Properties

Label 275.2.bm.b.118.1
Level $275$
Weight $2$
Character 275.118
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(7,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 118.1
Character \(\chi\) \(=\) 275.118
Dual form 275.2.bm.b.7.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50135 - 0.237790i) q^{2} +(0.361933 - 0.710333i) q^{3} +(0.295389 + 0.0959778i) q^{4} +(-0.712297 + 0.980393i) q^{6} +(-0.170602 + 0.0869260i) q^{7} +(2.28811 + 1.16585i) q^{8} +(1.38978 + 1.91287i) q^{9} +(1.77694 - 2.80044i) q^{11} +(0.175087 - 0.175087i) q^{12} +(0.484259 - 3.05749i) q^{13} +(0.276803 - 0.0899388i) q^{14} +(-3.66057 - 2.65956i) q^{16} +(-0.579827 - 3.66088i) q^{17} +(-1.63168 - 3.20235i) q^{18} +(-0.229844 - 0.707388i) q^{19} +0.152646i q^{21} +(-3.33373 + 3.78190i) q^{22} +(1.14886 + 1.14886i) q^{23} +(1.65629 - 1.20336i) q^{24} +(-1.45408 + 4.47521i) q^{26} +(4.22401 - 0.669017i) q^{27} +(-0.0587369 + 0.00930302i) q^{28} +(2.95025 - 9.07993i) q^{29} +(-0.283900 + 0.206266i) q^{31} +(1.23166 + 1.23166i) q^{32} +(-1.34611 - 2.27579i) q^{33} +5.63413i q^{34} +(0.226933 + 0.698428i) q^{36} +(-2.45398 - 4.81621i) q^{37} +(0.176866 + 1.11669i) q^{38} +(-1.99657 - 1.45059i) q^{39} +(6.36824 - 2.06917i) q^{41} +(0.0362976 - 0.229174i) q^{42} +(-3.72708 + 3.72708i) q^{43} +(0.793670 - 0.656674i) q^{44} +(-1.45165 - 1.99802i) q^{46} +(11.0165 + 5.61318i) q^{47} +(-3.21405 + 1.63764i) q^{48} +(-4.09295 + 5.63346i) q^{49} +(-2.81030 - 0.913123i) q^{51} +(0.436496 - 0.856672i) q^{52} +(8.91914 + 1.41265i) q^{53} -6.50079 q^{54} -0.491699 q^{56} +(-0.585669 - 0.0927608i) q^{57} +(-6.58847 + 12.9306i) q^{58} +(-9.15496 - 2.97463i) q^{59} +(-3.46383 + 4.76756i) q^{61} +(0.475281 - 0.242168i) q^{62} +(-0.403377 - 0.205531i) q^{63} +(3.76284 + 5.17911i) q^{64} +(1.47982 + 3.73685i) q^{66} +(-4.13426 + 4.13426i) q^{67} +(0.180089 - 1.13704i) q^{68} +(1.23188 - 0.400262i) q^{69} +(9.27272 + 6.73702i) q^{71} +(0.949851 + 5.99713i) q^{72} +(-1.09042 - 2.14008i) q^{73} +(2.53903 + 7.81434i) q^{74} -0.231015i q^{76} +(-0.0597184 + 0.632224i) q^{77} +(2.65261 + 2.65261i) q^{78} +(-0.542434 + 0.394101i) q^{79} +(-1.13837 + 3.50353i) q^{81} +(-10.0530 + 1.59224i) q^{82} +(-16.4776 + 2.60980i) q^{83} +(-0.0146506 + 0.0450899i) q^{84} +(6.48191 - 4.70938i) q^{86} +(-5.38198 - 5.38198i) q^{87} +(7.33074 - 4.33608i) q^{88} +7.92190i q^{89} +(0.183160 + 0.563709i) q^{91} +(0.229095 + 0.449625i) q^{92} +(0.0437645 + 0.276318i) q^{93} +(-15.2048 - 11.0469i) q^{94} +(1.32067 - 0.429111i) q^{96} +(0.215721 - 1.36201i) q^{97} +(7.48452 - 7.48452i) q^{98} +(7.82643 - 0.492943i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50135 0.237790i −1.06161 0.168143i −0.398884 0.917002i \(-0.630602\pi\)
−0.662730 + 0.748859i \(0.730602\pi\)
\(3\) 0.361933 0.710333i 0.208962 0.410111i −0.762609 0.646860i \(-0.776082\pi\)
0.971571 + 0.236749i \(0.0760819\pi\)
\(4\) 0.295389 + 0.0959778i 0.147695 + 0.0479889i
\(5\) 0 0
\(6\) −0.712297 + 0.980393i −0.290794 + 0.400244i
\(7\) −0.170602 + 0.0869260i −0.0644815 + 0.0328550i −0.485934 0.873996i \(-0.661520\pi\)
0.421452 + 0.906851i \(0.361520\pi\)
\(8\) 2.28811 + 1.16585i 0.808970 + 0.412191i
\(9\) 1.38978 + 1.91287i 0.463259 + 0.637622i
\(10\) 0 0
\(11\) 1.77694 2.80044i 0.535768 0.844365i
\(12\) 0.175087 0.175087i 0.0505433 0.0505433i
\(13\) 0.484259 3.05749i 0.134309 0.847995i −0.824896 0.565285i \(-0.808766\pi\)
0.959205 0.282711i \(-0.0912336\pi\)
\(14\) 0.276803 0.0899388i 0.0739787 0.0240372i
\(15\) 0 0
\(16\) −3.66057 2.65956i −0.915143 0.664890i
\(17\) −0.579827 3.66088i −0.140629 0.887894i −0.952606 0.304206i \(-0.901609\pi\)
0.811978 0.583688i \(-0.198391\pi\)
\(18\) −1.63168 3.20235i −0.384591 0.754802i
\(19\) −0.229844 0.707388i −0.0527299 0.162286i 0.921224 0.389033i \(-0.127191\pi\)
−0.973954 + 0.226747i \(0.927191\pi\)
\(20\) 0 0
\(21\) 0.152646i 0.0333100i
\(22\) −3.33373 + 3.78190i −0.710753 + 0.806304i
\(23\) 1.14886 + 1.14886i 0.239553 + 0.239553i 0.816665 0.577112i \(-0.195820\pi\)
−0.577112 + 0.816665i \(0.695820\pi\)
\(24\) 1.65629 1.20336i 0.338088 0.245635i
\(25\) 0 0
\(26\) −1.45408 + 4.47521i −0.285169 + 0.877660i
\(27\) 4.22401 0.669017i 0.812911 0.128752i
\(28\) −0.0587369 + 0.00930302i −0.0111002 + 0.00175811i
\(29\) 2.95025 9.07993i 0.547847 1.68610i −0.166275 0.986079i \(-0.553174\pi\)
0.714122 0.700021i \(-0.246826\pi\)
\(30\) 0 0
\(31\) −0.283900 + 0.206266i −0.0509900 + 0.0370464i −0.612988 0.790092i \(-0.710033\pi\)
0.561998 + 0.827138i \(0.310033\pi\)
\(32\) 1.23166 + 1.23166i 0.217729 + 0.217729i
\(33\) −1.34611 2.27579i −0.234328 0.396165i
\(34\) 5.63413i 0.966246i
\(35\) 0 0
\(36\) 0.226933 + 0.698428i 0.0378222 + 0.116405i
\(37\) −2.45398 4.81621i −0.403432 0.791780i 0.596510 0.802606i \(-0.296554\pi\)
−0.999941 + 0.0108264i \(0.996554\pi\)
\(38\) 0.176866 + 1.11669i 0.0286915 + 0.181151i
\(39\) −1.99657 1.45059i −0.319707 0.232280i
\(40\) 0 0
\(41\) 6.36824 2.06917i 0.994552 0.323150i 0.233866 0.972269i \(-0.424862\pi\)
0.760687 + 0.649119i \(0.224862\pi\)
\(42\) 0.0362976 0.229174i 0.00560084 0.0353623i
\(43\) −3.72708 + 3.72708i −0.568374 + 0.568374i −0.931673 0.363299i \(-0.881650\pi\)
0.363299 + 0.931673i \(0.381650\pi\)
\(44\) 0.793670 0.656674i 0.119650 0.0989973i
\(45\) 0 0
\(46\) −1.45165 1.99802i −0.214034 0.294592i
\(47\) 11.0165 + 5.61318i 1.60692 + 0.818766i 0.999706 + 0.0242272i \(0.00771250\pi\)
0.607213 + 0.794539i \(0.292287\pi\)
\(48\) −3.21405 + 1.63764i −0.463909 + 0.236373i
\(49\) −4.09295 + 5.63346i −0.584707 + 0.804780i
\(50\) 0 0
\(51\) −2.81030 0.913123i −0.393521 0.127863i
\(52\) 0.436496 0.856672i 0.0605311 0.118799i
\(53\) 8.91914 + 1.41265i 1.22514 + 0.194043i 0.735282 0.677761i \(-0.237050\pi\)
0.489855 + 0.871804i \(0.337050\pi\)
\(54\) −6.50079 −0.884646
\(55\) 0 0
\(56\) −0.491699 −0.0657061
\(57\) −0.585669 0.0927608i −0.0775737 0.0122865i
\(58\) −6.58847 + 12.9306i −0.865108 + 1.69787i
\(59\) −9.15496 2.97463i −1.19187 0.387263i −0.355108 0.934825i \(-0.615556\pi\)
−0.836765 + 0.547562i \(0.815556\pi\)
\(60\) 0 0
\(61\) −3.46383 + 4.76756i −0.443498 + 0.610423i −0.970985 0.239140i \(-0.923134\pi\)
0.527487 + 0.849563i \(0.323134\pi\)
\(62\) 0.475281 0.242168i 0.0603608 0.0307554i
\(63\) −0.403377 0.205531i −0.0508207 0.0258944i
\(64\) 3.76284 + 5.17911i 0.470356 + 0.647389i
\(65\) 0 0
\(66\) 1.47982 + 3.73685i 0.182154 + 0.459974i
\(67\) −4.13426 + 4.13426i −0.505081 + 0.505081i −0.913012 0.407932i \(-0.866250\pi\)
0.407932 + 0.913012i \(0.366250\pi\)
\(68\) 0.180089 1.13704i 0.0218390 0.137886i
\(69\) 1.23188 0.400262i 0.148301 0.0481859i
\(70\) 0 0
\(71\) 9.27272 + 6.73702i 1.10047 + 0.799538i 0.981136 0.193317i \(-0.0619245\pi\)
0.119333 + 0.992854i \(0.461925\pi\)
\(72\) 0.949851 + 5.99713i 0.111941 + 0.706768i
