Properties

Label 605.2.m.c.112.4
Level $605$
Weight $2$
Character 605.112
Analytic conductor $4.831$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(112,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.112"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,6,0,-2,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 112.4
Character \(\chi\) \(=\) 605.112
Dual form 605.2.m.c.578.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690094 + 1.35439i) q^{2} +(-0.124714 + 0.787410i) q^{3} +(-0.182561 + 0.251273i) q^{4} +(0.543872 + 2.16892i) q^{5} +(-1.15252 + 0.374477i) q^{6} +(-0.189114 + 0.0299527i) q^{7} +(2.53639 + 0.401725i) q^{8} +(2.24871 + 0.730650i) q^{9} +(-2.56223 + 2.23337i) q^{10} +(-0.175087 - 0.175087i) q^{12} +(2.75820 - 1.40537i) q^{13} +(-0.171074 - 0.235463i) q^{14} +(-1.77566 + 0.157757i) q^{15} +(1.39821 + 4.30326i) q^{16} +(-3.30253 - 1.68272i) q^{17} +(0.562239 + 3.54984i) q^{18} +(0.601740 - 0.437190i) q^{19} +(-0.644280 - 0.259299i) q^{20} -0.152646i q^{21} +(-1.14886 + 1.14886i) q^{23} +(-0.632645 + 1.94708i) q^{24} +(-4.40841 + 2.35923i) q^{25} +(3.80684 + 2.76583i) q^{26} +(-1.94156 + 3.81053i) q^{27} +(0.0269984 - 0.0529874i) q^{28} +(-7.72385 - 5.61170i) q^{29} +(-1.43903 - 2.29606i) q^{30} +(0.108440 - 0.333745i) q^{31} +(-1.23166 + 1.23166i) q^{32} -5.63413i q^{34} +(-0.167819 - 0.393882i) q^{35} +(-0.594118 + 0.431652i) q^{36} +(0.845584 + 5.33881i) q^{37} +(1.00738 + 0.513286i) q^{38} +(0.762621 + 2.34710i) q^{39} +(0.508163 + 5.71971i) q^{40} +(-3.93579 - 5.41715i) q^{41} +(0.206741 - 0.105340i) q^{42} +(3.72708 + 3.72708i) q^{43} +(-0.361710 + 5.27464i) q^{45} +(-2.34882 - 0.763176i) q^{46} +(12.2119 + 1.93417i) q^{47} +(-3.56281 + 0.564293i) q^{48} +(-6.62253 + 2.15179i) q^{49} +(-6.23752 - 4.34260i) q^{50} +(1.73686 - 2.39059i) q^{51} +(-0.150406 + 0.949628i) q^{52} +(-4.09968 - 8.04607i) q^{53} -6.50079 q^{54} -0.491699 q^{56} +(0.269202 + 0.528339i) q^{57} +(2.27023 - 14.3337i) q^{58} +(5.65807 - 7.78767i) q^{59} +(0.284525 - 0.474975i) q^{60} +(-5.60460 + 1.82105i) q^{61} +(0.526853 - 0.0834454i) q^{62} +(-0.447147 - 0.0708211i) q^{63} +(6.08841 + 1.97824i) q^{64} +(4.54825 + 5.21797i) q^{65} +(4.13426 + 4.13426i) q^{67} +(1.02573 - 0.522638i) q^{68} +(-0.761344 - 1.04790i) q^{69} +(0.417657 - 0.499106i) q^{70} +(-3.54186 - 10.9007i) q^{71} +(5.41009 + 2.75658i) q^{72} +(0.375734 + 2.37229i) q^{73} +(-6.64727 + 4.82953i) q^{74} +(-1.30789 - 3.76545i) q^{75} +0.231015i q^{76} +(-2.65261 + 2.65261i) q^{78} +(0.207191 - 0.637669i) q^{79} +(-8.57297 + 5.37303i) q^{80} +(2.98028 + 2.16530i) q^{81} +(4.62085 - 9.06892i) q^{82} +(7.57393 - 14.8647i) q^{83} +(0.0383557 + 0.0278671i) q^{84} +(1.85353 - 8.07810i) q^{85} +(-2.47587 + 7.61994i) q^{86} +(5.38198 - 5.38198i) q^{87} -7.92190i q^{89} +(-7.39352 + 3.15010i) q^{90} +(-0.479519 + 0.348391i) q^{91} +(-0.0789408 - 0.498413i) q^{92} +(0.249270 + 0.127009i) q^{93} +(5.80772 + 17.8743i) q^{94} +(1.27550 + 1.06735i) q^{95} +(-0.816218 - 1.12343i) q^{96} +(1.22869 - 0.626047i) q^{97} +(-7.48452 - 7.48452i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{3} - 2 q^{5} - 20 q^{7} + 20 q^{8} + 12 q^{12} + 20 q^{13} + 4 q^{15} + 12 q^{16} - 30 q^{18} + 16 q^{20} - 24 q^{23} - 24 q^{25} - 20 q^{26} + 24 q^{27} + 20 q^{28} - 40 q^{30} + 32 q^{31}+ \cdots - 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.690094 + 1.35439i 0.487970 + 0.957695i 0.995382 + 0.0959918i \(0.0306022\pi\)
−0.507412 + 0.861704i \(0.669398\pi\)
\(3\) −0.124714 + 0.787410i −0.0720034 + 0.454611i 0.925175 + 0.379541i \(0.123918\pi\)
−0.997178 + 0.0750703i \(0.976082\pi\)
\(4\) −0.182561 + 0.251273i −0.0912803 + 0.125637i
\(5\) 0.543872 + 2.16892i 0.243227 + 0.969969i
\(6\) −1.15252 + 0.374477i −0.470515 + 0.152880i
\(7\) −0.189114 + 0.0299527i −0.0714783 + 0.0113210i −0.192071 0.981381i \(-0.561520\pi\)
0.120593 + 0.992702i \(0.461520\pi\)
\(8\) 2.53639 + 0.401725i 0.896750 + 0.142031i
\(9\) 2.24871 + 0.730650i 0.749569 + 0.243550i
\(10\) −2.56223 + 2.23337i −0.810248 + 0.706253i
\(11\) 0 0
\(12\) −0.175087 0.175087i −0.0505433 0.0505433i
\(13\) 2.75820 1.40537i 0.764988 0.389781i −0.0275369 0.999621i \(-0.508766\pi\)
0.792524 + 0.609840i \(0.208766\pi\)
\(14\) −0.171074 0.235463i −0.0457214 0.0629301i
\(15\) −1.77566 + 0.157757i −0.458472 + 0.0407326i
\(16\) 1.39821 + 4.30326i 0.349553 + 1.07581i
\(17\) −3.30253 1.68272i −0.800981 0.408120i 0.00505476 0.999987i \(-0.498391\pi\)
−0.806036 + 0.591867i \(0.798391\pi\)
\(18\) 0.562239 + 3.54984i 0.132521 + 0.836704i
\(19\) 0.601740 0.437190i 0.138049 0.100298i −0.516618 0.856216i \(-0.672809\pi\)
0.654666 + 0.755918i \(0.272809\pi\)
\(20\) −0.644280 0.259299i −0.144065 0.0579809i
\(21\) 0.152646i 0.0333100i
\(22\) 0 0
\(23\) −1.14886 + 1.14886i −0.239553 + 0.239553i −0.816665 0.577112i \(-0.804180\pi\)
0.577112 + 0.816665i \(0.304180\pi\)
\(24\) −0.632645 + 1.94708i −0.129138 + 0.397446i
\(25\) −4.40841 + 2.35923i −0.881681 + 0.471845i
\(26\) 3.80684 + 2.76583i 0.746582 + 0.542424i
\(27\) −1.94156 + 3.81053i −0.373654 + 0.733337i
\(28\) 0.0269984 0.0529874i 0.00510222 0.0100137i
\(29\) −7.72385 5.61170i −1.43428 1.04207i −0.989199 0.146578i \(-0.953174\pi\)
−0.445084 0.895489i \(-0.646826\pi\)
\(30\) −1.43903 2.29606i −0.262730 0.419201i
\(31\) 0.108440 0.333745i 0.0194765 0.0599424i −0.940846 0.338835i \(-0.889967\pi\)
0.960322 + 0.278892i \(0.0899673\pi\)
\(32\) −1.23166 + 1.23166i −0.217729 + 0.217729i
\(33\) 0 0
\(34\) 5.63413i 0.966246i
\(35\) −0.167819 0.393882i −0.0283665 0.0665782i
\(36\) −0.594118 + 0.431652i −0.0990197 + 0.0719420i
\(37\) 0.845584 + 5.33881i 0.139013 + 0.877694i 0.954346 + 0.298702i \(0.0965538\pi\)
−0.815333 + 0.578992i \(0.803446\pi\)
\(38\) 1.00738 + 0.513286i 0.163419 + 0.0832660i
\(39\) 0.762621 + 2.34710i 0.122117 + 0.375838i
\(40\) 0.508163 + 5.71971i 0.0803477 + 0.904366i
\(41\) −3.93579 5.41715i −0.614667 0.846017i 0.382284 0.924045i \(-0.375138\pi\)
−0.996951 + 0.0780281i \(0.975138\pi\)
\(42\) 0.206741 0.105340i 0.0319008 0.0162543i
\(43\) 3.72708 + 3.72708i 0.568374 + 0.568374i 0.931673 0.363299i \(-0.118350\pi\)
−0.363299 + 0.931673i \(0.618350\pi\)
\(44\) 0 0
\(45\) −0.361710 + 5.27464i −0.0539205 + 0.786297i
\(46\) −2.34882 0.763176i −0.346314 0.112524i
\(47\) 12.2119 + 1.93417i 1.78128 + 0.282128i 0.958264 0.285885i \(-0.0922875\pi\)
0.823020 + 0.568013i \(0.192287\pi\)
\(48\) −3.56281 + 0.564293i −0.514247 + 0.0814487i
\(49\) −6.62253 + 2.15179i −0.946076 + 0.307399i
\(50\) −6.23752 4.34260i −0.882118 0.614136i
\(51\) 1.73686 2.39059i 0.243209 0.334749i
\(52\) −0.150406 + 0.949628i −0.0208576 + 0.131690i
\(53\) −4.09968 8.04607i −0.563134 1.10521i −0.980508 0.196478i \(-0.937050\pi\)
0.417374 0.908735i \(-0.362950\pi\)
\(54\) −6.50079 −0.884646
\(55\) 0 0
\(56\) −0.491699 −0.0657061
\(57\) 0.269202 + 0.528339i 0.0356567 + 0.0699803i
\(58\) 2.27023 14.3337i 0.298096 1.88210i
\(59\) 5.65807 7.78767i 0.736618 1.01387i −0.262188 0.965017i \(-0.584444\pi\)
0.998806 0.0488514i \(-0.0155561\pi\)
\(60\) 0.284525 0.474975i 0.0367320 0.0613190i
\(61\) −5.60460 + 1.82105i −0.717596 + 0.233161i −0.644980 0.764199i \(-0.723134\pi\)
−0.0726152 + 0.997360i \(0.523134\pi\)
\(62\) 0.526853 0.0834454i 0.0669104 0.0105976i
\(63\) −0.447147 0.0708211i −0.0563352 0.00892261i
\(64\) 6.08841 + 1.97824i 0.761051 + 0.247281i
\(65\) 4.54825 + 5.21797i 0.564141 + 0.647209i
\(66\) 0 0
\(67\) 4.13426 + 4.13426i 0.505081 + 0.505081i 0.913012 0.407932i \(-0.133750\pi\)
−0.407932 + 0.913012i \(0.633750\pi\)
\(68\) 1.02573 0.522638i 0.124389 0.0633791i
\(69\) −0.761344 1.04790i −0.0916550 0.126152i
\(70\) 0.417657 0.499106i 0.0499196 0.0596546i
