.164413 0.322678i
\(844\) 0 0
\(845\) −4.90379 + 5.86010i −0.168695 + 0.201593i
\(846\) 0 0
\(847\) 1.66439 1.29066i 0.0571891 0.0443477i
\(848\) 0 0
\(849\) −14.6966 10.6777i −0.504386 0.366458i
\(850\) 0 0
\(851\) −2.71386 8.35241i −0.0930300 0.286317i
\(852\) 0 0
\(853\) 13.7845 + 2.18326i 0.471974 + 0.0747533i 0.387890 0.921705i \(-0.373204\pi\)
0.0840831 + 0.996459i \(0.473204\pi\)
\(854\) 0 0
\(855\) 3.64808 + 1.46822i 0.124762 + 0.0502119i
\(856\) 0 0
\(857\) −26.9229 + 26.9229i −0.919668 + 0.919668i −0.997005 0.0773373i \(-0.975358\pi\)
0.0773373 + 0.997005i \(0.475358\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i −0.949906 0.312535i \(-0.898822\pi\)
0.949906 0.312535i \(-0.101178\pi\)
\(860\) 0 0
\(861\) 0.315849 0.972084i 0.0107641 0.0331285i
\(862\) 0 0
\(863\) 1.90114 12.0033i 0.0647154 0.408597i −0.933971 0.357350i \(-0.883680\pi\)
0.998686 0.0512472i \(-0.0163196\pi\)
\(864\) 0 0
\(865\) 14.3234 23.9109i 0.487010 0.812996i
\(866\) 0 0
\(867\) 0.406785 + 2.56834i 0.0138151 + 0.0872253i
\(868\) 0 0
\(869\) 0.139785 2.21935i 0.00474187 0.0752863i
\(870\) 0 0
\(871\) −10.6384 + 14.6425i −0.360469 + 0.496143i
\(872\) 0 0
\(873\) −2.90515 1.48025i −0.0983243 0.0500987i
\(874\) 0 0
\(875\) 0.759091 2.00161i 0.0256620 0.0676666i
\(876\) 0 0
\(877\) −5.82698 11.4361i −0.196763 0.386169i 0.771452 0.636287i \(-0.219531\pi\)
−0.968215 + 0.250118i \(0.919531\pi\)
\(878\) 0 0
\(879\) −5.76213 −0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) 0 0
\(883\) 19.7888 + 38.8377i 0.665947 + 1.30699i 0.938642 + 0.344893i \(0.112085\pi\)
−0.272695 + 0.962100i \(0.587915\pi\)
\(884\) 0 0
\(885\) −16.7253 3.83765i −0.562215 0.129001i
\(886\) 0 0
\(887\) 9.26576 + 4.72114i 0.311114 + 0.158520i 0.602575 0.798062i \(-0.294141\pi\)
−0.291461 + 0.956583i \(0.594141\pi\)
\(888\) 0 0
\(889\) −1.63945 + 2.25651i −0.0549853 + 0.0756808i
\(890\) 0 0
\(891\) −7.78863 + 9.41351i −0.260929 + 0.315364i
\(892\) 0 0
\(893\) −1.43862 9.08308i −0.0481415 0.303954i
\(894\) 0 0
\(895\) −43.7656 + 10.9745i −1.46292 + 0.366838i
\(896\) 0 0
\(897\) 0.627249 3.96029i 0.0209432 0.132230i
\(898\) 0 0
\(899\) −1.03530 + 3.18633i −0.0345292 + 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) 0 0
\(903\) −0.568922 + 0.568922i −0.0189325 + 0.0189325i
\(904\) 0 0
\(905\) 3.84846 9.56228i 0.127927 0.317861i
\(906\) 0 0
\(907\) −16.1062 2.55097i −0.534798 0.0847036i −0.116806 0.993155i \(-0.537266\pi\)
−0.417991 + 0.908451i \(0.637266\pi\)
\(908\) 0 0
\(909\) 3.52571 + 10.8510i 0.116940 + 0.359906i
\(910\) 0 0
\(911\) −14.3281 10.4099i −0.474710 0.344897i 0.324564 0.945864i \(-0.394782\pi\)
−0.799274 + 0.600967i \(0.794782\pi\)
\(912\) 0 0
\(913\) 21.9712 + 50.7821i 0.727140 + 1.68064i
\(914\) 0 0
\(915\) 0.929665 + 10.4640i 0.0307338 + 0.345929i