\(73\) −1.09042 2.14008i −0.127624 0.250477i 0.818349 0.574722i \(-0.194890\pi\)
−0.945973 + 0.324245i \(0.894890\pi\)
\(74\) 2.53903 + 7.81434i 0.295156 + 0.908398i
\(75\) 0 0
\(76\) 0.231015i 0.0264992i
\(77\) −0.0597184 + 0.632224i −0.00680554 + 0.0720486i
\(78\) 2.65261 + 2.65261i 0.300348 + 0.300348i
\(79\) −0.542434 + 0.394101i −0.0610286 + 0.0443399i −0.617881 0.786271i \(-0.712009\pi\)
0.556853 + 0.830611i \(0.312009\pi\)
\(80\) 0 0
\(81\) −1.13837 + 3.50353i −0.126485 + 0.389282i
\(82\) −10.0530 + 1.59224i −1.11017 + 0.175833i
\(83\) −16.4776 + 2.60980i −1.80865 + 0.286463i −0.967228 0.253909i \(-0.918284\pi\)
−0.841426 + 0.540372i \(0.818284\pi\)
\(84\) −0.0146506 + 0.0450899i −0.00159851 + 0.00491971i
\(85\) 0 0
\(86\) 6.48191 4.70938i 0.698962 0.507826i
\(87\) −5.38198 5.38198i −0.577009 0.577009i
\(88\) 7.33074 4.33608i 0.781460 0.462227i
\(89\) 7.92190i 0.839720i 0.907589 + 0.419860i \(0.137921\pi\)
−0.907589 + 0.419860i \(0.862079\pi\)
\(90\) 0 0
\(91\) 0.183160 + 0.563709i 0.0192004 + 0.0590927i
\(92\) 0.229095 + 0.449625i 0.0238848 + 0.0468766i
\(93\) 0.0437645 + 0.276318i 0.00453817 + 0.0286528i
\(94\) −15.2048 11.0469i −1.56826 1.13941i
\(95\) 0 0
\(96\) 1.32067 0.429111i 0.134790 0.0437960i
\(97\) 0.215721 1.36201i 0.0219032 0.138291i −0.974313 0.225196i \(-0.927698\pi\)
0.996217 + 0.0869051i \(0.0276977\pi\)
\(98\) 7.48452 7.48452i 0.756051 0.756051i
\(99\) 7.82643 0.492943i 0.786585 0.0495427i
\(100\) 0 0
\(101\) −2.83633 3.90387i −0.282225 0.388449i 0.644244 0.764820i \(-0.277172\pi\)
−0.926469 + 0.376370i \(0.877172\pi\)
\(102\) 4.00211 + 2.03918i 0.396268 + 0.201909i
\(103\) −2.88449 + 1.46972i −0.284217 + 0.144816i −0.590287 0.807193i \(-0.700986\pi\)
0.306071 + 0.952009i \(0.400986\pi\)
\(104\) 4.67262 6.43131i 0.458188 0.630641i
\(105\) 0 0
\(106\) −13.0548 4.24177i −1.26800 0.411997i
\(107\) 5.01911 9.85055i 0.485215 0.952289i −0.510505 0.859875i \(-0.670542\pi\)
0.995721 0.0924142i \(-0.0294584\pi\)
\(108\) 1.31194 + 0.207790i 0.126241 + 0.0199946i
\(109\) 9.54212 0.913969 0.456985 0.889475i \(-0.348929\pi\)
0.456985 + 0.889475i \(0.348929\pi\)
\(110\) 0 0
\(111\) −4.30929 −0.409019
\(112\) 0.855686 + 0.135527i 0.0808547 + 0.0128061i
\(113\) 1.88301 3.69562i 0.177139 0.347654i −0.785317 0.619094i \(-0.787500\pi\)
0.962455 + 0.271440i \(0.0874999\pi\)
\(114\) 0.857235 + 0.278533i 0.0802874 + 0.0260870i
\(115\) 0 0
\(116\) 1.74294 2.39895i 0.161828 0.222737i
\(117\) 6.52158 3.32291i 0.602920 0.307203i
\(118\) 13.0374 + 6.64291i 1.20019 + 0.611529i
\(119\) 0.417145 + 0.574151i 0.0382397 + 0.0526324i
\(120\) 0 0
\(121\) −4.68496 9.95245i −0.425905 0.904768i
\(122\) 6.33410 6.33410i 0.573462 0.573462i
\(123\) 0.835077 5.27247i 0.0752964 0.475403i
\(124\) −0.103658 + 0.0336805i −0.00930877 + 0.00302460i
\(125\) 0 0
\(126\) 0.556736 + 0.404492i 0.0495980 + 0.0360350i
\(127\) 2.27881 + 14.3879i 0.202212 + 1.27672i 0.854782 + 0.518987i \(0.173691\pi\)
−0.652570 + 0.757728i \(0.726309\pi\)
\(128\) −5.99935 11.7744i −0.530273 1.04072i
\(129\) 1.29851 + 3.99642i 0.114328 + 0.351865i
\(130\) 0 0
\(131\) 9.76926i 0.853544i 0.904359 + 0.426772i \(0.140349\pi\)
−0.904359 + 0.426772i \(0.859651\pi\)
\(132\) −0.179202 0.801441i −0.0155975 0.0697565i
\(133\) 0.100702 + 0.100702i 0.00873200 + 0.00873200i
\(134\) 7.19006 5.22388i 0.621126 0.451275i
\(135\) 0 0
\(136\) 2.94133 9.05250i 0.252217 0.776245i
\(137\) −4.27681 + 0.677380i −0.365392 + 0.0578725i −0.336431 0.941708i \(-0.609220\pi\)
−0.0289612 + 0.999581i \(0.509220\pi\)
\(138\) −1.94466 + 0.308004i −0.165540 + 0.0262190i
\(139\) 3.24794 9.99613i 0.275487 0.847860i −0.713604 0.700550i \(-0.752938\pi\)
0.989090 0.147311i \(-0.0470618\pi\)
\(140\) 0 0
\(141\) 7.97445 5.79378i 0.671570 0.487924i
\(142\) −12.3196 12.3196i −1.03384 1.03384i
\(143\) −7.70183 6.78912i −0.644059 0.567735i
\(144\) 10.6984i 0.891532i
\(145\) 0 0
\(146\) 1.12822 + 3.47229i 0.0933719 + 0.287369i
\(147\) 2.52026 + 4.94629i 0.207868 + 0.407963i
\(148\) −0.262630 1.65818i −0.0215881 0.136302i
\(149\) 4.66189 + 3.38706i 0.381917 + 0.277479i 0.762135 0.647418i \(-0.224151\pi\)
−0.380218 + 0.924897i \(0.624151\pi\)
\(150\) 0 0
\(151\) −14.2318 + 4.62419i −1.15817 + 0.376311i −0.824214 0.566278i \(-0.808383\pi\)
−0.333953 + 0.942590i \(0.608383\pi\)
\(152\) 0.298800 1.88655i 0.0242358 0.153019i
\(153\) 6.19694 6.19694i 0.500993 0.500993i
\(154\) 0.239995 0.934987i 0.0193393 0.0753434i
\(155\) 0 0
\(156\) −0.450540 0.620115i −0.0360721 0.0496489i
\(157\) −4.40881 2.24640i −0.351861 0.179282i 0.269122 0.963106i \(-0.413267\pi\)
−0.620983 + 0.783824i \(0.713267\pi\)
\(158\) 0.908095 0.462698i 0.0722442 0.0368103i
\(159\) 4.23158 5.82427i 0.335586 0.461895i
\(160\) 0 0
\(161\) −0.295863 0.0961317i −0.0233173 0.00757624i
\(162\) 2.54219 4.98933i 0.199733 0.391999i
\(163\) 9.89335 + 1.56695i 0.774907 + 0.122733i 0.531349 0.847153i \(-0.321685\pi\)
0.243558 + 0.969886i \(0.421685\pi\)
\(164\) 2.07970 0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) −11.9137 1.88695i −0.921913 0.146017i −0.322604 0.946534i \(-0.604558\pi\)
−0.599310 + 0.800517i \(0.704558\pi\)
\(168\) −0.177962 + 0.349270i −0.0137301 + 0.0269468i
\(169\) 3.24999 + 1.05599i 0.250000 + 0.0812298i
\(170\) 0 0
\(171\) 1.03371 1.42277i 0.0790494 0.108802i
\(172\) −1.45866 + 0.743222i −0.111221 + 0.0566702i
\(173\) 11.1065 + 5.65903i 0.844410 + 0.430248i 0.821991 0.569501i \(-0.192863\pi\)
0.0224186 + 0.999749i \(0.492863\pi\)
\(174\) 6.80045 + 9.36001i 0.515540 + 0.709581i
\(175\) 0 0
\(176\) −13.9526 + 5.52533i −1.05171 + 0.416488i
\(177\) −5.42645 + 5.42645i −0.407877 + 0.407877i
\(178\) 1.88375 11.8935i 0.141193 0.891458i
\(179\) −19.1909 + 6.23551i −1.43440 + 0.466064i −0.920146 0.391575i \(-0.871930\pi\)
−0.514252 + 0.857639i \(0.671930\pi\)
\(180\) 0 0
\(181\) −3.72935 2.70953i −0.277200 0.201398i 0.440495 0.897755i \(-0.354803\pi\)
−0.717695 + 0.696357i \(0.754803\pi\)
\(182\) −0.140943 0.889877i −0.0104474 0.0659620i
\(183\) 2.13288 + 4.18601i 0.157667 + 0.309439i
\(184\) 1.28932 + 3.96811i 0.0950497 + 0.292533i
\(185\) 0 0
\(186\) 0.425256i 0.0311813i
\(187\) −11.2824 4.88140i −0.825051 0.356963i
\(188\) 2.71541 + 2.71541i 0.198042 + 0.198042i
\(189\) −0.662469 + 0.481312i −0.0481875 + 0.0350103i
\(190\) 0 0
\(191\) 1.95493 6.01667i 0.141454 0.435351i −0.855084 0.518490i \(-0.826495\pi\)
0.996538 + 0.0831389i \(0.0264945\pi\)
\(192\) 5.04079 0.798383i 0.363788 0.0576183i
\(193\) −5.85885 + 0.927951i −0.421729 + 0.0667954i −0.363692 0.931519i \(-0.618484\pi\)
−0.0580368 + 0.998314i \(0.518484\pi\)
\(194\) −0.647745 + 1.99355i −0.0465054 + 0.143129i
\(195\) 0 0
\(196\) −1.74970 + 1.27123i −0.124979 + 0.0908022i
\(197\) 9.90515 + 9.90515i 0.705713 + 0.705713i 0.965631 0.259918i \(-0.0836955\pi\)
−0.259918 + 0.965631i \(0.583696\pi\)