\(71\) −3.54186 10.9007i −0.420342 1.29368i −0.907385 0.420301i \(-0.861925\pi\)
0.487043 0.873378i \(-0.338075\pi\)
\(72\) 5.41009 + 2.75658i 0.637585 + 0.324866i
\(73\) 0.375734 + 2.37229i 0.0439764 + 0.277656i 0.999871 0.0160534i \(-0.00511018\pi\)
−0.955895 + 0.293709i \(0.905110\pi\)
\(74\) −6.64727 + 4.82953i −0.772730 + 0.561421i
\(75\) −1.30789 3.76545i −0.151022 0.434797i
\(76\) 0.231015i 0.0264992i
\(77\) 0 0
\(78\) −2.65261 + 2.65261i −0.300348 + 0.300348i
\(79\) 0.207191 0.637669i 0.0233108 0.0717434i −0.938724 0.344669i \(-0.887991\pi\)
0.962035 + 0.272925i \(0.0879912\pi\)
\(80\) −8.57297 + 5.37303i −0.958487 + 0.600723i
\(81\) 2.98028 + 2.16530i 0.331143 + 0.240589i
\(82\) 4.62085 9.06892i 0.510287 1.00149i
\(83\) 7.57393 14.8647i 0.831347 1.63161i 0.0574083 0.998351i \(-0.481716\pi\)
0.773939 0.633260i \(-0.218284\pi\)
\(84\) 0.0383557 + 0.0278671i 0.00418495 + 0.00304055i
\(85\) 1.85353 8.07810i 0.201044 0.876193i
\(86\) −2.47587 + 7.61994i −0.266980 + 0.821679i
\(87\) 5.38198 5.38198i 0.577009 0.577009i
\(88\) 0 0
\(89\) 7.92190i 0.839720i −0.907589 0.419860i \(-0.862079\pi\)
0.907589 0.419860i \(-0.137921\pi\)
\(90\) −7.39352 + 3.15010i −0.779345 + 0.332050i
\(91\) −0.479519 + 0.348391i −0.0502673 + 0.0365213i
\(92\) −0.0789408 0.498413i −0.00823015 0.0519631i
\(93\) 0.249270 + 0.127009i 0.0258481 + 0.0131703i
\(94\) 5.80772 + 17.8743i 0.599021 + 1.84360i
\(95\) 1.27550 + 1.06735i 0.130863 + 0.109508i
\(96\) −0.816218 1.12343i −0.0833049 0.114659i
\(97\) 1.22869 0.626047i 0.124754 0.0635655i −0.390500 0.920603i \(-0.627698\pi\)
0.515254 + 0.857038i \(0.327698\pi\)
\(98\) −7.48452 7.48452i −0.756051 0.756051i
\(99\) 0 0
\(100\) 0.211991 1.53842i 0.0211991 0.153842i
\(101\) −4.58927 1.49114i −0.456649 0.148374i 0.0716549 0.997429i \(-0.477172\pi\)
−0.528304 + 0.849055i \(0.677172\pi\)
\(102\) 4.43637 + 0.702653i 0.439266 + 0.0695730i
\(103\) −3.19748 + 0.506431i −0.315057 + 0.0499001i −0.311960 0.950095i \(-0.600986\pi\)
−0.00309638 + 0.999995i \(0.500986\pi\)
\(104\) 7.56045 2.45654i 0.741364 0.240884i
\(105\) 0.331076 0.0830196i 0.0323097 0.00810188i
\(106\) 8.06832 11.1051i 0.783665 1.07862i
\(107\) −1.72947 + 10.9194i −0.167194 + 1.05562i 0.751235 + 0.660035i \(0.229458\pi\)
−0.918429 + 0.395586i \(0.870542\pi\)
\(108\) −0.603031 1.18352i −0.0580267 0.113884i
\(109\) 9.54212 0.913969 0.456985 0.889475i \(-0.348929\pi\)
0.456985 + 0.889475i \(0.348929\pi\)
\(110\) 0 0
\(111\) −4.30929 −0.409019
\(112\) −0.393316 0.771925i −0.0371648 0.0729401i
\(113\) −0.648841 + 4.09662i −0.0610378 + 0.385378i 0.938191 + 0.346117i \(0.112500\pi\)
−0.999229 + 0.0392603i \(0.987500\pi\)
\(114\) −0.529801 + 0.729208i −0.0496204 + 0.0682966i
\(115\) −3.11661 1.86695i −0.290625 0.174094i
\(116\) 2.82014 0.916319i 0.261843 0.0850781i
\(117\) 7.22923 1.14500i 0.668342 0.105855i
\(118\) 14.4521 + 2.28899i 1.33042 + 0.210719i
\(119\) 0.674956 + 0.219306i 0.0618731 + 0.0201038i
\(120\) −4.56713 0.313192i −0.416920 0.0285904i
\(121\) 0 0
\(122\) −6.33410 6.33410i −0.573462 0.573462i
\(123\) 4.75636 2.42349i 0.428867 0.218519i
\(124\) 0.0640642 + 0.0881768i 0.00575313 + 0.00791851i
\(125\) −7.51457 8.27836i −0.672124 0.740439i
\(126\) −0.212654 0.654482i −0.0189447 0.0583059i
\(127\) 12.9795 + 6.61337i 1.15174 + 0.586842i 0.922298 0.386480i \(-0.126309\pi\)
0.229444 + 0.973322i \(0.426309\pi\)
\(128\) 2.06723 + 13.0520i 0.182719 + 1.15365i
\(129\) −3.39956 + 2.46992i −0.299314 + 0.217465i
\(130\) −3.92842 + 9.76097i −0.344546 + 0.856094i
\(131\) 9.76926i 0.853544i −0.904359 0.426772i \(-0.859651\pi\)
0.904359 0.426772i \(-0.140349\pi\)
\(132\) 0 0
\(133\) −0.100702 + 0.100702i −0.00873200 + 0.00873200i
\(134\) −2.74636 + 8.45242i −0.237249 + 0.730178i
\(135\) −9.32069 2.13865i −0.802197 0.184066i
\(136\) −7.70051 5.59475i −0.660314 0.479746i
\(137\) 1.96583 3.85816i 0.167952 0.329625i −0.791655 0.610969i \(-0.790780\pi\)
0.959607 + 0.281344i \(0.0907801\pi\)
\(138\) 0.893862 1.75430i 0.0760906 0.149336i
\(139\) −8.50321 6.17795i −0.721233 0.524007i 0.165545 0.986202i \(-0.447062\pi\)
−0.886778 + 0.462196i \(0.847062\pi\)
\(140\) 0.129609 + 0.0297390i 0.0109540 + 0.00251340i
\(141\) −3.04597 + 9.37453i −0.256517 + 0.789478i
\(142\) 12.3196 12.3196i 1.03384 1.03384i
\(143\) 0 0
\(144\) 10.6984i 0.891532i
\(145\) 7.97054 19.8044i 0.661918 1.64467i
\(146\) −2.95371 + 2.14600i −0.244451 + 0.177604i
\(147\) −0.868422 5.48300i −0.0716263 0.452230i
\(148\) −1.49587 0.762183i −0.122960 0.0626511i
\(149\) −1.78068 5.48038i −0.145879 0.448970i 0.851244 0.524771i \(-0.175849\pi\)
−0.997123 + 0.0758003i \(0.975849\pi\)
\(150\) 4.19731 4.36990i 0.342709 0.356801i
\(151\) 8.79574 + 12.1063i 0.715787 + 0.985196i 0.999653 + 0.0263324i \(0.00838283\pi\)
−0.283866 + 0.958864i \(0.591617\pi\)
\(152\) 1.70188 0.867150i 0.138041 0.0703352i
\(153\) −6.19694 6.19694i −0.500993 0.500993i
\(154\) 0 0
\(155\) 0.782843 + 0.0536836i 0.0628795 + 0.00431197i
\(156\) −0.728989 0.236863i −0.0583658 0.0189642i
\(157\) −4.88720 0.774057i −0.390041 0.0617765i −0.0416659 0.999132i \(-0.513267\pi\)
−0.348375 + 0.937355i \(0.613267\pi\)
\(158\) 1.00663 0.159435i 0.0800833 0.0126839i
\(159\) 6.84684 2.22467i 0.542990 0.176428i
\(160\) −3.34124 2.00151i −0.264148 0.158233i
\(161\) 0.182853 0.251676i 0.0144109 0.0198349i
\(162\) −0.875980 + 5.53072i −0.0688235 + 0.434534i
\(163\) −4.54748 8.92492i −0.356186 0.699054i 0.641494 0.767128i \(-0.278315\pi\)
−0.997680 + 0.0680736i \(0.978315\pi\)
\(164\) 2.07970 0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) 5.47615 + 10.7475i 0.423757 + 0.831670i 0.999897 + 0.0143193i \(0.00455812\pi\)
−0.576140 + 0.817351i \(0.695442\pi\)
\(168\) 0.0613215 0.387169i 0.00473106 0.0298707i
\(169\) −2.00861 + 2.76461i −0.154508 + 0.212662i
\(170\) 12.2200 3.06425i 0.937229 0.235017i
\(171\) 1.67257 0.543451i 0.127905 0.0415587i
\(172\) −1.61693 + 0.256097i −0.123290 + 0.0195272i
\(173\) 12.3116 + 1.94997i 0.936035 + 0.148253i 0.605775 0.795636i \(-0.292863\pi\)
0.330261 + 0.943890i \(0.392863\pi\)
\(174\) 11.0034 + 3.57521i 0.834162 + 0.271036i
\(175\) 0.763025 0.578206i 0.0576793 0.0437082i
\(176\) 0 0
\(177\) 5.42645 + 5.42645i 0.407877 + 0.407877i
\(178\) 10.7293 5.46686i 0.804196 0.409758i
\(179\) 11.8607 + 16.3248i 0.886507 + 1.22017i 0.974576 + 0.224058i \(0.0719304\pi\)
−0.0880691 + 0.996114i \(0.528070\pi\)
\(180\) −1.25934 1.05383i −0.0938658 0.0785478i
\(181\) 1.42448 + 4.38411i 0.105881 + 0.325868i 0.989936 0.141514i \(-0.0451971\pi\)
−0.884055 + 0.467383i \(0.845197\pi\)
\(182\) −0.802769 0.409031i −0.0595052 0.0303194i
\(183\) −0.734940 4.64023i −0.0543283 0.343016i
\(184\) −3.37548 + 2.45243i −0.248843 + 0.180795i
\(185\) −11.1195 + 4.73763i −0.817525 + 0.348317i
\(186\) 0.425256i 0.0311813i
\(187\) 0 0
\(188\) −2.71541 + 2.71541i −0.198042 + 0.198042i
\(189\) 0.253041 0.778779i 0.0184060 0.0566478i
\(190\) −0.565389 + 2.46409i −0.0410176 + 0.178764i
\(191\) −5.11808 3.71850i −0.370331 0.269062i 0.387017 0.922073i \(-0.373505\pi\)
−0.757348 + 0.653011i \(0.773505\pi\)
\(192\) −2.31700 + 4.54736i −0.167215 + 0.328178i
\(193\) 2.69302 5.28534i 0.193848 0.380447i −0.773540 0.633747i \(-0.781516\pi\)
0.967388 + 0.253300i \(0.0815159\pi\)
\(194\) 1.69582 + 1.23208i 0.121753 + 0.0884585i
\(195\) −4.67591 + 2.93059i −0.334849 + 0.209864i
\(196\) 0.668326 2.05690i 0.0477376 0.146921i
\(197\) −9.90515 + 9.90515i −0.705713 + 0.705713i −0.965631 0.259918i \(-0.916304\pi\)
0.259918 + 0.965631i \(0.416304\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i −0.880342 0.474340i \(-0.842687\pi\)
0.880342 0.474340i \(-0.157313\pi\)
\(200\) −12.1292 + 4.21295i −0.857664 + 0.297901i