\(916\) 0 0
\(917\) 0.849203 1.66665i 0.0280431 0.0550378i
\(918\) 0 0
\(919\) −7.38632 + 5.36648i −0.243652 + 0.177024i −0.702909 0.711280i \(-0.748116\pi\)
0.459257 + 0.888304i \(0.348116\pi\)
\(920\) 0 0
\(921\) 21.5818 + 7.01234i 0.711143 + 0.231064i
\(922\) 0 0
\(923\) 25.0888 + 25.0888i 0.825807 + 0.825807i
\(924\) 0 0
\(925\) −16.3231 21.5407i −0.536701 0.708254i
\(926\) 0 0
\(927\) −6.82017 + 3.47505i −0.224004 + 0.114136i
\(928\) 0 0
\(929\) −1.06529 1.46625i −0.0349511 0.0481061i 0.791184 0.611578i \(-0.209465\pi\)
−0.826135 + 0.563472i \(0.809465\pi\)
\(930\) 0 0
\(931\) −4.92578 + 1.60048i −0.161436 + 0.0524537i
\(932\) 0 0
\(933\) 5.91808 0.937332i 0.193749 0.0306869i
\(934\) 0 0
\(935\) 15.5802 22.6465i 0.509525 0.740619i
\(936\) 0 0
\(937\) 14.9726 2.37143i 0.489133 0.0774711i 0.0930039 0.995666i \(-0.470353\pi\)
0.396130 + 0.918195i \(0.370353\pi\)
\(938\) 0 0
\(939\) −1.02061 + 0.331616i −0.0333063 + 0.0108219i
\(940\) 0 0
\(941\) −12.8308 17.6600i −0.418271 0.575701i 0.546940 0.837172i \(-0.315792\pi\)
−0.965211 + 0.261471i \(0.915792\pi\)
\(942\) 0 0
\(943\) 9.69338 4.93902i 0.315660 0.160837i
\(944\) 0 0
\(945\) 1.82673 + 0.125268i 0.0594235 + 0.00407498i
\(946\) 0 0
\(947\) −6.90662 6.90662i −0.224435 0.224435i 0.585928 0.810363i \(-0.300730\pi\)
−0.810363 + 0.585928i \(0.800730\pi\)
\(948\) 0 0
\(949\) −7.07131 2.29761i −0.229545 0.0745835i
\(950\) 0 0
\(951\) 7.30875 5.31012i 0.237003 0.172192i
\(952\) 0 0
\(953\) −5.92153 + 11.6216i −0.191817 + 0.376462i −0.966806 0.255513i \(-0.917756\pi\)
0.774989 + 0.631975i \(0.217756\pi\)
\(954\) 0 0
\(955\) 10.8487 + 9.07831i 0.351056 + 0.293767i
\(956\) 0 0
\(957\) 24.6354 + 5.50846i 0.796349 + 0.178063i
\(958\) 0 0
\(959\) −0.670750 0.487328i −0.0216596 0.0157367i
\(960\) 0 0
\(961\) −9.54147 29.3656i −0.307789 0.947279i
\(962\) 0 0
\(963\) 25.8182 + 4.08921i 0.831981 + 0.131773i
\(964\) 0 0
\(965\) −12.2027 + 5.19911i −0.392818 + 0.167365i
\(966\) 0 0
\(967\) −13.6319 + 13.6319i −0.438372 + 0.438372i −0.891464 0.453092i \(-0.850321\pi\)
0.453092 + 0.891464i \(0.350321\pi\)
\(968\) 0 0
\(969\) 2.19785i 0.0706051i
\(970\) 0 0
\(971\) −1.26967 + 3.90765i −0.0407457 + 0.125403i −0.969360 0.245643i \(-0.921001\pi\)
0.928615 + 0.371046i \(0.121001\pi\)
\(972\) 0 0
\(973\) −0.314819 + 1.98769i −0.0100926 + 0.0637224i
\(974\) 0 0
\(975\) −2.17541 12.1462i −0.0696688 0.388989i
\(976\) 0 0
\(977\) 4.80402 + 30.3314i 0.153694 + 0.970386i 0.937147 + 0.348935i \(0.113457\pi\)
−0.783453 + 0.621451i \(0.786543\pi\)
\(978\) 0 0
\(979\) −22.1848 + 14.0768i −0.709030 + 0.449895i
\(980\) 0 0
\(981\) 13.2614 18.2528i 0.423405 0.582767i
\(982\) 0 0
\(983\) −24.7035 12.5871i −0.787919 0.401465i 0.0132429 0.999912i \(-0.495785\pi\)
−0.801162 + 0.598447i \(0.795785\pi\)
\(984\) 0 0