\(198\) −11.8674 1.12097i −0.843380 0.0796637i
\(199\) 13.3828i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(200\) 0 0
\(201\) 1.44038 + 4.43303i 0.101596 + 0.312682i
\(202\) 3.33001 + 6.53551i 0.234299 + 0.459837i
\(203\) 0.285964 + 1.80551i 0.0200708 + 0.126722i
\(204\) −0.742493 0.539453i −0.0519849 0.0377693i
\(205\) 0 0
\(206\) 4.68010 1.52066i 0.326078 0.105949i
\(207\) −0.600953 + 3.79427i −0.0417691 + 0.263720i
\(208\) −9.90424 + 9.90424i −0.686736 + 0.686736i
\(209\) −2.38942 0.613321i −0.165280 0.0424243i
\(210\) 0 0
\(211\) 3.48696 + 4.79939i 0.240052 + 0.330404i 0.911996 0.410198i \(-0.134540\pi\)
−0.671944 + 0.740602i \(0.734540\pi\)
\(212\) 2.49903 + 1.27332i 0.171634 + 0.0874521i
\(213\) 8.14163 4.14837i 0.557855 0.284241i
\(214\) −9.87779 + 13.5956i −0.675232 + 0.929377i
\(215\) 0 0
\(216\) 10.4450 + 3.39378i 0.710691 + 0.230917i
\(217\) 0.0305041 0.0598677i 0.00207075 0.00406408i
\(218\) −14.3260 2.26902i −0.970282 0.153678i
\(219\) −1.91483 −0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) 6.46974 + 1.02471i 0.434220 + 0.0687738i
\(223\) −9.64984 + 18.9389i −0.646201 + 1.26824i 0.302826 + 0.953046i \(0.402070\pi\)
−0.949027 + 0.315195i \(0.897930\pi\)
\(224\) −0.317188 0.103060i −0.0211930 0.00688602i
\(225\) 0 0
\(226\) −3.70584 + 5.10065i −0.246509 + 0.339290i
\(227\) −11.6456 + 5.93372i −0.772944 + 0.393835i −0.795533 0.605910i \(-0.792809\pi\)
0.0225888 + 0.999745i \(0.492809\pi\)
\(228\) −0.164097 0.0836117i −0.0108676 0.00553732i
\(229\) −9.65796 13.2930i −0.638216 0.878429i 0.360303 0.932835i \(-0.382673\pi\)
−0.998519 + 0.0544066i \(0.982673\pi\)
\(230\) 0 0
\(231\) 0.427475 + 0.271242i 0.0281258 + 0.0178464i
\(232\) 17.3363 17.3363i 1.13819 1.13819i
\(233\) −2.44720 + 15.4510i −0.160321 + 1.01223i 0.768000 + 0.640450i \(0.221252\pi\)
−0.928321 + 0.371779i \(0.878748\pi\)
\(234\) −10.5813 + 3.43808i −0.691722 + 0.224754i
\(235\) 0 0
\(236\) −2.41878 1.75734i −0.157449 0.114393i
\(237\) 0.0836185 + 0.527947i 0.00543161 + 0.0342938i
\(238\) −0.489753 0.961194i −0.0317460 0.0623050i
\(239\) 1.63214 + 5.02322i 0.105575 + 0.324925i 0.989865 0.142012i \(-0.0453572\pi\)
−0.884290 + 0.466938i \(0.845357\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i −0.853726 0.520722i \(-0.825663\pi\)
0.853726 0.520722i \(-0.174337\pi\)
\(242\) 4.66716 + 16.0561i 0.300016 + 1.03213i
\(243\) 11.1488 + 11.1488i 0.715198 + 0.715198i
\(244\) −1.48076 + 1.07583i −0.0947959 + 0.0688732i
\(245\) 0 0
\(246\) −2.50748 + 7.71724i −0.159871 + 0.492033i
\(247\) −2.27413 + 0.360188i −0.144700 + 0.0229182i
\(248\) −0.890071 + 0.140973i −0.0565196 + 0.00895182i
\(249\) −4.10997 + 12.6492i −0.260458 + 0.801609i
\(250\) 0 0
\(251\) −15.6486 + 11.3694i −0.987729 + 0.717627i −0.959423 0.281972i \(-0.909011\pi\)
−0.0283063 + 0.999599i \(0.509011\pi\)
\(252\) −0.0994268 0.0994268i −0.00626330 0.00626330i
\(253\) 5.25876 1.17586i 0.330615 0.0739254i
\(254\) 22.1431i 1.38938i
\(255\) 0 0
\(256\) 2.25079 + 6.92722i 0.140674 + 0.432951i
\(257\) −2.13653 4.19318i −0.133273 0.261563i 0.814720 0.579855i \(-0.196891\pi\)
−0.947993 + 0.318292i \(0.896891\pi\)
\(258\) −0.999214 6.30879i −0.0622083 0.392768i
\(259\) 0.837308 + 0.608340i 0.0520278 + 0.0378004i
\(260\) 0 0
\(261\) 21.4689 6.97566i 1.32889 0.431783i
\(262\) 2.32303 14.6671i 0.143517 0.906134i
\(263\) 11.2218 11.2218i 0.691964 0.691964i −0.270700 0.962664i \(-0.587255\pi\)
0.962664 + 0.270700i \(0.0872550\pi\)
\(264\) −0.426823 6.77663i −0.0262691 0.417073i
\(265\) 0 0
\(266\) −0.127243 0.175135i −0.00780178 0.0107382i
\(267\) 5.62719 + 2.86720i 0.344378 + 0.175470i
\(268\) −1.61801 + 0.824419i −0.0988359 + 0.0503594i
\(269\) 6.64926 9.15192i 0.405412 0.558002i −0.556680 0.830727i \(-0.687925\pi\)
0.962092 + 0.272725i \(0.0879249\pi\)
\(270\) 0 0
\(271\) 16.9556 + 5.50921i 1.02998 + 0.334661i 0.774782 0.632228i \(-0.217859\pi\)
0.255198 + 0.966889i \(0.417859\pi\)
\(272\) −7.61384 + 14.9430i −0.461657 + 0.906052i
\(273\) 0.466712 + 0.0739200i 0.0282467 + 0.00447384i
\(274\) 6.58205 0.397636
\(275\) 0 0
\(276\) 0.402300 0.0242156
\(277\) 4.62395 + 0.732361i 0.277826 + 0.0440033i 0.293793 0.955869i \(-0.405083\pi\)
−0.0159666 + 0.999873i \(0.505083\pi\)
\(278\) −7.25327 + 14.2353i −0.435022 + 0.853779i
\(279\) −0.789117 0.256400i −0.0472432 0.0153502i
\(280\) 0 0
\(281\) −7.75247 + 10.6704i −0.462474 + 0.636541i −0.975019 0.222119i \(-0.928703\pi\)
0.512546 + 0.858660i \(0.328703\pi\)
\(282\) −13.3501 + 6.80223i −0.794989 + 0.405067i
\(283\) −20.3029 10.3449i −1.20688 0.614938i −0.269421 0.963022i \(-0.586832\pi\)
−0.937463 + 0.348084i \(0.886832\pi\)
\(284\) 2.09246 + 2.88002i 0.124164 + 0.170898i
\(285\) 0 0
\(286\) 9.94874 + 12.0243i 0.588281 + 0.711009i
\(287\) −0.906570 + 0.906570i −0.0535131 + 0.0535131i
\(288\) −0.644267 + 4.06774i −0.0379638 + 0.239694i
\(289\) 3.10211 1.00794i 0.182477 0.0592904i
\(290\) 0 0
\(291\) −0.889404 0.646190i −0.0521378 0.0378803i
\(292\) −0.116700 0.736812i −0.00682933 0.0431187i
\(293\) 3.28132 + 6.43996i 0.191697 + 0.376226i 0.966771 0.255644i \(-0.0822875\pi\)
−0.775074 + 0.631870i \(0.782287\pi\)
\(294\) −2.60761 8.02539i −0.152079 0.468051i
\(295\) 0 0
\(296\) 13.8810i 0.806817i
\(297\) 5.63227 13.0179i 0.326818 0.755375i
\(298\) −6.19371 6.19371i −0.358792 0.358792i
\(299\) 4.06896 2.95628i 0.235314 0.170966i
\(300\) 0 0
\(301\) 0.311867 0.959827i 0.0179757 0.0553235i
\(302\) 22.4665 3.55834i 1.29280 0.204759i
\(303\) −3.79960 + 0.601798i −0.218282 + 0.0345724i
\(304\) −1.03998 + 3.20073i −0.0596469 + 0.183574i
\(305\) 0 0
\(306\) −10.7773 + 7.83020i −0.616100 + 0.447623i
\(307\) 20.1272 + 20.1272i 1.14872 + 1.14872i 0.986804 + 0.161918i \(0.0517681\pi\)
0.161918 + 0.986804i \(0.448232\pi\)
\(308\) −0.0783196 + 0.181020i −0.00446267 + 0.0103146i
\(309\) 2.58088i 0.146821i
\(310\) 0 0
\(311\) −2.32254 7.14803i −0.131699 0.405328i 0.863363 0.504583i \(-0.168354\pi\)
−0.995062 + 0.0992557i \(0.968354\pi\)
\(312\) −2.87720 5.64681i −0.162889 0.319688i
\(313\) 0.210574 + 1.32951i 0.0119023 + 0.0751483i 0.992925 0.118747i \(-0.0378878\pi\)
−0.981022 + 0.193895i \(0.937888\pi\)
\(314\) 6.08499 + 4.42100i 0.343396 + 0.249492i
\(315\) 0 0
\(316\) −0.198054 + 0.0643517i −0.0111414 + 0.00362006i
\(317\) 1.77271 11.1924i 0.0995652 0.628630i −0.886558 0.462617i \(-0.846911\pi\)
0.986124 0.166013i \(-0.0530894\pi\)
\(318\) −7.73803 + 7.73803i −0.433927 + 0.433927i
\(319\) −20.1854 24.3965i −1.13017 1.36594i
\(320\) 0 0
\(321\) −5.18059 7.13047i −0.289152 0.397984i
\(322\) 0.421334 + 0.214680i 0.0234800 + 0.0119637i
\(323\) −2.45639 + 1.25159i −0.136677 + 0.0696406i
\(324\) −0.672523 + 0.925648i −0.0373624 + 0.0514249i
\(325\) 0 0
\(326\) −14.4808 4.70509i −0.802015 0.260591i
\(327\) 3.45360 6.77808i 0.190985 0.374829i
\(328\) 16.9836 + 2.68994i 0.937762 + 0.148527i