\(201\) −3.77096 + 2.73976i −0.265983 + 0.193248i
\(202\) −1.14744 7.24467i −0.0807338 0.509733i
\(203\) 1.62877 + 0.829901i 0.114317 + 0.0582476i
\(204\) 0.283607 + 0.872853i 0.0198565 + 0.0611120i
\(205\) 9.60879 11.4826i 0.671107 0.801982i
\(206\) −2.89246 3.98113i −0.201527 0.277379i
\(207\) −3.42286 + 1.74403i −0.237905 + 0.121219i
\(208\) 9.90424 + 9.90424i 0.686736 + 0.686736i
\(209\) 0 0
\(210\) 0.340914 + 0.391113i 0.0235253 + 0.0269893i
\(211\) 5.64203 + 1.83321i 0.388413 + 0.126203i 0.496712 0.867915i \(-0.334540\pi\)
−0.108299 + 0.994118i \(0.534540\pi\)
\(212\) 2.77020 + 0.438757i 0.190258 + 0.0301339i
\(213\) 9.02506 1.42943i 0.618387 0.0979429i
\(214\) −15.9826 + 5.19306i −1.09255 + 0.354990i
\(215\) −6.05667 + 10.1108i −0.413062 + 0.689549i
\(216\) −6.45535 + 8.88503i −0.439231 + 0.604550i
\(217\) −0.0105110 + 0.0663638i −0.000713533 + 0.00450507i
\(218\) 6.58496 + 12.9237i 0.445990 + 0.875304i
\(219\) −1.91483 −0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) −2.97381 5.83644i −0.199589 0.391716i
\(223\) 3.32511 20.9939i 0.222666 1.40586i −0.582512 0.812822i \(-0.697930\pi\)
0.805178 0.593034i \(-0.202070\pi\)
\(224\) 0.196033 0.269816i 0.0130980 0.0180278i
\(225\) −11.6370 + 2.08421i −0.775799 + 0.138947i
\(226\) −5.99617 + 1.94827i −0.398859 + 0.129597i
\(227\) −12.9092 + 2.04462i −0.856816 + 0.135706i −0.569361 0.822088i \(-0.692809\pi\)
−0.287455 + 0.957794i \(0.592809\pi\)
\(228\) −0.181903 0.0288106i −0.0120468 0.00190803i
\(229\) −15.6269 5.07749i −1.03265 0.335530i −0.256816 0.966460i \(-0.582673\pi\)
−0.775839 + 0.630931i \(0.782673\pi\)
\(230\) 0.377812 5.50946i 0.0249122 0.363283i
\(231\) 0 0
\(232\) −17.3363 17.3363i −1.13819 1.13819i
\(233\) −13.9385 + 7.10204i −0.913144 + 0.465270i −0.846429 0.532502i \(-0.821252\pi\)
−0.0667155 + 0.997772i \(0.521252\pi\)
\(234\) 6.53961 + 9.00101i 0.427508 + 0.588414i
\(235\) 2.44663 + 27.5385i 0.159601 + 1.79641i
\(236\) 0.923891 + 2.84344i 0.0601402 + 0.185092i
\(237\) 0.476268 + 0.242670i 0.0309369 + 0.0157631i
\(238\) 0.168757 + 1.06549i 0.0109389 + 0.0690656i
\(239\) −4.27301 + 3.10452i −0.276398 + 0.200815i −0.717345 0.696718i \(-0.754643\pi\)
0.440947 + 0.897533i \(0.354643\pi\)
\(240\) −3.16161 7.42053i −0.204081 0.478993i
\(241\) 16.1676i 1.04144i 0.853726 + 0.520722i \(0.174337\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(242\) 0 0
\(243\) −11.1488 + 11.1488i −0.715198 + 0.715198i
\(244\) 0.565599 1.74074i 0.0362088 0.111439i
\(245\) −8.26886 13.1934i −0.528278 0.842897i
\(246\) 6.56468 + 4.76952i 0.418549 + 0.304093i
\(247\) 1.04531 2.05153i 0.0665112 0.130536i
\(248\) 0.409121 0.802945i 0.0259792 0.0509870i
\(249\) 10.7600 + 7.81762i 0.681889 + 0.495421i
\(250\) 6.02632 15.8905i 0.381138 1.00500i
\(251\) 5.97722 18.3960i 0.377279 1.16114i −0.564649 0.825331i \(-0.690989\pi\)
0.941928 0.335814i \(-0.109011\pi\)
\(252\) 0.0994268 0.0994268i 0.00626330 0.00626330i
\(253\) 0 0
\(254\) 22.1431i 1.38938i
\(255\) 6.12961 + 2.46694i 0.383851 + 0.154486i
\(256\) −5.89265 + 4.28126i −0.368290 + 0.267579i
\(257\) 0.736199 + 4.64818i 0.0459228 + 0.289945i 0.999952 0.00976747i \(-0.00310913\pi\)
−0.954029 + 0.299713i \(0.903109\pi\)
\(258\) −5.69124 2.89983i −0.354321 0.180536i
\(259\) −0.319823 0.984314i −0.0198728 0.0611623i
\(260\) −2.14147 + 0.190257i −0.132808 + 0.0117992i
\(261\) −13.2685 18.2625i −0.821299 1.13042i
\(262\) 13.2313 6.74170i 0.817435 0.416504i
\(263\) −11.2218 11.2218i −0.691964 0.691964i 0.270700 0.962664i \(-0.412745\pi\)
−0.962664 + 0.270700i \(0.912745\pi\)
\(264\) 0 0
\(265\) 15.2216 13.2679i 0.935053 0.815040i
\(266\) −0.205884 0.0668957i −0.0126235 0.00410164i
\(267\) 6.23779 + 0.987968i 0.381746 + 0.0604627i
\(268\) −1.79358 + 0.284076i −0.109560 + 0.0173527i
\(269\) 10.7587 3.49572i 0.655971 0.213138i 0.0379260 0.999281i \(-0.487925\pi\)
0.618045 + 0.786143i \(0.287925\pi\)
\(270\) −3.53560 14.0997i −0.215170 0.858079i
\(271\) −10.4791 + 14.4233i −0.636563 + 0.876153i −0.998426 0.0560778i \(-0.982141\pi\)
0.361864 + 0.932231i \(0.382141\pi\)
\(272\) 2.62355 16.5644i 0.159076 1.00437i
\(273\) −0.214524 0.421027i −0.0129836 0.0254817i
\(274\) 6.58205 0.397636
\(275\) 0 0
\(276\) 0.402300 0.0242156
\(277\) −2.12539 4.17132i −0.127703 0.250630i 0.818299 0.574793i \(-0.194917\pi\)
−0.946001 + 0.324163i \(0.894917\pi\)
\(278\) 2.49931 15.7800i 0.149898 0.946421i
\(279\) 0.487701 0.671263i 0.0291979 0.0401875i
\(280\) −0.267421 1.06646i −0.0159815 0.0637329i
\(281\) −12.5438 + 4.07572i −0.748298 + 0.243137i −0.658249 0.752800i \(-0.728703\pi\)
−0.0900496 + 0.995937i \(0.528703\pi\)
\(282\) −14.7987 + 2.34389i −0.881252 + 0.139577i
\(283\) −22.5060 3.56460i −1.33784 0.211893i −0.553825 0.832633i \(-0.686832\pi\)
−0.784017 + 0.620740i \(0.786832\pi\)
\(284\) 3.38566 + 1.10007i 0.200902 + 0.0652771i
\(285\) −0.999513 + 0.871227i −0.0592061 + 0.0516070i
\(286\) 0 0
\(287\) 0.906570 + 0.906570i 0.0535131 + 0.0535131i
\(288\) −3.66956 + 1.86974i −0.216231 + 0.110175i
\(289\) −1.91721 2.63881i −0.112777 0.155224i
\(290\) 32.3233 2.87174i 1.89809 0.168634i
\(291\) 0.339722 + 1.04556i 0.0199149 + 0.0612916i
\(292\) −0.664688 0.338675i −0.0388979 0.0198195i
\(293\) −1.13067 7.13875i −0.0660543 0.417050i −0.998452 0.0556168i \(-0.982287\pi\)
0.932398 0.361433i \(-0.117713\pi\)
\(294\) 6.82681 4.95997i 0.398148 0.289271i
\(295\) 19.9681 + 8.03640i 1.16259 + 0.467897i
\(296\) 13.8810i 0.806817i
\(297\) 0 0
\(298\) 6.19371 6.19371i 0.358792 0.358792i
\(299\) −1.55421 + 4.78335i −0.0898821 + 0.276629i
\(300\) 1.18493 + 0.358785i 0.0684117 + 0.0207145i
\(301\) −0.816478 0.593206i −0.0470610 0.0341918i
\(302\) −10.3267 + 20.2673i −0.594235 + 1.16625i
\(303\) 1.74649 3.42767i 0.100333 0.196915i
\(304\) 2.72270 + 1.97816i 0.156158 + 0.113455i
\(305\) −6.99788 11.1655i −0.400697 0.639335i
\(306\) 4.11658 12.6695i 0.235329 0.724269i
\(307\) −20.1272 + 20.1272i −1.14872 + 1.14872i −0.161918 + 0.986804i \(0.551768\pi\)
−0.986804 + 0.161918i \(0.948232\pi\)
\(308\) 0 0
\(309\) 2.58088i 0.146821i
\(310\) 0.467527 + 1.09732i 0.0265537 + 0.0623235i
\(311\) 6.08048 4.41772i 0.344792 0.250506i −0.401889 0.915688i \(-0.631646\pi\)
0.746681 + 0.665182i \(0.231646\pi\)
\(312\) 0.991414 + 6.25954i 0.0561278 + 0.354377i
\(313\) 1.19937 + 0.611109i 0.0677923 + 0.0345419i 0.487558 0.873091i \(-0.337888\pi\)
−0.419766 + 0.907632i \(0.637888\pi\)
\(314\) −2.32426 7.15333i −0.131165 0.403686i
\(315\) −0.0895853 1.00834i −0.00504756 0.0568136i
\(316\) 0.122404 + 0.168475i 0.00688577 + 0.00947745i
\(317\) 10.0968 5.14460i 0.567095 0.288949i −0.146841 0.989160i \(-0.546911\pi\)
0.713936 + 0.700211i \(0.246911\pi\)
\(318\) 7.73803 + 7.73803i 0.433927 + 0.433927i
\(319\) 0 0
\(320\) −0.979335 + 14.2812i −0.0547465 + 0.798342i
\(321\) −8.38237 2.72360i −0.467859 0.152016i
\(322\) 0.467052 + 0.0739738i 0.0260278 + 0.00412240i
\(323\) −2.72293 + 0.431270i −0.151508 + 0.0239965i
\(324\) −1.08816 + 0.353566i −0.0604536 + 0.0196426i
\(325\) −8.84368 + 12.7027i −0.490559 + 0.704618i
\(326\) 8.94960 12.3181i 0.495673 0.682235i
\(327\) −1.19003 + 7.51356i −0.0658089 + 0.415501i
\(328\) −7.80650 15.3211i −0.431042 0.845967i
\(329\) −2.36737 −0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) 2.35239 + 4.61683i 0.129104 + 0.253381i
\(333\) −1.99933 + 12.6232i −0.109562 + 0.691750i
\(334\) −10.7773 + 14.8336i −0.589706 + 0.811660i
\(335\) −6.71837 + 11.2154i −0.367064 + 0.612762i
\(336\) 0.656873 0.213431i 0.0358354 0.0116436i
\(337\) −7.52627 + 1.19204i −0.409982 + 0.0649348i −0.358019 0.933714i \(-0.616548\pi\)
−0.0519628 + 0.998649i \(0.516548\pi\)
\(338\) −5.13048 0.812588i −0.279061 0.0441989i