\(985\) 7.00505 30.5295i 0.223199 0.972750i
\(986\) 0 0
\(987\) −0.856827 1.68162i −0.0272731 0.0535265i
\(988\) 0 0
\(989\) −8.56376 −0.272312
\(990\) 0 0
\(991\) −9.10087 −0.289099 −0.144549 0.989498i \(-0.546173\pi\)
−0.144549 + 0.989498i \(0.546173\pi\)
\(992\) 0 0
\(993\) 6.40795 + 12.5763i 0.203350 + 0.399097i
\(994\) 0 0
\(995\) −15.8919 25.3563i −0.503806 0.803849i
\(996\) 0 0
\(997\) 25.7239 + 13.1070i 0.814685 + 0.415103i 0.811112 0.584891i \(-0.198863\pi\)
0.00357282 + 0.999994i \(0.498863\pi\)
\(998\) 0 0
\(999\) 13.5878 18.7019i 0.429898 0.591703i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.a.337.4 32
4.3 odd 2 55.2.l.a.7.4 32
5.3 odd 4 inner 880.2.cm.a.513.1 32
11.8 odd 10 inner 880.2.cm.a.657.1 32
12.11 even 2 495.2.bj.a.172.1 32
20.3 even 4 55.2.l.a.18.1 yes 32
20.7 even 4 275.2.bm.b.18.4 32
20.19 odd 2 275.2.bm.b.7.1 32
44.3 odd 10 605.2.m.e.602.4 32
44.7 even 10 605.2.m.d.112.1 32
44.15 odd 10 605.2.m.c.112.4 32
44.19 even 10 55.2.l.a.52.1 yes 32
44.27 odd 10 605.2.e.b.362.3 32
44.31 odd 10 605.2.m.d.457.1 32
44.35 even 10 605.2.m.c.457.4 32
44.39 even 10 605.2.e.b.362.14 32
44.43 even 2 605.2.m.e.282.1 32
55.8 even 20 inner 880.2.cm.a.833.4 32
60.23 odd 4 495.2.bj.a.73.4 32
132.107 odd 10 495.2.bj.a.217.4 32
220.3 even 20 605.2.m.e.118.1 32
220.19 even 10 275.2.bm.b.107.4 32
220.43 odd 4 605.2.m.e.403.4 32
220.63 odd 20 55.2.l.a.8.4 yes 32
220.83 odd 20 605.2.e.b.483.3 32
220.103 even 20 605.2.m.c.233.4 32
220.107 odd 20 275.2.bm.b.118.1 32
220.123 odd 20 605.2.m.c.578.4 32
220.163 even 20 605.2.m.d.578.1 32
220.183 odd 20 605.2.m.d.233.1 32
220.203 even 20 605.2.e.b.483.14 32
660.503 even 20 495.2.bj.a.118.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 4.3 odd 2
55.2.l.a.8.4 yes 32 220.63 odd 20
55.2.l.a.18.1 yes 32 20.3 even 4
55.2.l.a.52.1 yes 32 44.19 even 10
275.2.bm.b.7.1 32 20.19 odd 2
275.2.bm.b.18.4 32 20.7 even 4
275.2.bm.b.107.4 32 220.19 even 10
275.2.bm.b.118.1 32 220.107 odd 20
495.2.bj.a.73.4 32 60.23 odd 4
495.2.bj.a.118.1 32 660.503 even 20
495.2.bj.a.172.1 32 12.11 even 2
495.2.bj.a.217.4 32 132.107 odd 10
605.2.e.b.362.3 32 44.27 odd 10
605.2.e.b.362.14 32 44.39 even 10
605.2.e.b.483.3 32 220.83 odd 20
605.2.e.b.483.14 32 220.203 even 20
605.2.m.c.112.4 32 44.15 odd 10
605.2.m.c.233.4 32 220.103 even 20
605.2.m.c.457.4 32 44.35 even 10
605.2.m.c.578.4 32 220.123 odd 20
605.2.m.d.112.1 32 44.7 even 10
605.2.m.d.233.1 32 220.183 odd 20
605.2.m.d.457.1 32 44.31 odd 10
605.2.m.d.578.1 32 220.163 even 20
605.2.m.e.118.1 32 220.3 even 20
605.2.m.e.282.1 32 44.43 even 2
605.2.m.e.403.4 32 220.43 odd 4
605.2.m.e.602.4 32 44.3 odd 10
880.2.cm.a.337.4 32 1.1 even 1 trivial
880.2.cm.a.513.1 32 5.3 odd 4 inner
880.2.cm.a.657.1 32 11.8 odd 10 inner
880.2.cm.a.833.4 32 55.8 even 20 inner