\(329\) −2.36737 −0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) −5.11780 0.810579i −0.280876 0.0444863i
\(333\) 5.80227 11.3876i 0.317962 0.624036i
\(334\) 17.4380 + 5.66594i 0.954164 + 0.310027i
\(335\) 0 0
\(336\) 0.405970 0.558770i 0.0221475 0.0304834i
\(337\) −6.78954 + 3.45945i −0.369850 + 0.188448i −0.629030 0.777381i \(-0.716548\pi\)
0.259180 + 0.965829i \(0.416548\pi\)
\(338\) −4.62827 2.35822i −0.251745 0.128270i
\(339\) −1.94359 2.67513i −0.105562 0.145293i
\(340\) 0 0
\(341\) 0.0731608 + 1.16157i 0.00396188 + 0.0629025i
\(342\) −1.89027 + 1.89027i −0.102214 + 0.102214i
\(343\) 0.418239 2.64066i 0.0225828 0.142582i
\(344\) −12.8732 + 4.18275i −0.694076 + 0.225519i
\(345\) 0 0
\(346\) −15.3290 11.1372i −0.824093 0.598739i
\(347\) −1.46011 9.21879i −0.0783830 0.494891i −0.995381 0.0959998i \(-0.969395\pi\)
0.916998 0.398891i \(-0.130605\pi\)
\(348\) −1.07323 2.10633i −0.0575311 0.112911i
\(349\) −0.464073 1.42827i −0.0248413 0.0764536i 0.937867 0.346994i \(-0.112798\pi\)
−0.962709 + 0.270540i \(0.912798\pi\)
\(350\) 0 0
\(351\) 13.2388i 0.706637i
\(352\) 5.63779 1.26061i 0.300495 0.0671906i
\(353\) −4.40229 4.40229i −0.234310 0.234310i 0.580179 0.814489i \(-0.302983\pi\)
−0.814489 + 0.580179i \(0.802983\pi\)
\(354\) 9.43735 6.85664i 0.501589 0.364426i
\(355\) 0 0
\(356\) −0.760327 + 2.34004i −0.0402972 + 0.124022i
\(357\) 0.558817 0.0885080i 0.0295757 0.00468434i
\(358\) 30.2950 4.79826i 1.60114 0.253596i
\(359\) −8.12845 + 25.0168i −0.429003 + 1.32034i 0.470105 + 0.882611i \(0.344216\pi\)
−0.899108 + 0.437726i \(0.855784\pi\)
\(360\) 0 0
\(361\) 14.9238 10.8427i 0.785461 0.570671i
\(362\) 4.95475 + 4.95475i 0.260416 + 0.260416i
\(363\) −8.76519 0.274237i −0.460053 0.0143937i
\(364\) 0.184093i 0.00964908i
\(365\) 0 0
\(366\) −2.20680 6.79184i −0.115351 0.355015i
\(367\) 3.70869 + 7.27872i 0.193592 + 0.379946i 0.967315 0.253579i \(-0.0816076\pi\)
−0.773723 + 0.633524i \(0.781608\pi\)
\(368\) −1.15002 7.26093i −0.0599488 0.378502i
\(369\) 12.8085 + 9.30591i 0.666783 + 0.484446i
\(370\) 0 0
\(371\) −1.64442 + 0.534304i −0.0853740 + 0.0277397i
\(372\) −0.0135928 + 0.0858218i −0.000704756 + 0.00444965i
\(373\) 6.12473 6.12473i 0.317126 0.317126i −0.530536 0.847662i \(-0.678009\pi\)
0.847662 + 0.530536i \(0.178009\pi\)
\(374\) 15.7781 + 10.0115i 0.815864 + 0.517684i
\(375\) 0 0
\(376\) 18.6628 + 25.6872i 0.962461 + 1.32471i
\(377\) −26.3331 13.4174i −1.35622 0.691031i
\(378\) 1.10905 0.565088i 0.0570433 0.0290650i
\(379\) 0.363481 0.500288i 0.0186708 0.0256981i −0.799580 0.600560i \(-0.794944\pi\)
0.818250 + 0.574862i \(0.194944\pi\)
\(380\) 0 0
\(381\) 11.0449 + 3.58872i 0.565849 + 0.183856i
\(382\) −4.36574 + 8.56825i −0.223371 + 0.438390i
\(383\) −10.2511 1.62362i −0.523807 0.0829629i −0.111069 0.993813i \(-0.535428\pi\)
−0.412738 + 0.910850i \(0.635428\pi\)
\(384\) −10.5351 −0.537617
\(385\) 0 0
\(386\) 9.01683 0.458945
\(387\) −12.3092 1.94959i −0.625712 0.0991031i
\(388\) 0.194444 0.381619i 0.00987142 0.0193737i
\(389\) 21.0630 + 6.84378i 1.06794 + 0.346993i 0.789683 0.613515i \(-0.210245\pi\)
0.278252 + 0.960508i \(0.410245\pi\)
\(390\) 0 0
\(391\) 3.53969 4.87197i 0.179010 0.246386i
\(392\) −15.9329 + 8.11822i −0.804733 + 0.410032i
\(393\) 6.93942 + 3.53581i 0.350048 + 0.178358i
\(394\) −12.5157 17.2264i −0.630534 0.867855i
\(395\) 0 0
\(396\) 2.35915 + 0.605553i 0.118552 + 0.0304302i
\(397\) −10.7769 + 10.7769i −0.540876 + 0.540876i −0.923786 0.382910i \(-0.874922\pi\)
0.382910 + 0.923786i \(0.374922\pi\)
\(398\) 3.18229 20.0922i 0.159514 1.00713i
\(399\) 0.107980 0.0350847i 0.00540574 0.00175643i
\(400\) 0 0
\(401\) 3.46399 + 2.51673i 0.172983 + 0.125680i 0.670908 0.741540i \(-0.265904\pi\)
−0.497925 + 0.867220i \(0.665904\pi\)
\(402\) −1.10838 6.99803i −0.0552809 0.349030i
\(403\) 0.493174 + 0.967909i 0.0245668 + 0.0482150i
\(404\) −0.463135 1.42538i −0.0230418 0.0709155i
\(405\) 0 0
\(406\) 2.77869i 0.137904i
\(407\) −17.8481 1.68589i −0.884697 0.0835664i
\(408\) −5.36572 5.36572i −0.265643 0.265643i
\(409\) −3.47523 + 2.52490i −0.171839 + 0.124848i −0.670381 0.742017i \(-0.733869\pi\)
0.498541 + 0.866866i \(0.333869\pi\)
\(410\) 0 0
\(411\) −1.06675 + 3.28312i −0.0526190 + 0.161945i
\(412\) −0.993106 + 0.157293i −0.0489268 + 0.00774925i
\(413\) 1.82043 0.288327i 0.0895773 0.0141877i
\(414\) 1.80448 5.55361i 0.0886853 0.272945i
\(415\) 0 0
\(416\) 4.36224 3.16935i 0.213876 0.155390i
\(417\) −5.92504 5.92504i −0.290151 0.290151i
\(418\) 3.44151 + 1.48899i 0.168330 + 0.0728288i
\(419\) 1.20241i 0.0587414i −0.999569 0.0293707i \(-0.990650\pi\)
0.999569 0.0293707i \(-0.00935032\pi\)
\(420\) 0 0
\(421\) 9.67493 + 29.7764i 0.471527 + 1.45121i 0.850584 + 0.525839i \(0.176248\pi\)
−0.379057 + 0.925373i \(0.623752\pi\)
\(422\) −4.09390 8.03473i −0.199288 0.391124i
\(423\) 4.57321 + 28.8741i 0.222357 + 1.40391i
\(424\) 18.7610 + 13.6307i 0.911117 + 0.661965i
\(425\) 0 0
\(426\) −13.2099 + 4.29214i −0.640020 + 0.207955i
\(427\) 0.176512 1.11445i 0.00854201 0.0539321i
\(428\) 2.42802 2.42802i 0.117363 0.117363i
\(429\) −7.61008 + 3.01366i −0.367418 + 0.145501i
\(430\) 0 0
\(431\) −5.81395 8.00222i −0.280048 0.385453i 0.645702 0.763590i \(-0.276565\pi\)
−0.925750 + 0.378137i \(0.876565\pi\)
\(432\) −17.2416 8.78502i −0.829536 0.422669i
\(433\) 24.0414 12.2497i 1.15536 0.588683i 0.232033 0.972708i \(-0.425462\pi\)
0.923323 + 0.384025i \(0.125462\pi\)
\(434\) −0.0600332 + 0.0826286i −0.00288169 + 0.00396630i
\(435\) 0 0
\(436\) 2.81864 + 0.915831i 0.134988 + 0.0438604i
\(437\) 0.548629 1.07675i 0.0262445 0.0515077i
\(438\) 2.87482 + 0.455327i 0.137364 + 0.0217564i
\(439\) 24.5862 1.17344 0.586718 0.809791i \(-0.300420\pi\)
0.586718 + 0.809791i \(0.300420\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) 17.2263 + 2.72838i 0.819372 + 0.129776i
\(443\) 13.9816 27.4404i 0.664286 1.30373i −0.275279 0.961364i \(-0.588770\pi\)
0.939565 0.342370i \(-0.111230\pi\)
\(444\) −1.27292 0.413596i −0.0604099 0.0196284i
\(445\) 0 0
\(446\) 18.9912 26.1392i 0.899262 1.23773i
\(447\) 4.09323 2.08561i 0.193603 0.0986458i
\(448\) −1.09215 0.556477i −0.0515992 0.0262911i
\(449\) 4.30536 + 5.92582i 0.203182 + 0.279657i 0.898433 0.439111i \(-0.144707\pi\)
−0.695250 + 0.718768i \(0.744707\pi\)
\(450\) 0 0
\(451\) 5.52141 21.5107i 0.259993 1.01290i
\(452\) 0.910918 0.910918i 0.0428460 0.0428460i
\(453\) −1.86624 + 11.7830i −0.0876835 + 0.553612i
\(454\) 18.8951 6.13938i 0.886789 0.288135i
\(455\) 0 0
\(456\) −1.23193 0.895050i −0.0576904 0.0419146i
\(457\) −1.05368 6.65265i −0.0492889 0.311198i −0.999999 0.00111791i \(-0.999644\pi\)
0.950710 0.310080i \(-0.100356\pi\)
\(458\) 11.3390 + 22.2540i 0.529837 + 1.03986i
\(459\) −4.89838 15.0757i −0.228637 0.703672i
\(460\) 0 0
\(461\) 29.0801i 1.35440i 0.735801 + 0.677198i \(0.236806\pi\)