\(339\) −3.14480 1.02181i −0.170802 0.0554970i
\(340\) 1.69143 + 1.94049i 0.0917305 + 0.105238i
\(341\) 0 0
\(342\) 1.89027 + 1.89027i 0.102214 + 0.102214i
\(343\) 2.38217 1.21378i 0.128625 0.0655378i
\(344\) 7.95607 + 10.9506i 0.428963 + 0.590416i
\(345\) 1.85873 2.22121i 0.100071 0.119586i
\(346\) 5.85517 + 18.0203i 0.314776 + 0.968780i
\(347\) −8.31639 4.23741i −0.446447 0.227476i 0.216289 0.976329i \(-0.430605\pi\)
−0.662736 + 0.748853i \(0.730605\pi\)
\(348\) 0.369809 + 2.33488i 0.0198239 + 0.125163i
\(349\) 1.21496 0.882720i 0.0650353 0.0472509i −0.554793 0.831989i \(-0.687202\pi\)
0.619828 + 0.784738i \(0.287202\pi\)
\(350\) 1.30967 + 0.634414i 0.0700049 + 0.0339109i
\(351\) 13.2388i 0.706637i
\(352\) 0 0
\(353\) 4.40229 4.40229i 0.234310 0.234310i −0.580179 0.814489i \(-0.697017\pi\)
0.814489 + 0.580179i \(0.197017\pi\)
\(354\) −3.60475 + 11.0943i −0.191590 + 0.589654i
\(355\) 21.7165 13.6106i 1.15259 0.722376i
\(356\) 1.99056 + 1.44623i 0.105500 + 0.0766499i
\(357\) −0.256860 + 0.504116i −0.0135945 + 0.0266807i
\(358\) −13.9251 + 27.3295i −0.735964 + 1.44441i
\(359\) 21.2806 + 15.4612i 1.12315 + 0.816013i 0.984683 0.174355i \(-0.0557839\pi\)
0.138463 + 0.990368i \(0.455784\pi\)
\(360\) −3.03639 + 13.2333i −0.160032 + 0.697454i
\(361\) −5.70037 + 17.5439i −0.300019 + 0.923364i
\(362\) −4.95475 + 4.95475i −0.260416 + 0.260416i
\(363\) 0 0
\(364\) 0.184093i 0.00964908i
\(365\) −4.94096 + 2.10516i −0.258622 + 0.110189i
\(366\) 5.77748 4.19759i 0.301994 0.219411i
\(367\) −1.27793 8.06852i −0.0667073 0.421173i −0.998331 0.0577492i \(-0.981608\pi\)
0.931624 0.363424i \(-0.118392\pi\)
\(368\) −6.55018 3.33748i −0.341452 0.173978i
\(369\) −4.89241 15.0573i −0.254688 0.783850i
\(370\) −14.0901 11.7907i −0.732510 0.612971i
\(371\) 1.01631 + 1.39883i 0.0527640 + 0.0726234i
\(372\) −0.0774210 + 0.0394479i −0.00401409 + 0.00204528i
\(373\) −6.12473 6.12473i −0.317126 0.317126i 0.530536 0.847662i \(-0.321991\pi\)
−0.847662 + 0.530536i \(0.821991\pi\)
\(374\) 0 0
\(375\) 7.45563 4.88463i 0.385007 0.252241i
\(376\) 30.1971 + 9.81162i 1.55730 + 0.505996i
\(377\) −29.1905 4.62332i −1.50339 0.238113i
\(378\) 1.22939 0.194716i 0.0632330 0.0100151i
\(379\) 0.588124 0.191093i 0.0302099 0.00981580i −0.293873 0.955844i \(-0.594944\pi\)
0.324083 + 0.946029i \(0.394944\pi\)
\(380\) −0.501052 + 0.125642i −0.0257034 + 0.00644531i
\(381\) −6.82615 + 9.39539i −0.349714 + 0.481340i
\(382\) 1.50433 9.49797i 0.0769683 0.485959i
\(383\) 4.71192 + 9.24766i 0.240768 + 0.472533i 0.979494 0.201472i \(-0.0645725\pi\)
−0.738726 + 0.674005i \(0.764572\pi\)
\(384\) −10.5351 −0.537617
\(385\) 0 0
\(386\) 9.01683 0.458945
\(387\) 5.65792 + 11.1043i 0.287608 + 0.564463i
\(388\) −0.0670010 + 0.423027i −0.00340146 + 0.0214760i
\(389\) −13.0176 + 17.9172i −0.660020 + 0.908440i −0.999482 0.0321799i \(-0.989755\pi\)
0.339462 + 0.940620i \(0.389755\pi\)
\(390\) −7.19596 4.31061i −0.364382 0.218276i
\(391\) 5.72734 1.86093i 0.289644 0.0941111i
\(392\) −17.6618 + 2.79735i −0.892053 + 0.141287i
\(393\) 7.69241 + 1.21836i 0.388031 + 0.0614580i
\(394\) −20.2509 6.57991i −1.02022 0.331491i
\(395\) 1.49574 + 0.102571i 0.0752587 + 0.00516089i
\(396\) 0 0
\(397\) 10.7769 + 10.7769i 0.540876 + 0.540876i 0.923786 0.382910i \(-0.125078\pi\)
−0.382910 + 0.923786i \(0.625078\pi\)
\(398\) 18.1254 9.23538i 0.908547 0.462928i
\(399\) −0.0667351 0.0918529i −0.00334093 0.00459840i
\(400\) −16.3163 15.6718i −0.815813 0.783591i
\(401\) −1.32312 4.07216i −0.0660737 0.203354i 0.912569 0.408923i \(-0.134096\pi\)
−0.978643 + 0.205569i \(0.934096\pi\)
\(402\) −6.31301 3.21664i −0.314864 0.160431i
\(403\) −0.169936 1.07294i −0.00846513 0.0534467i
\(404\) 1.21250 0.880936i 0.0603243 0.0438282i
\(405\) −3.07547 + 7.64164i −0.152821 + 0.379716i
\(406\) 2.77869i 0.137904i
\(407\) 0 0
\(408\) 5.36572 5.36572i 0.265643 0.265643i
\(409\) 1.32742 4.08538i 0.0656367 0.202009i −0.912859 0.408274i \(-0.866131\pi\)
0.978496 + 0.206265i \(0.0661308\pi\)
\(410\) 22.1829 + 5.08990i 1.09553 + 0.251372i
\(411\) 2.79279 + 2.02908i 0.137758 + 0.100087i
\(412\) 0.456481 0.895894i 0.0224892 0.0441375i
\(413\) −0.836758 + 1.64223i −0.0411742 + 0.0808088i
\(414\) −4.72419 3.43232i −0.232181 0.168689i
\(415\) 36.3595 + 8.34276i 1.78482 + 0.409530i
\(416\) −1.66623 + 5.12812i −0.0816935 + 0.251427i
\(417\) 5.92504 5.92504i 0.290151 0.290151i
\(418\) 0 0
\(419\) 1.20241i 0.0587414i 0.999569 + 0.0293707i \(0.00935032\pi\)
−0.999569 + 0.0293707i \(0.990650\pi\)
\(420\) −0.0395808 + 0.0983465i −0.00193134 + 0.00479882i
\(421\) −25.3293 + 18.4028i −1.23447 + 0.896898i −0.997217 0.0745484i \(-0.976248\pi\)
−0.237257 + 0.971447i \(0.576248\pi\)
\(422\) 1.41066 + 8.90656i 0.0686699 + 0.433565i
\(423\) 26.0477 + 13.2720i 1.26648 + 0.645306i
\(424\) −7.16608 22.0549i −0.348016 1.07108i
\(425\) 18.5288 0.373286i 0.898779 0.0181070i
\(426\) 8.16414 + 11.2370i 0.395554 + 0.544433i
\(427\) 1.00536 0.512257i 0.0486529 0.0247899i
\(428\) −2.42802 2.42802i −0.117363 0.117363i
\(429\) 0 0
\(430\) −17.8736 1.22568i −0.861940 0.0591078i
\(431\) −9.40717 3.05658i −0.453128 0.147230i 0.0735568 0.997291i \(-0.476565\pi\)
−0.526684 + 0.850061i \(0.676565\pi\)
\(432\) −19.1124 3.02711i −0.919547 0.145642i
\(433\) 26.6501 4.22096i 1.28072 0.202846i 0.521260 0.853398i \(-0.325462\pi\)
0.759462 + 0.650552i \(0.225462\pi\)
\(434\) −0.0971358 + 0.0315613i −0.00466267 + 0.00151499i
\(435\) 14.6002 + 8.74597i 0.700025 + 0.419337i
\(436\) −1.74201 + 2.39768i −0.0834274 + 0.114828i
\(437\) −0.189045 + 1.19358i −0.00904324 + 0.0570968i
\(438\) −1.32141 2.59342i −0.0631395 0.123918i
\(439\) 24.5862 1.17344 0.586718 0.809791i \(-0.300420\pi\)
0.586718 + 0.809791i \(0.300420\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) −7.91807 15.5401i −0.376624 0.739166i
\(443\) −4.81773 + 30.4180i −0.228897 + 1.44520i 0.558884 + 0.829246i \(0.311230\pi\)
−0.787781 + 0.615955i \(0.788770\pi\)
\(444\) 0.786706 1.08281i 0.0373354 0.0513878i
\(445\) 17.1820 4.30850i 0.814503 0.204242i
\(446\) 30.7285 9.98429i 1.45504 0.472770i
\(447\) 4.53738 0.718651i 0.214611 0.0339910i
\(448\) −1.21066 0.191749i −0.0571981 0.00905929i
\(449\) 6.96621 + 2.26346i 0.328756 + 0.106819i 0.468744 0.883334i \(-0.344707\pi\)
−0.139988 + 0.990153i \(0.544707\pi\)
\(450\) −10.8534 14.3227i −0.511636 0.675177i
\(451\) 0 0
\(452\) −0.910918 0.910918i −0.0428460 0.0428460i
\(453\) −10.6296 + 5.41603i −0.499421 + 0.254467i
\(454\) −11.6778 16.0731i −0.548066 0.754348i
\(455\) −1.01643 0.850557i −0.0476509 0.0398747i
\(456\) 0.470556 + 1.44822i 0.0220358 + 0.0678192i
\(457\) −6.00144 3.05789i −0.280736 0.143042i 0.307954 0.951401i \(-0.400356\pi\)
−0.588689 + 0.808359i \(0.700356\pi\)
\(458\) −3.90715 24.6688i −0.182569 1.15270i
\(459\) 12.8241 9.31728i 0.598579 0.434893i
\(460\) 1.03808 0.442289i 0.0484009 0.0206218i
\(461\) 29.0801i 1.35440i −0.735801 0.677198i \(-0.763194\pi\)
0.735801 0.677198i \(-0.236806\pi\)
\(462\) 0 0
\(463\) 17.5146 17.5146i 0.813970 0.813970i −0.171256 0.985227i \(-0.554783\pi\)
0.985227 + 0.171256i \(0.0547826\pi\)
\(464\) 13.3490 41.0841i 0.619713 1.90728i
\(465\) −0.139902 + 0.609723i −0.00648781 + 0.0282752i
\(466\) −19.2378 13.9771i −0.891174 0.647476i
\(467\) −12.0115 + 23.5740i −0.555828 + 1.09087i 0.426636 + 0.904423i \(0.359698\pi\)
−0.982464 + 0.186451i \(0.940302\pi\)
\(468\) −1.03206 + 2.02554i −0.0477072 + 0.0936307i
\(469\) −0.905678 0.658014i −0.0418203 0.0303842i
\(470\) −35.6093 + 22.3178i −1.64253 + 1.02944i
\(471\) 1.21900 3.75170i 0.0561686 0.172869i
\(472\) 17.4796 17.4796i 0.804563 0.804563i
\(473\) 0 0
\(474\) 0.812515i 0.0373201i
\(475\) −1.62129 + 3.34695i −0.0743897 + 0.153569i