−0.735801 + 0.677198i \(0.763194\pi\)
\(462\) −0.577290 0.508879i −0.0268580 0.0236752i
\(463\) −17.5146 17.5146i −0.813970 0.813970i 0.171256 0.985227i \(-0.445217\pi\)
−0.985227 + 0.171256i \(0.945217\pi\)
\(464\) −34.9482 + 25.3914i −1.62243 + 1.17876i
\(465\) 0 0
\(466\) 7.34819 22.6154i 0.340398 1.04764i
\(467\) 26.1320 4.13890i 1.20924 0.191525i 0.480923 0.876763i \(-0.340302\pi\)
0.728320 + 0.685237i \(0.240302\pi\)
\(468\) 2.24533 0.355625i 0.103790 0.0164388i
\(469\) 0.345938 1.06469i 0.0159739 0.0491627i
\(470\) 0 0
\(471\) −3.19138 + 2.31868i −0.147051 + 0.106839i
\(472\) −17.4796 17.4796i −0.804563 0.804563i
\(473\) 3.81467 + 17.0603i 0.175399 + 0.784432i
\(474\) 0.812515i 0.0373201i
\(475\) 0 0
\(476\) 0.0681145 + 0.209635i 0.00312202 + 0.00960860i
\(477\) 9.69341 + 19.0244i 0.443831 + 0.871067i
\(478\) −1.25594 7.92972i −0.0574455 0.362697i
\(479\) −21.2408 15.4324i −0.970519 0.705123i −0.0149492 0.999888i \(-0.504759\pi\)
−0.955570 + 0.294765i \(0.904759\pi\)
\(480\) 0 0
\(481\) −15.9139 + 5.17073i −0.725610 + 0.235765i
\(482\) −3.84449 + 24.2731i −0.175112 + 1.10561i
\(483\) −0.175368 + 0.175368i −0.00797952 + 0.00797952i
\(484\) −0.428672 3.38950i −0.0194851 0.154068i
\(485\) 0 0
\(486\) −14.0872 19.3894i −0.639008 0.879519i
\(487\) 20.7917 + 10.5939i 0.942163 + 0.480056i 0.856431 0.516262i \(-0.172677\pi\)
0.0857326 + 0.996318i \(0.472677\pi\)
\(488\) −13.4839 + 6.87039i −0.610388 + 0.311008i
\(489\) 4.69379 6.46044i 0.212260 0.292151i
\(490\) 0 0
\(491\) 17.4497 + 5.66974i 0.787493 + 0.255872i 0.675036 0.737785i \(-0.264128\pi\)
0.112457 + 0.993657i \(0.464128\pi\)
\(492\) 0.752713 1.47728i 0.0339349 0.0666010i
\(493\) −34.9512 5.53572i −1.57412 0.249316i
\(494\) 3.49992 0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) −2.16757 0.343309i −0.0972286 0.0153995i
\(498\) 9.17834 18.0135i 0.411291 0.807204i
\(499\) −11.1824 3.63339i −0.500595 0.162653i 0.0478260 0.998856i \(-0.484771\pi\)
−0.548421 + 0.836203i \(0.684771\pi\)
\(500\) 0 0
\(501\) −5.65234 + 7.77978i −0.252528 + 0.347575i
\(502\) 26.1975 13.3483i 1.16925 0.595763i
\(503\) 4.75855 + 2.42460i 0.212173 + 0.108108i 0.556848 0.830615i \(-0.312011\pi\)
−0.344674 + 0.938722i \(0.612011\pi\)
\(504\) −0.683353 0.940555i −0.0304390 0.0418956i
\(505\) 0 0
\(506\) −8.17484 + 0.514888i −0.363416 + 0.0228896i
\(507\) 1.92638 1.92638i 0.0855536 0.0855536i
\(508\) −0.707777 + 4.46873i −0.0314025 + 0.198268i
\(509\) 18.6283 6.05272i 0.825687 0.268282i 0.134459 0.990919i \(-0.457070\pi\)
0.691228 + 0.722637i \(0.257070\pi\)
\(510\) 0 0
\(511\) 0.372057 + 0.270315i 0.0164588 + 0.0119580i
\(512\) 2.40248 + 15.1686i 0.106175 + 0.670365i
\(513\) −1.44412 2.83424i −0.0637594 0.125135i
\(514\) 2.21058 + 6.80347i 0.0975046 + 0.300088i
\(515\) 0 0
\(516\) 1.30513i 0.0574550i
\(517\) 35.2950 20.8767i 1.55227 0.918158i
\(518\) −1.11243 1.11243i −0.0488775 0.0488775i
\(519\) 8.03959 5.84110i 0.352899 0.256396i
\(520\) 0 0
\(521\) 5.78913 17.8171i 0.253626 0.780582i −0.740471 0.672089i \(-0.765397\pi\)
0.994097 0.108493i \(-0.0346026\pi\)
\(522\) −33.8910 + 5.36781i −1.48337 + 0.234943i
\(523\) 2.55051 0.403961i 0.111526 0.0176640i −0.100422 0.994945i \(-0.532019\pi\)
0.211948 + 0.977281i \(0.432019\pi\)
\(524\) −0.937631 + 2.88573i −0.0409606 + 0.126064i
\(525\) 0 0
\(526\) −19.5162 + 14.1794i −0.850948 + 0.618250i
\(527\) 0.919727 + 0.919727i 0.0400639 + 0.0400639i
\(528\) −1.12506 + 11.9108i −0.0489621 + 0.518350i
\(529\) 20.3603i 0.885228i
\(530\) 0 0
\(531\) −7.03330 21.6463i −0.305219 0.939368i
\(532\) 0.0200812 + 0.0394115i 0.000870630 + 0.00170871i
\(533\) −3.24258 20.4729i −0.140452 0.886778i
\(534\) −7.76658 5.64275i −0.336093 0.244186i
\(535\) 0 0
\(536\) −14.2796 + 4.63972i −0.616784 + 0.200405i
\(537\) −2.51654 + 15.8888i −0.108597 + 0.685652i
\(538\) −12.1591 + 12.1591i −0.524216 + 0.524216i
\(539\) 8.50325 + 21.4724i 0.366261 + 0.924881i
\(540\) 0 0
\(541\) 5.42829 + 7.47139i 0.233380 + 0.321220i 0.909604 0.415476i \(-0.136385\pi\)
−0.676224 + 0.736696i \(0.736385\pi\)
\(542\) −24.1462 12.3031i −1.03717 0.528464i
\(543\) −3.27444 + 1.66841i −0.140520 + 0.0715983i
\(544\) 3.79482 5.22312i 0.162701 0.223939i
\(545\) 0 0
\(546\) −0.683120 0.221959i −0.0292348 0.00949898i
\(547\) −0.486237 + 0.954295i −0.0207900 + 0.0408027i −0.901168 0.433470i \(-0.857289\pi\)
0.880378 + 0.474273i \(0.157289\pi\)
\(548\) −1.32834 0.210388i −0.0567437 0.00898732i
\(549\) −13.9337 −0.594674
\(550\) 0 0
\(551\) −7.10113 −0.302518
\(552\) 3.28533 + 0.520344i 0.139833 + 0.0221473i
\(553\) 0.0582826 0.114386i 0.00247843 0.00486419i
\(554\) −6.76800 2.19906i −0.287545 0.0934290i
\(555\) 0 0
\(556\) 1.91881 2.64102i 0.0813758 0.112004i
\(557\) 38.3462 19.5384i 1.62478 0.827868i 0.625934 0.779876i \(-0.284718\pi\)
0.998848 0.0479915i \(-0.0152820\pi\)
\(558\) 1.12377 + 0.572590i 0.0475730 + 0.0242396i
\(559\) 9.59064 + 13.2004i 0.405641 + 0.558316i
\(560\) 0 0
\(561\) −7.55089 + 6.24752i −0.318799 + 0.263771i
\(562\) 14.1765 14.1765i 0.597998 0.597998i
\(563\) −4.04575 + 25.5439i −0.170508 + 1.07655i 0.742871 + 0.669435i \(0.233464\pi\)
−0.913379 + 0.407111i \(0.866536\pi\)
\(564\) 2.91164 0.946049i 0.122602 0.0398359i
\(565\) 0 0
\(566\) 28.0219 + 20.3591i 1.17785 + 0.855756i
\(567\) −0.110341 0.696664i −0.00463387 0.0292571i
\(568\) 13.3626 + 26.2257i 0.560684 + 1.10040i
\(569\) −8.39651 25.8418i −0.352000 1.08334i −0.957729 0.287673i \(-0.907118\pi\)
0.605729 0.795671i \(-0.292882\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i 0.529308 + 0.848430i \(0.322451\pi\)
−0.529308 + 0.848430i \(0.677549\pi\)
\(572\) −1.62343 2.74464i −0.0678791 0.114759i
\(573\) −3.56628 3.56628i −0.148984 0.148984i
\(574\) 1.57665 1.14550i 0.0658081 0.0478124i
\(575\) 0 0
\(576\) −4.67742 + 14.3956i −0.194893 + 0.599818i
\(577\) −33.3917 + 5.28872i −1.39011 + 0.220172i −0.806200 0.591643i \(-0.798479\pi\)
−0.583914 + 0.811815i \(0.698479\pi\)
\(578\) −4.89703 + 0.775613i −0.203689 + 0.0322612i
\(579\) −1.46136 + 4.49759i −0.0607319 + 0.186913i
\(580\) 0 0
\(581\) 2.58426 1.87757i 0.107213 0.0778948i
\(582\) 1.18165 + 1.18165i 0.0489808 + 0.0489808i
\(583\) 19.8048 22.4673i 0.820233 0.930502i
\(584\) 6.16801i 0.255234i
\(585\) 0 0
\(586\) −3.39505 10.4489i −0.140248 0.431640i
\(587\) 4.39649 + 8.62859i 0.181462 + 0.356140i 0.963763 0.266762i \(-0.0859536\pi\)
−0.782300 + 0.622902i \(0.785954\pi\)
\(588\) 0.269724 + 1.70297i 0.0111232 + 0.0702293i
\(589\) 0.211163 + 0.153419i 0.00870081 + 0.00632151i
\(590\) 0 0
\(591\) 10.6210 3.45096i 0.436888 0.141953i
\(592\) −3.82603 + 24.1566i −0.157249 + 0.992829i
\(593\) −14.0452 + 14.0452i −0.576769 + 0.576769i −0.934012 0.357243i \(-0.883717\pi\)
0.357243 + 0.934012i \(0.383717\pi\)
\(594\) −11.5515 + 18.2051i −0.473965 + 0.746964i
\(595\) 0 0
\(596\) 1.05199 + 1.44794i 0.0430912 + 0.0593099i
\(597\) 9.50623 + 4.84367i 0.389064 + 0.198238i
\(598\) −6.81191 + 3.47084i −0.278560 + 0.141933i
\(599\) −2.65433 + 3.65338i −0.108453 + 0.149273i −0.859793 0.510642i \(-0.829408\pi\)
0.751340 + 0.659915i \(0.229408\pi\)
\(600\) 0 0
\(601\) −7.96746 2.58878i −0.324999 0.105599i 0.141973 0.989871i \(-0.454655\pi\)
−0.466973 + 0.884272i \(0.654655\pi\)
\(602\) −0.696458 + 1.36688i −0.0283855 + 0.0557097i
\(603\) −13.6540 2.16258i −0.556034 0.0880671i
\(604\) −4.64774 −0.189114
\(605\) 0 0
\(606\) 5.84763 0.237544
\(607\) 7.58425 + 1.20123i 0.307835 + 0.0487563i 0.308441 0.951244i \(-0.400193\pi\)
−0.000605683 1.00000i \(0.500193\pi\)
\(608\) 0.588172 1.15435i 0.0238535 0.0468152i
\(609\) 1.38601 + 0.450342i 0.0561640 + 0.0182488i
\(610\) 0 0
\(611\) 22.4971 30.9646i 0.910134 1.25269i
\(612\) 2.42528 1.23574i 0.0980361 0.0499519i
\(613\) −38.2477 19.4882i −1.54481 0.787120i −0.546091 0.837726i \(-0.683885\pi\)
−0.998719 + 0.0506058i \(0.983885\pi\)
\(614\) −25.4319 35.0041i −1.02635 1.41265i
\(615\) 0 0
\(616\) −0.873721 + 1.37698i −0.0352032 + 0.0554799i
\(617\) −33.4407 + 33.4407i −1.34627 + 1.34627i −0.456601 + 0.889671i \(0.650933\pi\)
−0.889671 + 0.456601i \(0.849067\pi\)
\(618\) 0.613709 3.87481i 0.0246870 0.155868i
\(619\) 20.0674 6.52029i 0.806576 0.262073i 0.123429 0.992353i \(-0.460611\pi\)
0.683147 + 0.730281i \(0.260611\pi\)
\(620\) 0 0
\(621\) 5.62139 + 4.08418i 0.225578 + 0.163892i
\(622\) 1.78720 + 11.2840i 0.0716603 + 0.452445i
\(623\) −0.688620 1.35149i −0.0275890 0.0541464i
\(624\) 3.45064 + 10.6200i 0.138136 + 0.425139i
\(625\) 0 0
\(626\) 2.04613i 0.0817798i
\(627\) −1.30047 + 1.47530i −0.0519358 + 0.0589179i
\(628\) −1.08671 1.08671i −0.0433645 0.0433645i
\(629\) −16.2087 + 11.7763i −0.646282 + 0.469552i
\(630\) 0 0
\(631\) −8.72043 + 26.8387i −0.347155 + 1.06843i 0.613265 + 0.789877i \(0.289856\pi\)
−0.960420 + 0.278555i \(0.910144\pi\)
\(632\) −1.70061 + 0.269351i −0.0676467 + 0.0107142i
\(633\) 4.67121 0.739847i 0.185664 0.0294063i
\(634\) −5.32290 + 16.3822i −0.211399 + 0.650621i
\(635\) 0 0
\(636\) 1.80896 1.31429i 0.0717301 0.0521150i
\(637\) 15.2422 + 15.2422i 0.603918 + 0.603918i
\(638\) 24.5041 + 41.4275i 0.970125 + 1.64013i
\(639\) 27.1004i 1.07208i
\(640\) 0 0
\(641\) −5.23436 16.1097i −0.206745 0.636295i −0.999637 0.0269333i \(-0.991426\pi\)
0.792893 0.609362i \(-0.208574\pi\)
\(642\) 6.08232 + 11.9372i 0.240050 + 0.471124i
\(643\) −0.981726 6.19838i −0.0387155 0.244440i 0.960739 0.277452i \(-0.0894900\pi\)
−0.999455 + 0.0330121i \(0.989490\pi\)
\(644\) −0.0781682 0.0567925i −0.00308026 0.00223794i
\(645\) 0 0
\(646\) 3.98552 1.29497i 0.156808 0.0509500i
\(647\) 6.80289 42.9518i 0.267449 1.68861i −0.378798 0.925479i \(-0.623662\pi\)
0.646247 0.763128i \(-0.276338\pi\)
\(648\) −6.68931 + 6.68931i −0.262781 + 0.262781i
\(649\) −24.5981 + 20.3522i −0.965559 + 0.798893i
\(650\) 0 0
\(651\) −0.0314855 0.0433361i −0.00123402 0.00169848i
\(652\) 2.77200 + 1.41240i 0.108560 + 0.0553140i
\(653\) −8.67042 + 4.41780i −0.339300 + 0.172882i −0.615335 0.788266i \(-0.710979\pi\)
0.276035 + 0.961147i \(0.410979\pi\)
\(654\) −6.79682 + 9.35503i −0.265777 + 0.365810i
\(655\) 0 0
\(656\) −28.8145 9.36239i −1.12502 0.365540i
\(657\) 2.57823 5.06007i 0.100586 0.197412i
\(658\) 3.55424 + 0.562936i 0.138559 + 0.0219455i
\(659\) 3.37375 0.131423 0.0657113 0.997839i \(-0.479068\pi\)
0.0657113 + 0.997839i \(0.479068\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) 26.5811 + 4.21003i 1.03310 + 0.163628i
\(663\) −4.15278 + 8.15028i −0.161280 + 0.316531i
\(664\) −40.7453 13.2389i −1.58122 0.513771i
\(665\) 0 0
\(666\) −11.4191 + 15.7170i −0.442481 + 0.609022i
\(667\) 13.8210 7.04213i 0.535150 0.272672i
\(668\) −3.33809 1.70084i −0.129154 0.0658075i
\(669\) 9.96031 + 13.7092i 0.385088 + 0.530028i
\(670\) 0 0
\(671\) 7.19624 + 18.1719i 0.277808 + 0.701520i
\(672\) −0.188008 + 0.188008i −0.00725256 + 0.00725256i
\(673\) −5.98412 + 37.7823i −0.230671 + 1.45640i 0.551938 + 0.833885i \(0.313889\pi\)
−0.782609 + 0.622514i \(0.786111\pi\)
\(674\) 11.0161 3.57935i 0.424324 0.137871i
\(675\) 0 0
\(676\) 0.858662 + 0.623855i 0.0330255 + 0.0239944i
\(677\) −5.03592 31.7956i −0.193546 1.22200i −0.872792 0.488092i \(-0.837693\pi\)
0.679246 0.733911i \(-0.262307\pi\)
\(678\) 2.28189 + 4.47847i 0.0876356 + 0.171994i
\(679\) 0.0815917 + 0.251113i 0.00313120 + 0.00963684i
\(680\) 0 0
\(681\) 10.4198i 0.399289i
\(682\) 0.166370 1.76132i 0.00637063 0.0674443i
\(683\) 28.7223 + 28.7223i 1.09903 + 1.09903i 0.994524 + 0.104505i \(0.0333260\pi\)
0.104505 + 0.994524i \(0.466674\pi\)
\(684\) 0.441900 0.321059i 0.0168965 0.0122760i
\(685\) 0 0
\(686\) −1.25585 + 3.86510i −0.0479484 + 0.147570i
\(687\) −12.9380 + 2.04918i −0.493616 + 0.0781811i
\(688\) 23.5556 3.73084i 0.898050 0.142237i
\(689\) 8.63834 26.5861i 0.329095 1.01285i
\(690\) 0 0
\(691\) 20.4397 14.8503i 0.777564 0.564933i −0.126683 0.991943i \(-0.540433\pi\)
0.904247 + 0.427010i \(0.140433\pi\)
\(692\) 2.73759 + 2.73759i 0.104068 + 0.104068i
\(693\) −1.29235 + 0.764417i −0.0490925 + 0.0290378i
\(694\) 14.1878i 0.538562i
\(695\) 0 0
\(696\) −6.03999 18.5892i −0.228945 0.704621i
\(697\) −11.2675 22.1136i −0.426785 0.837613i
\(698\) 0.357107 + 2.25468i 0.0135167 + 0.0853410i
\(699\) 10.0896 + 7.33055i 0.381625 + 0.277267i
\(700\) 0 0
\(701\) 26.8458 8.72273i 1.01395 0.329453i 0.245525 0.969390i \(-0.421040\pi\)
0.768427 + 0.639937i \(0.221040\pi\)
\(702\) −3.14807 + 19.8761i −0.118816 + 0.750175i
\(703\) −2.84289 + 2.84289i −0.107222 + 0.107222i
\(704\) 21.1902 1.33465i 0.798634 0.0503015i
\(705\) 0 0
\(706\) 5.56255 + 7.65620i 0.209349 + 0.288145i
\(707\) 0.823230 + 0.419457i 0.0309608 + 0.0157753i
\(708\) −2.12373 + 1.08210i −0.0798148 + 0.0406677i
\(709\) −4.79615 + 6.60134i −0.180123 + 0.247918i −0.889526 0.456885i \(-0.848965\pi\)
0.709402 + 0.704804i \(0.248965\pi\)
\(710\) 0 0
\(711\) −1.50773 0.489890i −0.0565441 0.0183723i
\(712\) −9.23576 + 18.1262i −0.346125 + 0.679308i
\(713\) −0.563131 0.0891912i −0.0210894 0.00334024i
\(714\) −0.860026 −0.0321856
\(715\) 0 0
\(716\) −6.26727 −0.234219
\(717\) 4.15889 + 0.658703i 0.155317 + 0.0245997i
\(718\) 18.1524 35.6261i 0.677441 1.32955i
\(719\) −0.986856 0.320649i −0.0368035 0.0119582i 0.290557 0.956858i \(-0.406159\pi\)
−0.327361 + 0.944899i \(0.606159\pi\)
\(720\) 0 0
\(721\) 0.364342 0.501474i 0.0135688 0.0186759i
\(722\) −24.9840 + 12.7300i −0.929810 + 0.473762i
\(723\) −11.4843 5.85157i −0.427107 0.217622i
\(724\) −0.841554 1.15830i −0.0312761 0.0430479i
\(725\) 0 0
\(726\) 13.0944 + 2.49600i 0.485978 + 0.0926353i
\(727\) 3.27903 3.27903i 0.121612 0.121612i −0.643681 0.765294i \(-0.722594\pi\)
0.765294 + 0.643681i \(0.222594\pi\)
\(728\) −0.238110 + 1.50337i −0.00882493 + 0.0557184i