\(476\) −0.178326 + 0.129561i −0.00817356 + 0.00593844i
\(477\) −3.34012 21.0887i −0.152934 0.965585i
\(478\) −7.15350 3.64489i −0.327194 0.166713i
\(479\) 8.11328 + 24.9701i 0.370705 + 1.14091i 0.946331 + 0.323200i \(0.104759\pi\)
−0.575625 + 0.817714i \(0.695241\pi\)
\(480\) 1.99271 2.38131i 0.0909541 0.108691i
\(481\) 9.83531 + 13.5371i 0.448452 + 0.617241i
\(482\) −21.8971 + 11.1571i −0.997386 + 0.508193i
\(483\) 0.175368 + 0.175368i 0.00797952 + 0.00797952i
\(484\) 0 0
\(485\) 2.02609 + 2.32443i 0.0920001 + 0.105547i
\(486\) −22.7936 7.40608i −1.03394 0.335946i
\(487\) 23.0478 + 3.65041i 1.04440 + 0.165416i 0.654980 0.755646i \(-0.272677\pi\)
0.389416 + 0.921062i \(0.372677\pi\)
\(488\) −14.9470 + 2.36738i −0.676620 + 0.107166i
\(489\) 7.59471 2.46767i 0.343445 0.111592i
\(490\) 12.1627 20.3039i 0.549454 0.917238i
\(491\) −10.7845 + 14.8436i −0.486697 + 0.669881i −0.979775 0.200104i \(-0.935872\pi\)
0.493077 + 0.869985i \(0.335872\pi\)
\(492\) −0.259367 + 1.63758i −0.0116932 + 0.0738278i
\(493\) 16.0653 + 31.5299i 0.723544 + 1.42004i
\(494\) 3.49992 0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) 0.996321 + 1.95539i 0.0446911 + 0.0877112i
\(498\) −3.16264 + 19.9681i −0.141721 + 0.894793i
\(499\) 6.91112 9.51235i 0.309384 0.425831i −0.625805 0.779980i \(-0.715229\pi\)
0.935189 + 0.354149i \(0.115229\pi\)
\(500\) 3.45199 0.376909i 0.154378 0.0168559i
\(501\) −9.14567 + 2.97161i −0.408599 + 0.132762i
\(502\) 29.0401 4.59950i 1.29612 0.205286i
\(503\) 5.27489 + 0.835461i 0.235196 + 0.0372514i 0.272920 0.962037i \(-0.412011\pi\)
−0.0377237 + 0.999288i \(0.512011\pi\)
\(504\) −1.10569 0.359260i −0.0492513 0.0160027i
\(505\) 0.738195 10.7647i 0.0328492 0.479025i
\(506\) 0 0
\(507\) −1.92638 1.92638i −0.0855536 0.0855536i
\(508\) −4.03130 + 2.05405i −0.178860 + 0.0911337i
\(509\) −11.5130 15.8462i −0.510303 0.702371i 0.473668 0.880704i \(-0.342930\pi\)
−0.983970 + 0.178332i \(0.942930\pi\)
\(510\) 0.888823 + 10.0043i 0.0393577 + 0.442997i
\(511\) −0.142113 0.437379i −0.00628671 0.0193485i
\(512\) 13.6838 + 6.97225i 0.604745 + 0.308133i
\(513\) 0.497609 + 3.14178i 0.0219700 + 0.138713i
\(514\) −5.78738 + 4.20478i −0.255270 + 0.185465i
\(515\) −2.83742 6.65963i −0.125032 0.293458i
\(516\) 1.30513i 0.0574550i
\(517\) 0 0
\(518\) 1.11243 1.11243i 0.0488775 0.0488775i
\(519\) −3.07085 + 9.45111i −0.134795 + 0.414858i
\(520\) 9.43995 + 15.0620i 0.413969 + 0.660511i
\(521\) −15.1561 11.0116i −0.664003 0.482426i 0.204010 0.978969i \(-0.434603\pi\)
−0.868012 + 0.496543i \(0.834603\pi\)
\(522\) 15.5780 30.5735i 0.681830 1.33817i
\(523\) −1.17234 + 2.30085i −0.0512628 + 0.100609i −0.915217 0.402962i \(-0.867981\pi\)
0.863954 + 0.503571i \(0.167981\pi\)
\(524\) 2.45475 + 1.78348i 0.107236 + 0.0779117i
\(525\) 0.360125 + 0.672924i 0.0157172 + 0.0293688i
\(526\) 7.45453 22.9427i 0.325033 1.00035i
\(527\) −0.919727 + 0.919727i −0.0400639 + 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) 28.4742 + 11.4598i 1.23684 + 0.497781i
\(531\) 18.4134 13.3781i 0.799074 0.580561i
\(532\) −0.00691951 0.0436880i −0.000299999 0.00189412i
\(533\) −18.4688 9.41034i −0.799974 0.407607i
\(534\) 2.96657 + 9.13016i 0.128376 + 0.395101i
\(535\) −24.6239 + 2.18769i −1.06459 + 0.0945823i
\(536\) 8.82527 + 12.1469i 0.381194 + 0.524668i
\(537\) −14.3335 + 7.30328i −0.618536 + 0.315160i
\(538\) 12.1591 + 12.1591i 0.524216 + 0.524216i
\(539\) 0 0
\(540\) 2.23898 1.95161i 0.0963502 0.0839837i
\(541\) 8.78315 + 2.85382i 0.377617 + 0.122695i 0.491675 0.870779i \(-0.336385\pi\)
−0.114058 + 0.993474i \(0.536385\pi\)
\(542\) −26.7663 4.23937i −1.14971 0.182096i
\(543\) −3.62974 + 0.574895i −0.155767 + 0.0246711i
\(544\) 6.14015 1.99505i 0.263257 0.0855372i
\(545\) 5.18969 + 20.6961i 0.222302 + 0.886522i
\(546\) 0.422192 0.581097i 0.0180681 0.0248686i
\(547\) 0.167546 1.05784i 0.00716375 0.0452301i −0.983848 0.179009i \(-0.942711\pi\)
0.991011 + 0.133778i \(0.0427110\pi\)
\(548\) 0.610569 + 1.19831i 0.0260822 + 0.0511892i
\(549\) −13.9337 −0.594674
\(550\) 0 0
\(551\) −7.10113 −0.302518
\(552\) −1.51010 2.96374i −0.0642741 0.126145i
\(553\) −0.0200828 + 0.126798i −0.000854008 + 0.00539200i
\(554\) 4.18286 5.75721i 0.177713 0.244600i
\(555\) −2.34370 9.34649i −0.0994845 0.396736i
\(556\) 3.10470 1.00878i 0.131669 0.0427818i
\(557\) 42.5071 6.73247i 1.80108 0.285264i 0.836294 0.548282i \(-0.184718\pi\)
0.964791 + 0.263018i \(0.0847180\pi\)
\(558\) 1.24571 + 0.197301i 0.0527351 + 0.00835241i
\(559\) 15.5180 + 5.04210i 0.656340 + 0.213258i
\(560\) 1.46033 1.27290i 0.0617102 0.0537897i
\(561\) 0 0
\(562\) −14.1765 14.1765i −0.597998 0.597998i
\(563\) −23.0435 + 11.7412i −0.971166 + 0.494834i −0.866230 0.499645i \(-0.833464\pi\)
−0.104936 + 0.994479i \(0.533464\pi\)
\(564\) −1.79949 2.47679i −0.0757723 0.104292i
\(565\) −9.23812 + 0.820754i −0.388651 + 0.0345294i
\(566\) −10.7034 32.9417i −0.449898 1.38464i
\(567\) −0.628469 0.320221i −0.0263932 0.0134480i
\(568\) −4.60445 29.0714i −0.193199 1.21981i
\(569\) 21.9823 15.9711i 0.921548 0.669544i −0.0223611 0.999750i \(-0.507118\pi\)
0.943909 + 0.330206i \(0.107118\pi\)
\(570\) −1.86974 0.752498i −0.0783146 0.0315187i
\(571\) 40.5475i 1.69686i −0.529308 0.848430i \(-0.677549\pi\)
0.529308 0.848430i \(-0.322451\pi\)
\(572\) 0 0
\(573\) 3.56628 3.56628i 0.148984 0.148984i
\(574\) −0.602227 + 1.85346i −0.0251365 + 0.0773621i
\(575\) 2.35422 7.77504i 0.0981776 0.324242i
\(576\) 12.2457 + 8.89699i 0.510236 + 0.370708i
\(577\) 15.3485 30.1231i 0.638965 1.25404i −0.313556 0.949570i \(-0.601521\pi\)
0.952522 0.304470i \(-0.0984795\pi\)
\(578\) 2.25092 4.41767i 0.0936257 0.183751i
\(579\) 3.82588 + 2.77966i 0.158998 + 0.115519i
\(580\) 3.52122 + 5.61829i 0.146211 + 0.233287i
\(581\) −0.987098 + 3.03798i −0.0409517 + 0.126036i
\(582\) −1.18165 + 1.18165i −0.0489808 + 0.0489808i
\(583\) 0 0
\(584\) 6.16801i 0.255234i
\(585\) 6.41518 + 15.0569i 0.265235 + 0.622525i
\(586\) 8.88835 6.45777i 0.367175 0.266768i
\(587\) −1.51493 9.56487i −0.0625277 0.394784i −0.999027 0.0441136i \(-0.985954\pi\)
0.936499 0.350671i \(-0.114046\pi\)
\(588\) 1.53627 + 0.782769i 0.0633547 + 0.0322808i
\(589\) −0.0806570 0.248237i −0.00332341 0.0102284i
\(590\) 2.89547 + 32.5904i 0.119204 + 1.34172i
\(591\) −6.56411 9.03472i −0.270011 0.371639i
\(592\) −21.7920 + 11.1036i −0.895644 + 0.456353i
\(593\) 14.0452 + 14.0452i 0.576769 + 0.576769i 0.934012 0.357243i \(-0.116283\pi\)
−0.357243 + 0.934012i \(0.616283\pi\)
\(594\) 0 0
\(595\) −0.108568 + 1.58320i −0.00445086 + 0.0649048i
\(596\) 1.70215 + 0.553064i 0.0697230 + 0.0226544i
\(597\) 10.5377 + 1.66901i 0.431281 + 0.0683082i
\(598\) −7.55106 + 1.19597i −0.308786 + 0.0489068i
\(599\) −4.29480 + 1.39547i −0.175481 + 0.0570172i −0.395440 0.918492i \(-0.629408\pi\)
0.219959 + 0.975509i \(0.429408\pi\)
\(600\) −1.80465 10.0761i −0.0736744 0.411354i
\(601\) 4.92416 6.77753i 0.200861 0.276461i −0.696690 0.717372i \(-0.745345\pi\)
0.897551 + 0.440911i \(0.145345\pi\)
\(602\) 0.239983 1.51519i 0.00978098 0.0617547i
\(603\) 6.27605 + 12.3174i 0.255581 + 0.501605i
\(604\) −4.64774 −0.189114
\(605\) 0 0
\(606\) 5.84763 0.237544
\(607\) −3.48610 6.84185i −0.141496 0.277702i 0.809373 0.587295i \(-0.199807\pi\)
−0.950869 + 0.309593i \(0.899807\pi\)
\(608\) −0.202670 + 1.27961i −0.00821937 + 0.0518950i
\(609\) −0.856602 + 1.17901i −0.0347113 + 0.0477760i
\(610\) 10.2932 17.1831i 0.416760 0.695722i
\(611\) 36.4010 11.8274i 1.47263 0.478486i
\(612\) 2.68844 0.425807i 0.108674 0.0172122i
\(613\) −42.3979 6.71517i −1.71243 0.271223i −0.778235 0.627973i \(-0.783885\pi\)
−0.934200 + 0.356750i \(0.883885\pi\)
\(614\) −41.1497 13.3704i −1.66067 0.539584i
\(615\) 7.84320 + 8.99810i 0.316268 + 0.362838i
\(616\) 0 0
\(617\) 33.4407 + 33.4407i 1.34627 + 1.34627i 0.889671 + 0.456601i \(0.150933\pi\)
0.456601 + 0.889671i \(0.349067\pi\)
\(618\) 3.49551 1.78105i 0.140610 0.0716444i
\(619\) −12.4023 17.0703i −0.498492 0.686115i 0.483434 0.875381i \(-0.339389\pi\)
−0.981926 + 0.189266i \(0.939389\pi\)
\(620\) −0.156405 + 0.186907i −0.00628140 + 0.00750636i
\(621\) −2.14718 6.60834i −0.0861633 0.265183i
\(622\) 10.1794 + 5.18667i 0.408157 + 0.207966i
\(623\) 0.237282 + 1.49814i 0.00950651 + 0.0600217i
\(624\) −9.03389 + 6.56351i −0.361645 + 0.262751i
\(625\) 13.8681 20.8009i 0.554724 0.832034i
\(626\) 2.04613i 0.0817798i
\(627\) 0 0
\(628\) 1.08671 1.08671i 0.0433645 0.0433645i
\(629\) 6.19116 19.0544i 0.246858 0.759750i
\(630\) 1.30386 0.817184i 0.0519471 0.0325574i
\(631\) 22.8304 + 16.5872i 0.908863 + 0.660327i 0.940727 0.339165i \(-0.110144\pi\)
−0.0318642 + 0.999492i \(0.510144\pi\)
\(632\) 0.781686 1.53414i 0.0310938 0.0610250i
\(633\) −2.14712 + 4.21396i −0.0853404 + 0.167490i
\(634\) 13.9355 + 10.1248i 0.553451 + 0.402106i
\(635\) −7.28469 + 31.7482i −0.289084 + 1.25989i
\(636\) −0.690963 + 2.12656i −0.0273985 + 0.0843238i
\(637\) −15.2422 + 15.2422i −0.603918 + 0.603918i
\(638\) 0 0
\(639\) 27.1004i 1.07208i
\(640\) −27.1844 + 11.5823i −1.07456 + 0.457830i
\(641\) 13.7037 9.95634i 0.541265 0.393252i −0.283290 0.959034i \(-0.591426\pi\)
0.824554 + 0.565783i \(0.191426\pi\)
\(642\) −2.09582 13.2325i −0.0827156 0.522245i
\(643\) −5.59164 2.84908i −0.220513 0.112357i 0.340245 0.940337i \(-0.389490\pi\)
−0.560758 + 0.827980i \(0.689490\pi\)
\(644\) 0.0298576 + 0.0918922i 0.00117655 + 0.00362106i
\(645\) −7.20598 6.03004i −0.283735 0.237432i
\(646\) −2.46318 3.39028i −0.0969127 0.133389i
\(647\) 38.7473 19.7428i 1.52331 0.776168i 0.526077 0.850437i \(-0.323662\pi\)
0.997238 + 0.0742694i \(0.0236625\pi\)
\(648\) 6.68931 + 6.68931i 0.262781 + 0.262781i
\(649\) 0 0
\(650\) −23.3073 3.21171i −0.914188 0.125974i
\(651\) −0.0509447 0.0165529i −0.00199668 0.000648761i
\(652\) 3.07278 + 0.486681i 0.120339 + 0.0190599i
\(653\) −9.61123 + 1.52227i −0.376117 + 0.0595710i −0.341631 0.939834i \(-0.610979\pi\)
−0.0344856 + 0.999405i \(0.510979\pi\)
\(654\) −10.9975 + 3.57330i −0.430036 + 0.139727i
\(655\) 21.1887 5.31322i 0.827911 0.207605i
\(656\) 17.8083 24.5111i 0.695298 0.956996i
\(657\) −0.888399 + 5.60913i −0.0346597 + 0.218833i
\(658\) −1.63370 3.20633i −0.0636884 0.124996i
\(659\) 3.37375 0.131423 0.0657113 0.997839i \(-0.479068\pi\)
0.0657113 + 0.997839i \(0.479068\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) −12.2180 23.9792i −0.474866 0.931976i
\(663\) 1.43095 9.03466i 0.0555735 0.350877i
\(664\) 25.1820 34.6600i 0.977250 1.34507i
\(665\) −0.273184 0.163646i −0.0105936 0.00634591i
\(666\) −18.4765 + 6.00337i −0.715949 + 0.232626i
\(667\) 15.3206 2.42655i 0.593218 0.0939565i
\(668\) −3.70030 0.586069i −0.143169 0.0226757i
\(669\) 16.1161 + 5.23645i 0.623086 + 0.202453i
\(670\) −19.8263 1.35959i −0.765955 0.0525256i
\(671\) 0 0
\(672\) 0.188008 + 0.188008i 0.00725256 + 0.00725256i
\(673\) −34.0839 + 17.3666i −1.31384 + 0.669433i −0.963630 0.267239i \(-0.913889\pi\)
−0.350207 + 0.936672i \(0.613889\pi\)
\(674\) −6.80832 9.37085i −0.262247 0.360952i
\(675\) −0.430706 21.3790i −0.0165779 0.822877i
\(676\) −0.327980 1.00942i −0.0126146 0.0388238i
\(677\) −28.6832 14.6148i −1.10238 0.561693i −0.194495 0.980903i \(-0.562307\pi\)
−0.907889 + 0.419211i \(0.862307\pi\)
\(678\) −0.786287 4.96442i −0.0301972 0.190657i
\(679\) −0.213610 + 0.155197i −0.00819759 + 0.00595590i
\(680\) 7.94646 19.7446i 0.304733 0.757171i
\(681\) 10.4198i 0.399289i
\(682\) 0 0
\(683\) −28.7223 + 28.7223i −1.09903 + 1.09903i −0.104505 + 0.994524i \(0.533326\pi\)
−0.994524 + 0.104505i \(0.966674\pi\)
\(684\) −0.168791 + 0.519484i −0.00645388 + 0.0198630i
\(685\) 9.43720 + 2.16538i 0.360577 + 0.0827350i
\(686\) 3.28785 + 2.38876i 0.125531 + 0.0912033i
\(687\) 5.94695 11.6715i 0.226890 0.445297i
\(688\) −10.8273 + 21.2498i −0.412788 + 0.810142i
\(689\) −22.6155 16.4311i −0.861581 0.625975i
\(690\) 4.29108 + 0.984597i 0.163359 + 0.0374830i
\(691\) −7.80728 + 24.0283i −0.297003 + 0.914081i 0.685538 + 0.728036i \(0.259567\pi\)
−0.982541 + 0.186044i \(0.940433\pi\)
\(692\) −2.73759 + 2.73759i −0.104068 + 0.104068i
\(693\) 0 0
\(694\) 14.1878i 0.538562i
\(695\) 8.77480 21.8028i 0.332847 0.827027i
\(696\) 15.8129 11.4887i 0.599386 0.435479i
\(697\) 3.88250 + 24.5131i 0.147060 + 0.928501i
\(698\) 2.03398 + 1.03636i 0.0769873 + 0.0392270i
\(699\) −3.85390 11.8611i −0.145768 0.448627i
\(700\) 0.00598918 + 0.297285i 0.000226370 + 0.0112363i
\(701\) −16.5916 22.8364i −0.626657 0.862519i 0.371160 0.928569i \(-0.378960\pi\)
−0.997816 + 0.0660500i \(0.978960\pi\)
\(702\) −17.9305 + 9.13604i −0.676743 + 0.344818i
\(703\) 2.84289 + 2.84289i 0.107222 + 0.107222i
\(704\) 0 0
\(705\) −21.9892 1.50791i −0.828161 0.0567914i
\(706\) 9.00040 + 2.92441i 0.338735 + 0.110062i
\(707\) 0.912558 + 0.144535i 0.0343203 + 0.00543580i
\(708\) −2.35418 + 0.372865i −0.0884754 + 0.0140131i
\(709\) −7.76034 + 2.52149i −0.291446 + 0.0946964i −0.451091 0.892478i \(-0.648965\pi\)
0.159645 + 0.987174i \(0.448965\pi\)
\(710\) 33.4204 + 20.0199i 1.25425 + 0.751333i
\(711\) 0.931826 1.28255i 0.0349462 0.0480993i
\(712\) 3.18243 20.0930i 0.119266 0.753019i
\(713\) 0.258843 + 0.508008i 0.00969374 + 0.0190250i
\(714\) −0.860026 −0.0321856
\(715\) 0 0
\(716\) −6.26727 −0.234219
\(717\) −1.91163 3.75179i −0.0713912 0.140113i
\(718\) −6.25489 + 39.4918i −0.233430 + 1.47382i
\(719\) 0.609910 0.839469i 0.0227458 0.0313069i −0.797493 0.603329i \(-0.793841\pi\)
0.820238 + 0.572022i \(0.193841\pi\)
\(720\) −23.2039 + 5.81855i −0.864758 + 0.216844i
\(721\) 0.589518 0.191546i 0.0219548 0.00713354i
\(722\) −27.6950 + 4.38646i −1.03070 + 0.163247i
\(723\) −12.7305 2.01631i −0.473452 0.0749875i
\(724\) −1.36166 0.442431i −0.0506058 0.0164428i
\(725\) 47.2892 + 6.51637i 1.75627 + 0.242012i
\(726\) 0 0
\(727\) −3.27903 3.27903i −0.121612 0.121612i 0.643681 0.765294i \(-0.277406\pi\)
−0.765294 + 0.643681i \(0.777406\pi\)
\(728\) −1.35621 + 0.691021i −0.0502643 + 0.0256110i
\(729\) −0.892381 1.22826i −0.0330512 0.0454910i
\(730\) −6.26093 5.23921i −0.231727 0.193912i
\(731\) −6.03714 18.5804i −0.223292 0.687222i
\(732\) 1.30014 + 0.662452i 0.0480544 + 0.0244849i
\(733\) 7.14516 + 45.1128i 0.263912 + 1.66628i 0.662435 + 0.749119i \(0.269523\pi\)
−0.398523 + 0.917158i \(0.630477\pi\)
\(734\) 10.0460 7.29884i 0.370805 0.269405i
\(735\) 11.4199 4.86559i 0.421228 0.179470i
\(736\) 2.83001i 0.104315i
\(737\) 0 0
\(738\) 17.0171 17.0171i 0.626410 0.626410i
\(739\) −1.17326 + 3.61092i −0.0431591 + 0.132830i −0.970314 0.241848i \(-0.922247\pi\)
0.927155 + 0.374678i \(0.122247\pi\)
\(740\) 0.839552 3.65895i 0.0308625 0.134506i
\(741\) 1.48503 + 1.07894i 0.0545539 + 0.0396357i
\(742\) −1.19320 + 2.34179i −0.0438039 + 0.0859699i
\(743\) −19.2624 + 37.8046i −0.706668 + 1.38691i 0.206138 + 0.978523i \(0.433910\pi\)
−0.912807 + 0.408392i \(0.866090\pi\)
\(744\) 0.581224 + 0.422284i 0.0213087 + 0.0154817i
\(745\) 10.9180 6.84278i 0.400006 0.250700i
\(746\) 4.06860 12.5219i 0.148962 0.458459i
\(747\) 27.8924 27.8924i 1.02053 1.02053i
\(748\) 0 0
\(749\) 2.11681i 0.0773467i
\(750\) 11.7608 + 6.72694i 0.429442 + 0.245633i
\(751\) 8.08383 5.87325i 0.294983 0.214318i −0.430443 0.902618i \(-0.641643\pi\)
0.725426 + 0.688300i \(0.241643\pi\)
\(752\) 8.75157 + 55.2552i 0.319137 + 2.01495i
\(753\) 13.7398 + 7.00075i 0.500704 + 0.255122i
\(754\) −13.8824 42.7257i −0.505568 1.55598i
\(755\) −21.4738 + 25.6615i −0.781512 + 0.933918i