\(729\) 1.44390 0.469153i 0.0534779 0.0173760i
\(730\) 0 0
\(731\) 15.8055 + 11.4833i 0.584586 + 0.424726i
\(732\) 0.228265 + 1.44121i 0.00843693 + 0.0532687i
\(733\) −20.7361 40.6968i −0.765904 1.50317i −0.861504 0.507751i \(-0.830477\pi\)
0.0956003 0.995420i \(-0.469523\pi\)
\(734\) −3.83723 11.8098i −0.141635 0.435907i
\(735\) 0 0
\(736\) 2.83001i 0.104315i
\(737\) 4.23142 + 18.9241i 0.155866 + 0.697079i
\(738\) −17.0171 17.0171i −0.626410 0.626410i
\(739\) 3.07164 2.23167i 0.112992 0.0820934i −0.529854 0.848089i \(-0.677753\pi\)
0.642846 + 0.765995i \(0.277753\pi\)
\(740\) 0 0
\(741\) −0.567231 + 1.74576i −0.0208377 + 0.0641320i
\(742\) 2.59590 0.411150i 0.0952984 0.0150938i
\(743\) 41.9067 6.63736i 1.53741 0.243501i 0.670476 0.741931i \(-0.266090\pi\)
0.866930 + 0.498430i \(0.166090\pi\)
\(744\) −0.222008 + 0.683270i −0.00813920 + 0.0250499i
\(745\) 0 0
\(746\) −10.6517 + 7.73895i −0.389988 + 0.283343i
\(747\) −27.8924 27.8924i −1.02053 1.02053i
\(748\) −2.86419 2.52477i −0.104725 0.0923149i
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) −3.08775 9.50312i −0.112674 0.346774i 0.878781 0.477225i \(-0.158357\pi\)
−0.991455 + 0.130451i \(0.958357\pi\)
\(752\) −25.3980 49.8464i −0.926171 1.81771i
\(753\) 2.41230 + 15.2306i 0.0879089 + 0.555035i
\(754\) 36.3446 + 26.4059i 1.32359 + 0.961647i
\(755\) 0 0
\(756\) −0.241881 + 0.0785920i −0.00879714 + 0.00285837i
\(757\) −4.59658 + 29.0217i −0.167065 + 1.05481i 0.751555 + 0.659670i \(0.229304\pi\)
−0.918621 + 0.395140i \(0.870696\pi\)
\(758\) −0.664675 + 0.664675i −0.0241421 + 0.0241421i
\(759\) 1.06807 4.16105i 0.0387684 0.151037i
\(760\) 0 0
\(761\) −17.8404 24.5552i −0.646713 0.890124i 0.352238 0.935910i \(-0.385421\pi\)
−0.998951 + 0.0457864i \(0.985421\pi\)
\(762\) −15.7289 8.01429i −0.569799 0.290327i
\(763\) −1.62790 + 0.829459i −0.0589341 + 0.0300284i
\(764\) 1.15493 1.58963i 0.0417840 0.0575107i
\(765\) 0 0
\(766\) 15.0044 + 4.87523i 0.542131 + 0.176149i
\(767\) −13.5283 + 26.5507i −0.488477 + 0.958690i
\(768\) 5.73527 + 0.908377i 0.206954 + 0.0327782i
\(769\) −37.6421 −1.35741 −0.678705 0.734411i \(-0.737458\pi\)
−0.678705 + 0.734411i \(0.737458\pi\)
\(770\) 0 0
\(771\) −3.75184 −0.135119
\(772\) −1.81970 0.288213i −0.0654926 0.0103730i
\(773\) 11.7188 22.9995i 0.421497 0.827234i −0.578437 0.815727i \(-0.696337\pi\)
0.999934 0.0115072i \(-0.00366294\pi\)
\(774\) 18.0168 + 5.85402i 0.647601 + 0.210418i
\(775\) 0 0
\(776\) 2.08149 2.86493i 0.0747213 0.102845i
\(777\) 0.735173 0.374589i 0.0263742 0.0134383i
\(778\) −29.9955 15.2835i −1.07539 0.547939i
\(779\) −2.92741 4.02923i −0.104885 0.144362i
\(780\) 0 0
\(781\) 35.3437 13.9964i 1.26470 0.500831i
\(782\) −6.47282 + 6.47282i −0.231467 + 0.231467i
\(783\) 6.38724 40.3275i 0.228261 1.44119i
\(784\) 29.9651 9.73624i 1.07018 0.347723i
\(785\) 0 0
\(786\) −9.57771 6.95861i −0.341626 0.248206i
\(787\) −2.70244 17.0625i −0.0963315 0.608213i −0.987872 0.155272i \(-0.950375\pi\)
0.891540 0.452942i \(-0.149625\pi\)
\(788\) 1.97520 + 3.87655i 0.0703636 + 0.138096i
\(789\) −3.90967 12.0327i −0.139188 0.428376i
\(790\) 0 0
\(791\) 0.794162i 0.0282372i
\(792\) 18.4824 + 7.99654i 0.656745 + 0.284145i
\(793\) 12.8994 + 12.8994i 0.458070 + 0.458070i
\(794\) 18.7425 13.6172i 0.665145 0.483256i
\(795\) 0 0
\(796\) −1.28445 + 3.95313i −0.0455261 + 0.140115i
\(797\) 44.0203 6.97213i 1.55928 0.246965i 0.683599 0.729858i \(-0.260414\pi\)
0.875680 + 0.482892i \(0.160414\pi\)
\(798\) −0.170458 + 0.0269979i −0.00603414 + 0.000955714i
\(799\) 14.1615 43.5847i 0.500999 1.54192i
\(800\) 0 0
\(801\) −15.1535 + 11.0097i −0.535424 + 0.389008i
\(802\) −4.60219 4.60219i −0.162509 0.162509i
\(803\) −7.93078 0.749124i −0.279871 0.0264360i
\(804\) 1.44771i 0.0510569i
\(805\) 0 0
\(806\) −0.510267 1.57044i −0.0179734 0.0553164i
\(807\) −4.09432 8.03556i −0.144127 0.282865i
\(808\) −1.93850 12.2392i −0.0681962 0.430574i
\(809\) −12.3255 8.95497i −0.433340 0.314840i 0.349643 0.936883i \(-0.386303\pi\)
−0.782983 + 0.622043i \(0.786303\pi\)
\(810\) 0 0
\(811\) −43.3276 + 14.0780i −1.52144 + 0.494345i −0.946183 0.323631i \(-0.895096\pi\)
−0.575253 + 0.817976i \(0.695096\pi\)
\(812\) −0.0888178 + 0.560774i −0.00311689 + 0.0196793i
\(813\) 10.0502 10.0502i 0.352475 0.352475i
\(814\) 26.3953 + 6.77521i 0.925155 + 0.237471i
\(815\) 0 0
\(816\) 7.85881 + 10.8167i 0.275113 + 0.378661i
\(817\) 3.49314 + 1.77984i 0.122209 + 0.0622688i
\(818\) 5.81793 2.96438i 0.203419 0.103647i
\(819\) −0.823747 + 1.13379i −0.0287840 + 0.0396178i
\(820\) 0 0
\(821\) −27.3071 8.87260i −0.953023 0.309656i −0.209079 0.977899i \(-0.567047\pi\)
−0.743943 + 0.668243i \(0.767047\pi\)
\(822\) 2.38226 4.67545i 0.0830909 0.163075i
\(823\) 26.6252 + 4.21701i 0.928095 + 0.146996i 0.602141 0.798390i \(-0.294314\pi\)
0.325954 + 0.945386i \(0.394314\pi\)
\(824\) −8.31350 −0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) −39.1944 6.20779i −1.36292 0.215866i −0.568227 0.822872i \(-0.692370\pi\)
−0.794697 + 0.607006i \(0.792370\pi\)
\(828\) −0.541680 + 1.06311i −0.0188247 + 0.0369455i
\(829\) −10.3353 3.35814i −0.358959 0.116633i 0.123985 0.992284i \(-0.460433\pi\)
−0.482944 + 0.875651i \(0.660433\pi\)
\(830\) 0 0
\(831\) 2.19378 3.01948i 0.0761013 0.104744i
\(832\) 17.6573 8.99683i 0.612156 0.311909i
\(833\) 22.9966 + 11.7174i 0.796786 + 0.405983i
\(834\) 7.48663 + 10.3045i 0.259241 + 0.356815i
\(835\) 0 0
\(836\) −0.646943 0.410500i −0.0223750 0.0141974i
\(837\) −1.06120 + 1.06120i −0.0366805 + 0.0366805i
\(838\) −0.285920 + 1.80523i −0.00987695 + 0.0623606i
\(839\) 38.3426 12.4583i 1.32373 0.430107i 0.439958 0.898019i \(-0.354993\pi\)
0.883775 + 0.467912i \(0.154993\pi\)
\(840\) 0 0
\(841\) −50.2797 36.5303i −1.73378 1.25967i
\(842\) −7.44491 47.0053i −0.256569 1.61991i
\(843\) 4.77364 + 9.36879i 0.164413 + 0.322678i
\(844\) 0.569376 + 1.75236i 0.0195987 + 0.0603187i
\(845\) 0 0
\(846\) 44.4376i 1.52780i
\(847\) 1.66439 + 1.29066i 0.0571891 + 0.0443477i
\(848\) −28.8921 28.8921i −0.992159 0.992159i
\(849\) −14.6966 + 10.6777i −0.504386 + 0.366458i
\(850\) 0 0
\(851\) 2.71386 8.35241i 0.0930300 0.286317i
\(852\) 2.80310 0.443967i 0.0960326 0.0152101i
\(853\) −13.7845 + 2.18326i −0.471974 + 0.0747533i −0.387890 0.921705i \(-0.626796\pi\)
−0.0840831 + 0.996459i \(0.526796\pi\)
\(854\) −0.530012 + 1.63121i −0.0181366 + 0.0558188i
\(855\) 0 0
\(856\) 22.9686 16.6876i 0.785049 0.570372i
\(857\) 26.9229 + 26.9229i 0.919668 + 0.919668i 0.997005 0.0773373i \(-0.0246418\pi\)
−0.0773373 + 0.997005i \(0.524642\pi\)
\(858\) 12.1420 2.71494i 0.414521 0.0926867i
\(859\) 18.3200i 0.625071i −0.949906 0.312535i \(-0.898822\pi\)
0.949906 0.312535i \(-0.101178\pi\)
\(860\) 0 0
\(861\) 0.315849 + 0.972084i 0.0107641 + 0.0331285i
\(862\) 6.82592 + 13.3966i 0.232492 + 0.456291i