\(756\) 0.149491 + 0.205757i 0.00543693 + 0.00748330i
\(757\) −26.1808 + 13.3398i −0.951558 + 0.484843i −0.859627 0.510922i \(-0.829304\pi\)
−0.0919310 + 0.995765i \(0.529304\pi\)
\(758\) 0.664675 + 0.664675i 0.0241421 + 0.0241421i
\(759\) 0 0
\(760\) 2.80638 + 3.21961i 0.101798 + 0.116788i
\(761\) −28.8663 9.37924i −1.04640 0.339997i −0.265147 0.964208i \(-0.585421\pi\)
−0.781256 + 0.624211i \(0.785421\pi\)
\(762\) −17.4357 2.76154i −0.631627 0.100040i
\(763\) −1.80455 + 0.285812i −0.0653289 + 0.0103471i
\(764\) 1.86872 0.607184i 0.0676079 0.0219671i
\(765\) 10.0703 16.8110i 0.364093 0.607803i
\(766\) −9.27323 + 12.7635i −0.335056 + 0.461164i
\(767\) 4.66152 29.4317i 0.168318 1.06272i
\(768\) −2.63621 5.17386i −0.0951261 0.186696i
\(769\) −37.6421 −1.35741 −0.678705 0.734411i \(-0.737458\pi\)
−0.678705 + 0.734411i \(0.737458\pi\)
\(770\) 0 0
\(771\) −3.75184 −0.135119
\(772\) 0.836426 + 1.64158i 0.0301036 + 0.0590817i
\(773\) −4.03803 + 25.4951i −0.145238 + 0.916996i 0.802200 + 0.597056i \(0.203663\pi\)
−0.947438 + 0.319941i \(0.896337\pi\)
\(774\) −11.1350 + 15.3260i −0.400240 + 0.550883i
\(775\) 0.309331 + 1.72712i 0.0111115 + 0.0620399i
\(776\) 3.36793 1.09431i 0.120902 0.0392833i
\(777\) 0.814945 0.129075i 0.0292360 0.00463053i
\(778\) −33.2502 5.26632i −1.19208 0.188807i
\(779\) −4.73664 1.53903i −0.169708 0.0551414i
\(780\) 0.117260 1.70994i 0.00419856 0.0612257i
\(781\) 0 0
\(782\) 6.47282 + 6.47282i 0.231467 + 0.231467i
\(783\) 36.3799 18.5365i 1.30011 0.662440i
\(784\) −18.5194 25.4898i −0.661408 0.910350i
\(785\) −0.979146 11.0209i −0.0349472 0.393354i
\(786\) 3.65836 + 11.2593i 0.130489 + 0.401605i
\(787\) −15.3923 7.84278i −0.548677 0.279565i 0.157597 0.987504i \(-0.449625\pi\)
−0.706274 + 0.707939i \(0.749625\pi\)
\(788\) −0.680608 4.29719i −0.0242456 0.153081i
\(789\) 10.2356 7.43663i 0.364399 0.264751i
\(790\) 0.893279 + 2.09659i 0.0317815 + 0.0745933i
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 + 12.8994i −0.458070 + 0.458070i
\(794\) −7.15898 + 22.0331i −0.254063 + 0.781925i
\(795\) 8.54894 + 13.6403i 0.303200 + 0.483772i
\(796\) 3.36273 + 2.44317i 0.119189 + 0.0865958i
\(797\) −20.2339 + 39.7113i −0.716722 + 1.40665i 0.188658 + 0.982043i \(0.439586\pi\)
−0.905380 + 0.424603i \(0.860414\pi\)
\(798\) 0.0783508 0.153772i 0.00277359 0.00544348i
\(799\) −37.0754 26.9368i −1.31163 0.952957i
\(800\) 2.52390 8.33544i 0.0892333 0.294702i
\(801\) 5.78814 17.8140i 0.204514 0.629428i
\(802\) 4.60219 4.60219i 0.162509 0.162509i
\(803\) 0 0
\(804\) 1.44771i 0.0510569i
\(805\) 0.645313 + 0.259714i 0.0227443 + 0.00915373i
\(806\) 1.33590 0.970585i 0.0470549 0.0341874i
\(807\) 1.41081 + 8.90749i 0.0496628 + 0.313559i
\(808\) −11.0412 5.62575i −0.388427 0.197913i
\(809\) 4.70791 + 14.4894i 0.165521 + 0.509422i 0.999074 0.0430175i \(-0.0136971\pi\)
−0.833553 + 0.552439i \(0.813697\pi\)
\(810\) −12.4721 + 1.10807i −0.438225 + 0.0389337i
\(811\) 26.7779 + 36.8566i 0.940299 + 1.29421i 0.955704 + 0.294330i \(0.0950963\pi\)
−0.0154047 + 0.999881i \(0.504904\pi\)
\(812\) −0.505881 + 0.257759i −0.0177529 + 0.00904558i
\(813\) −10.0502 10.0502i −0.352475 0.352475i
\(814\) 0 0
\(815\) 16.8842 14.7171i 0.591427 0.515518i
\(816\) 12.7158 + 4.13162i 0.445143 + 0.144636i
\(817\) 3.87217 + 0.613292i 0.135470 + 0.0214564i
\(818\) 6.44923 1.02146i 0.225492 0.0357144i
\(819\) −1.33285 + 0.433069i −0.0465736 + 0.0151327i
\(820\) 1.13109 + 4.51071i 0.0394995 + 0.157521i
\(821\) 16.8767 23.2288i 0.589000 0.810690i −0.405646 0.914030i \(-0.632953\pi\)
0.994646 + 0.103341i \(0.0329533\pi\)
\(822\) −0.820871 + 5.18277i −0.0286312 + 0.180770i
\(823\) −12.2383 24.0189i −0.426599 0.837247i −0.999840 0.0178607i \(-0.994314\pi\)
0.573242 0.819386i \(-0.305686\pi\)
\(824\) −8.31350 −0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) 18.0157 + 35.3578i 0.626467 + 1.22951i 0.958190 + 0.286134i \(0.0923703\pi\)
−0.331722 + 0.943377i \(0.607630\pi\)
\(828\) 0.186650 1.17846i 0.00648655 0.0409544i
\(829\) 6.38756 8.79172i 0.221849 0.305349i −0.683556 0.729898i \(-0.739567\pi\)
0.905405 + 0.424549i \(0.139567\pi\)
\(830\) 13.7922 + 55.0021i 0.478733 + 1.90915i
\(831\) 3.54961 1.15334i 0.123134 0.0400088i
\(832\) 19.5732 3.10010i 0.678580 0.107476i
\(833\) 25.4920 + 4.03753i 0.883244 + 0.139892i
\(834\) 12.1136 + 3.93596i 0.419461 + 0.136291i
\(835\) −20.3322 + 17.7226i −0.703625 + 0.613316i
\(836\) 0 0
\(837\) 1.06120 + 1.06120i 0.0366805 + 0.0366805i
\(838\) −1.62852 + 0.829773i −0.0562563 + 0.0286640i
\(839\) −23.6970 32.6161i −0.818112 1.12603i −0.990021 0.140922i \(-0.954993\pi\)
0.171909 0.985113i \(-0.445007\pi\)
\(840\) 0.873089 0.0775689i 0.0301244 0.00267638i
\(841\) 19.2051 + 59.1073i 0.662246 + 2.03818i
\(842\) −42.4041 21.6060i −1.46134 0.744591i
\(843\) −1.64488 10.3854i −0.0566528 0.357692i
\(844\) −1.49065 + 1.08302i −0.0513102 + 0.0372790i
\(845\) −7.08864 2.85291i −0.243857 0.0981431i
\(846\) 44.4376i 1.52780i
\(847\) 0 0
\(848\) 28.8921 28.8921i 0.992159 0.992159i
\(849\) 5.61360 17.2769i 0.192658 0.592941i
\(850\) 13.2922 + 24.8376i 0.455919 + 0.851921i
\(851\) −7.10498 5.16207i −0.243556 0.176954i
\(852\) −1.28844 + 2.52871i −0.0441414 + 0.0866323i
\(853\) 6.33606 12.4352i 0.216942 0.425774i −0.756729 0.653728i \(-0.773204\pi\)
0.973672 + 0.227955i \(0.0732039\pi\)
\(854\) 1.38759 + 1.00814i 0.0474823 + 0.0344979i
\(855\) 2.08836 + 3.33210i 0.0714205 + 0.113955i
\(856\) −8.77321 + 27.0012i −0.299862 + 0.922881i
\(857\) −26.9229 + 26.9229i −0.919668 + 0.919668i −0.997005 0.0773373i \(-0.975358\pi\)
0.0773373 + 0.997005i \(0.475358\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i 0.949906 + 0.312535i \(0.101178\pi\)
−0.949906 + 0.312535i \(0.898822\pi\)
\(860\) −1.43486 3.36771i −0.0489282 0.114838i
\(861\) −0.826904 + 0.600781i −0.0281808 + 0.0204746i
\(862\) −2.35205 14.8503i −0.0801112 0.505802i
\(863\) 10.8283 + 5.51731i 0.368601 + 0.187812i 0.628473 0.777832i \(-0.283680\pi\)
−0.259872 + 0.965643i \(0.583680\pi\)
\(864\) −2.30194 7.08464i −0.0783135 0.241024i
\(865\) 2.46662 + 27.7634i 0.0838676 + 0.943985i
\(866\) 24.1079 + 33.1817i 0.819219 + 1.12756i
\(867\) 2.31693 1.18053i 0.0786871 0.0400931i
\(868\) −0.0147565 0.0147565i −0.000500870 0.000500870i
\(869\) 0 0
\(870\) −1.76991 + 25.8098i −0.0600057 + 0.875035i
\(871\) 17.2133 + 5.59295i 0.583251 + 0.189510i
\(872\) 24.2026 + 3.83331i 0.819602 + 0.129812i
\(873\) 3.22038 0.510058i 0.108993 0.0172628i
\(874\) −1.74703 + 0.567644i −0.0590941 + 0.0192008i
\(875\) 1.66907 + 1.34047i 0.0564248 + 0.0453161i
\(876\) 0.349572 0.481145i 0.0118109 0.0162564i
\(877\) −2.00784 + 12.6770i −0.0677999 + 0.428072i 0.930318 + 0.366753i \(0.119531\pi\)
−0.998118 + 0.0613187i \(0.980469\pi\)
\(878\) 16.9668 + 33.2992i 0.572602 + 1.12379i
\(879\) 5.76213 0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) −11.3619 22.2991i −0.382577 0.750849i
\(883\) −6.81876 + 43.0520i −0.229470 + 1.44881i 0.556654 + 0.830745i \(0.312085\pi\)
−0.786123 + 0.618069i \(0.787915\pi\)
\(884\) 2.09468 2.88308i 0.0704517 0.0969685i
\(885\) −8.81823 + 14.7208i −0.296422 + 0.494835i
\(886\) −44.5223 + 14.4662i −1.49576 + 0.486001i
\(887\) 10.2712 1.62679i 0.344872 0.0546224i 0.0184043 0.999831i \(-0.494141\pi\)
0.326468 + 0.945208i \(0.394141\pi\)
\(888\) −10.9300 1.73115i −0.366788 0.0580935i
\(889\) −2.65268 0.861909i −0.0889682 0.0289075i
\(890\) 17.6925 + 20.2977i 0.593055 + 0.680381i
\(891\) 0 0
\(892\) 4.66817 + 4.66817i 0.156302 + 0.156302i
\(893\) 8.19397 4.17503i 0.274201 0.139712i
\(894\) 4.10455 + 5.64943i 0.137277 + 0.188945i
\(895\) −28.9564 + 34.6034i −0.967907 + 1.15666i
\(896\) −0.781885 2.40639i −0.0261209 0.0803920i
\(897\) −3.57263 1.82035i −0.119287 0.0607796i
\(898\) 1.74174 + 10.9969i 0.0581228 + 0.366973i
\(899\) −2.71045 + 1.96926i −0.0903987 + 0.0656785i
\(900\) 1.60075 3.30456i 0.0533583 0.110152i
\(901\) 33.4710i 1.11508i
\(902\) 0 0
\(903\) 0.568922 0.568922i 0.0189325 0.0189325i
\(904\) −3.29143 + 10.1300i −0.109471 + 0.336918i
\(905\) −8.73404 + 5.47398i −0.290329 + 0.181961i
\(906\) −14.6708 10.6590i −0.487405 0.354120i
\(907\) 7.40321 14.5296i 0.245820 0.482448i −0.734822 0.678260i \(-0.762734\pi\)
0.980641 + 0.195812i \(0.0627343\pi\)
\(908\) 1.84296 3.61701i 0.0611607 0.120035i
\(909\) −9.23043 6.70630i −0.306154 0.222434i
\(910\) 0.450552 1.96360i 0.0149356 0.0650927i
\(911\) −5.47283 + 16.8436i −0.181323 + 0.558055i −0.999866 0.0163910i \(-0.994782\pi\)
0.818543 + 0.574446i \(0.194782\pi\)
\(912\) −1.89718 + 1.89718i −0.0628219 + 0.0628219i
\(913\) 0 0
\(914\) 10.2385i 0.338659i
\(915\) 9.66456 4.11771i 0.319500 0.136127i
\(916\) 4.12869 2.99967i 0.136416 0.0991119i
\(917\) 0.292615 + 1.84750i 0.00966301 + 0.0610098i
\(918\) 21.4691 + 10.9390i 0.708584 + 0.361042i
\(919\) −2.82132 8.68314i −0.0930669 0.286430i 0.893678 0.448708i \(-0.148116\pi\)
−0.986745 + 0.162278i \(0.948116\pi\)
\(920\) −7.15494 5.98732i −0.235891 0.197396i
\(921\) −13.3383 18.3585i −0.439510 0.604934i
\(922\) 39.3857 20.0680i 1.29710 0.660905i
\(923\) −25.0888 25.0888i −0.825807 0.825807i
\(924\) 0 0
\(925\) −16.3231 21.5407i −0.536701 0.708254i
\(926\) 35.8082 + 11.6348i 1.17673 + 0.382342i
\(927\) −7.56022 1.19742i −0.248310 0.0393284i
\(928\) 16.4249 2.60145i 0.539174 0.0853967i
\(929\) −1.72368 + 0.560057i −0.0565521 + 0.0183749i −0.337156 0.941449i \(-0.609465\pi\)
0.280604 + 0.959824i \(0.409465\pi\)
\(930\) −0.922346 + 0.231285i −0.0302449 + 0.00758413i
\(931\) −3.04430 + 4.19012i −0.0997729 + 0.137326i
\(932\) 0.760076 4.79893i 0.0248971 0.157194i
\(933\) 2.72024 + 5.33878i 0.0890568 + 0.174784i
\(934\) −40.2174 −1.31595
\(935\) 0 0
\(936\) 18.7961 0.614371
\(937\) 6.88215 + 13.5070i 0.224830 + 0.441254i 0.975674 0.219226i \(-0.0703531\pi\)
−0.750844 + 0.660479i \(0.770353\pi\)
\(938\) 0.266201 1.68073i 0.00869178 0.0548777i
\(939\) −0.630770 + 0.868181i −0.0205844 + 0.0283320i
\(940\) −7.36634 4.41267i −0.240263 0.143925i
\(941\) −20.7606 + 6.74553i −0.676777 + 0.219898i −0.627184 0.778871i \(-0.715792\pi\)
−0.0495931 + 0.998770i \(0.515792\pi\)
\(942\) 5.92247 0.938027i 0.192965 0.0305626i
\(943\) 10.7452 + 1.70187i 0.349912 + 0.0554206i
\(944\) 41.4236 + 13.4593i 1.34822 + 0.438064i
\(945\) 1.82673 + 0.125268i 0.0594235 + 0.00407498i
\(946\) 0 0
\(947\) 6.90662 + 6.90662i 0.224435 + 0.224435i 0.810363 0.585928i \(-0.199270\pi\)
−0.585928 + 0.810363i \(0.699270\pi\)
\(948\) −0.147924 + 0.0753712i −0.00480436 + 0.00244794i
\(949\) 4.37031 + 6.01522i 0.141866 + 0.195262i
\(950\) −5.65190 + 0.113865i −0.183372 + 0.00369425i
\(951\) 2.79170 + 8.59195i 0.0905269 + 0.278613i
\(952\) 1.62385 + 0.827393i 0.0526293 + 0.0268160i
\(953\) −2.04042 12.8827i −0.0660956 0.417311i −0.998445 0.0557519i \(-0.982244\pi\)
0.932349 0.361560i \(-0.117756\pi\)
\(954\) 26.2572 19.0770i 0.850109 0.617641i
\(955\) 5.28155 13.1231i 0.170907 0.424653i
\(956\) 1.64046i 0.0530561i
\(957\) 0 0
\(958\) −28.2202 + 28.2202i −0.911755 + 0.911755i
\(959\) −0.256204 + 0.788514i −0.00827325 + 0.0254624i
\(960\) −11.1230 2.55219i −0.358993 0.0823717i
\(961\) 24.9799 + 18.1490i 0.805803 + 0.585450i
\(962\) −11.5472 + 22.6627i −0.372298 + 0.730675i
\(963\) −11.8673 + 23.2910i −0.382420 + 0.750541i
\(964\) −4.06247 2.95156i −0.130843 0.0950633i
\(965\) 12.9281 + 2.96638i 0.416171 + 0.0954913i
\(966\) −0.116495 + 0.358536i −0.00374818 + 0.0115357i
\(967\) 13.6319 13.6319i 0.438372 0.438372i −0.453092 0.891464i \(-0.649679\pi\)
0.891464 + 0.453092i \(0.149679\pi\)
\(968\) 0 0
\(969\) 2.19785i 0.0706051i
\(970\) −1.74998 + 4.34819i −0.0561885 + 0.139612i
\(971\) −3.32405 + 2.41506i −0.106674 + 0.0775030i −0.639843 0.768505i \(-0.721001\pi\)
0.533170 + 0.846008i \(0.321001\pi\)
\(972\) −0.766064 4.83674i −0.0245715 0.155138i
\(973\) 1.79312 + 0.913641i 0.0574848 + 0.0292900i
\(974\) 10.9611 + 33.7348i 0.351216 + 1.08093i
\(975\) −8.89929 8.54780i −0.285005 0.273749i
\(976\) −15.6729 21.5718i −0.501676 0.690498i
\(977\) −27.3623 + 13.9418i −0.875398 + 0.446038i −0.833136 0.553069i \(-0.813457\pi\)
−0.0422626 + 0.999107i \(0.513457\pi\)
\(978\) 8.58324 + 8.58324i 0.274462 + 0.274462i
\(979\) 0 0
\(980\) 4.82472 + 0.330856i 0.154120 + 0.0105688i
\(981\) 21.4574 + 6.97195i 0.685083 + 0.222597i
\(982\) −27.5462 4.36290i −0.879036 0.139226i
\(983\) −27.3840 + 4.33721i −0.873415 + 0.138335i −0.577020 0.816730i \(-0.695785\pi\)
−0.296395 + 0.955065i \(0.595785\pi\)
\(984\) 13.0376 4.23617i 0.415623 0.135044i
\(985\) −26.8706 16.0963i −0.856168 0.512872i
\(986\) −31.6171 + 43.5172i −1.00689 + 1.38587i
\(987\) 0.295242 1.86409i 0.00939767 0.0593346i
\(988\) 0.324662 + 0.637185i 0.0103289 + 0.0202716i
\(989\) −8.56376 −0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) 0.277499 + 0.544623i 0.00881061 + 0.0172918i
\(993\) 2.20803 13.9410i 0.0700697 0.442403i
\(994\) −1.96080 + 2.69881i −0.0621927 + 0.0856009i
\(995\) 29.0261 7.27852i 0.920191 0.230744i
\(996\) −3.92871 + 1.27652i −0.124486 + 0.0404480i
\(997\) −28.5152 + 4.51636i −0.903085 + 0.143035i −0.590672 0.806912i \(-0.701137\pi\)
−0.312413 + 0.949946i \(0.601137\pi\)
\(998\) 17.6527 + 2.79592i 0.558787 + 0.0885031i
\(999\) −21.9855 7.14351i −0.695589 0.226011i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.c.112.4 32
5.3 odd 4 inner 605.2.m.c.233.4 32
11.2 odd 10 55.2.l.a.52.1 yes 32
11.3 even 5 55.2.l.a.7.4 32
11.4 even 5 605.2.e.b.362.3 32
11.5 even 5 605.2.m.d.457.1 32
11.6 odd 10 inner 605.2.m.c.457.4 32
11.7 odd 10 605.2.e.b.362.14 32
11.8 odd 10 605.2.m.e.282.1 32
11.9 even 5 605.2.m.e.602.4 32
11.10 odd 2 605.2.m.d.112.1 32
33.2 even 10 495.2.bj.a.217.4 32
33.14 odd 10 495.2.bj.a.172.1 32
44.3 odd 10 880.2.cm.a.337.4 32
44.35 even 10 880.2.cm.a.657.1 32
55.2 even 20 275.2.bm.b.118.1 32
55.3 odd 20 55.2.l.a.18.1 yes 32
55.8 even 20 605.2.m.e.403.4 32
55.13 even 20 55.2.l.a.8.4 yes 32
55.14 even 10 275.2.bm.b.7.1 32
55.18 even 20 605.2.e.b.483.3 32
55.24 odd 10 275.2.bm.b.107.4 32
55.28 even 20 inner 605.2.m.c.578.4 32
55.38 odd 20 605.2.m.d.578.1 32
55.43 even 4 605.2.m.d.233.1 32
55.47 odd 20 275.2.bm.b.18.4 32
55.48 odd 20 605.2.e.b.483.14 32
55.53 odd 20 605.2.m.e.118.1 32
165.68 odd 20 495.2.bj.a.118.1 32
165.113 even 20 495.2.bj.a.73.4 32
220.3 even 20 880.2.cm.a.513.1 32
220.123 odd 20 880.2.cm.a.833.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 11.3 even 5
55.2.l.a.8.4 yes 32 55.13 even 20
55.2.l.a.18.1 yes 32 55.3 odd 20
55.2.l.a.52.1 yes 32 11.2 odd 10
275.2.bm.b.7.1 32 55.14 even 10
275.2.bm.b.18.4 32 55.47 odd 20
275.2.bm.b.107.4 32 55.24 odd 10
275.2.bm.b.118.1 32 55.2 even 20
495.2.bj.a.73.4 32 165.113 even 20
495.2.bj.a.118.1 32 165.68 odd 20
495.2.bj.a.172.1 32 33.14 odd 10
495.2.bj.a.217.4 32 33.2 even 10
605.2.e.b.362.3 32 11.4 even 5
605.2.e.b.362.14 32 11.7 odd 10
605.2.e.b.483.3 32 55.18 even 20
605.2.e.b.483.14 32 55.48 odd 20
605.2.m.c.112.4 32 1.1 even 1 trivial
605.2.m.c.233.4 32 5.3 odd 4 inner
605.2.m.c.457.4 32 11.6 odd 10 inner
605.2.m.c.578.4 32 55.28 even 20 inner
605.2.m.d.112.1 32 11.10 odd 2
605.2.m.d.233.1 32 55.43 even 4
605.2.m.d.457.1 32 11.5 even 5
605.2.m.d.578.1 32 55.38 odd 20
605.2.m.e.118.1 32 55.53 odd 20
605.2.m.e.282.1 32 11.8 odd 10
605.2.m.e.403.4 32 55.8 even 20
605.2.m.e.602.4 32 11.9 even 5
880.2.cm.a.337.4 32 44.3 odd 10
880.2.cm.a.513.1 32 220.3 even 20
880.2.cm.a.657.1 32 44.35 even 10
880.2.cm.a.833.4 32 220.123 odd 20