\(863\) 1.90114 + 12.0033i 0.0647154 + 0.408597i 0.998686 + 0.0512472i \(0.0163196\pi\)
−0.933971 + 0.357350i \(0.883680\pi\)
\(864\) 6.02655 + 4.37855i 0.205028 + 0.148961i
\(865\) 0 0
\(866\) −39.0074 + 12.6743i −1.32552 + 0.430689i
\(867\) 0.406785 2.56834i 0.0138151 0.0872253i
\(868\) 0.0147565 0.0147565i 0.000500870 0.000500870i
\(869\) 0.139785 + 2.21935i 0.00474187 + 0.0752863i
\(870\) 0 0
\(871\) 10.6384 + 14.6425i 0.360469 + 0.496143i
\(872\) 21.8334 + 11.1247i 0.739374 + 0.376730i
\(873\) 2.90515 1.48025i 0.0983243 0.0500987i
\(874\) −1.07972 + 1.48611i −0.0365222 + 0.0502685i
\(875\) 0 0
\(876\) −0.565619 0.183781i −0.0191105 0.00620938i
\(877\) 5.82698 11.4361i 0.196763 0.386169i −0.771452 0.636287i \(-0.780469\pi\)
0.968215 + 0.250118i \(0.0804694\pi\)
\(878\) −36.9125 5.84636i −1.24574 0.197305i
\(879\) 5.76213 0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) 24.7187 + 3.91506i 0.832322 + 0.131827i
\(883\) 19.7888 38.8377i 0.665947 1.30699i −0.272695 0.962100i \(-0.587915\pi\)
0.938642 0.344893i \(-0.112085\pi\)
\(884\) −3.38926 1.10124i −0.113993 0.0370387i
\(885\) 0 0
\(886\) −27.5163 + 37.8730i −0.924429 + 1.27237i
\(887\) 9.26576 4.72114i 0.311114 0.158520i −0.291461 0.956583i \(-0.594141\pi\)
0.602575 + 0.798062i \(0.294141\pi\)
\(888\) −9.86013 5.02399i −0.330884 0.168594i
\(889\) −1.63945 2.25651i −0.0549853 0.0756808i
\(890\) 0 0
\(891\) 7.78863 + 9.41351i 0.260929 + 0.315364i
\(892\) −4.66817 + 4.66817i −0.156302 + 0.156302i
\(893\) 1.43862 9.08308i 0.0481415 0.303954i
\(894\) −6.64130 + 2.15789i −0.222118 + 0.0721706i
\(895\) 0 0
\(896\) 2.04700 + 1.48723i 0.0683855 + 0.0496850i
\(897\) −0.627249 3.96029i −0.0209432 0.132230i
\(898\) −5.05474 9.92048i −0.168679 0.331051i
\(899\) 1.03530 + 3.18633i 0.0345292 + 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) −13.4046 + 30.9821i −0.446324 + 1.03159i
\(903\) −0.568922 0.568922i −0.0189325 0.0189325i
\(904\) 8.61708 6.26067i 0.286600 0.208227i
\(905\) 0 0
\(906\) 5.60375 17.2466i 0.186172 0.572979i
\(907\) −16.1062 + 2.55097i −0.534798 + 0.0847036i −0.417991 0.908451i \(-0.637266\pi\)
−0.116806 + 0.993155i \(0.537266\pi\)
\(908\) −4.00948 + 0.635040i −0.133059 + 0.0210745i
\(909\) 3.52571 10.8510i 0.116940 0.359906i
\(910\) 0 0
\(911\) 14.3281 10.4099i 0.474710 0.344897i −0.324564 0.945864i \(-0.605218\pi\)
0.799274 + 0.600967i \(0.205218\pi\)
\(912\) 1.89718 + 1.89718i 0.0628219 + 0.0628219i
\(913\) −21.9712 + 50.7821i −0.727140 + 1.68064i
\(914\) 10.2385i 0.338659i
\(915\) 0 0
\(916\) −1.57702 4.85357i −0.0521062 0.160366i
\(917\) −0.849203 1.66665i −0.0280431 0.0550378i
\(918\) 3.76933 + 23.7986i 0.124406 + 0.785472i
\(919\) 7.38632 + 5.36648i 0.243652 + 0.177024i 0.702909 0.711280i \(-0.251884\pi\)
−0.459257 + 0.888304i \(0.651884\pi\)
\(920\) 0 0
\(921\) 21.5818 7.01234i 0.711143 0.231064i
\(922\) 6.91497 43.6594i 0.227732 1.43785i
\(923\) 25.0888 25.0888i 0.825807 0.825807i
\(924\) 0.100238 + 0.121150i 0.00329760 + 0.00398555i
\(925\) 0 0
\(926\) 22.1307 + 30.4602i 0.727259 + 1.00099i
\(927\) −6.82017 3.47505i −0.224004 0.114136i
\(928\) 14.8171 7.54970i 0.486396 0.247831i
\(929\) −1.06529 + 1.46625i −0.0349511 + 0.0481061i −0.826135 0.563472i \(-0.809465\pi\)
0.791184 + 0.611578i \(0.209465\pi\)
\(930\) 0 0
\(931\) 4.92578 + 1.60048i 0.161436 + 0.0524537i
\(932\) −2.20583 + 4.32918i −0.0722543 + 0.141807i
\(933\) −5.91808 0.937332i −0.193749 0.0306869i
\(934\) −40.2174 −1.31595
\(935\) 0 0
\(936\) 18.7961 0.614371
\(937\) −14.9726 2.37143i −0.489133 0.0774711i −0.0930039 0.995666i \(-0.529647\pi\)
−0.396130 + 0.918195i \(0.629647\pi\)
\(938\) −0.772546 + 1.51621i −0.0252245 + 0.0495059i
\(939\) 1.02061 + 0.331616i 0.0333063 + 0.0108219i
\(940\) 0 0
\(941\) −12.8308 + 17.6600i −0.418271 + 0.575701i −0.965211 0.261471i \(-0.915792\pi\)
0.546940 + 0.837172i \(0.315792\pi\)
\(942\) 5.34274 2.72226i 0.174076 0.0886961i
\(943\) 9.69338 + 4.93902i 0.315660 + 0.160837i
\(944\) 25.6012 + 35.2370i 0.833247 + 1.14687i
\(945\) 0 0
\(946\) −1.67038 26.5205i −0.0543087 0.862256i
\(947\) −6.90662 + 6.90662i −0.224435 + 0.224435i −0.810363 0.585928i \(-0.800730\pi\)
0.585928 + 0.810363i \(0.300730\pi\)
\(948\) −0.0259711 + 0.163975i −0.000843503 + 0.00532567i
\(949\) −7.07131 + 2.29761i −0.229545 + 0.0745835i
\(950\) 0 0
\(951\) −7.30875 5.31012i −0.237003 0.172192i
\(952\) 0.285100 + 1.80005i 0.00924015 + 0.0583400i
\(953\) 5.92153 + 11.6216i 0.191817 + 0.376462i 0.966806 0.255513i \(-0.0822444\pi\)
−0.774989 + 0.631975i \(0.782244\pi\)
\(954\) −10.0294 30.8672i −0.324713 0.999363i
\(955\) 0 0
\(956\) 1.64046i 0.0530561i
\(957\) −24.6354 + 5.50846i −0.796349 + 0.178063i
\(958\) 28.2202 + 28.2202i 0.911755 + 0.911755i
\(959\) 0.670750 0.487328i 0.0216596 0.0157367i
\(960\) 0 0
\(961\) −9.54147 + 29.3656i −0.307789 + 0.947279i
\(962\) 25.1218 3.97890i 0.809960 0.128285i
\(963\) 25.8182 4.08921i 0.831981 0.131773i
\(964\) 1.55173 4.77572i 0.0499777 0.153816i
\(965\) 0 0
\(966\) 0.304989 0.221588i 0.00981287 0.00712946i
\(967\) −13.6319 13.6319i −0.438372 0.438372i 0.453092 0.891464i \(-0.350321\pi\)
−0.891464 + 0.453092i \(0.850321\pi\)
\(968\) 0.883368 28.2343i 0.0283925 0.907484i
\(969\) 2.19785i 0.0706051i
\(970\) 0 0
\(971\) 1.26967 + 3.90765i 0.0407457 + 0.125403i 0.969360 0.245643i \(-0.0789992\pi\)
−0.928615 + 0.371046i \(0.878999\pi\)
\(972\) 2.22320 + 4.36328i 0.0713093 + 0.139952i
\(973\) 0.314819 + 1.98769i 0.0100926 + 0.0637224i
\(974\) −28.6965 20.8492i −0.919495 0.668052i
\(975\) 0 0
\(976\) 25.3592 8.23971i 0.811729 0.263747i
\(977\) −4.80402 + 30.3314i −0.153694 + 0.970386i 0.783453 + 0.621451i \(0.213457\pi\)
−0.937147 + 0.348935i \(0.886543\pi\)
\(978\) −8.58324 + 8.58324i −0.274462 + 0.274462i
\(979\) 22.1848 + 14.0768i 0.709030 + 0.449895i
\(980\) 0 0
\(981\) 13.2614 + 18.2528i 0.423405 + 0.582767i
\(982\) −24.8498 12.6616i −0.792990 0.404048i
\(983\) −24.7035 + 12.5871i −0.787919 + 0.401465i −0.801162 0.598447i \(-0.795785\pi\)
0.0132429 + 0.999912i \(0.495785\pi\)
\(984\) 8.05767 11.0904i 0.256869 0.353550i
\(985\) 0 0
\(986\) 51.1575 + 16.6221i 1.62919 + 0.529355i
\(987\) −0.856827 + 1.68162i −0.0272731 + 0.0535265i
\(988\) −0.706325 0.111871i −0.0224712 0.00355909i
\(989\) −8.56376 −0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) −0.603719 0.0956197i −0.0191681 0.00303593i
\(993\) −6.40795 + 12.5763i −0.203350 + 0.399097i
\(994\) 3.17264 + 1.03085i 0.100630 + 0.0326966i
\(995\) 0 0
\(996\) −2.42808 + 3.34196i −0.0769366 + 0.105894i
\(997\) −25.7239 + 13.1070i −0.814685 + 0.415103i −0.811112 0.584891i \(-0.801137\pi\)
−0.00357282 + 0.999994i \(0.501137\pi\)
\(998\) 15.9247 + 8.11406i 0.504089 + 0.256846i
\(999\) −13.5878 18.7019i −0.429898 0.591703i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.118.1 32
5.2 odd 4 inner 275.2.bm.b.107.4 32
5.3 odd 4 55.2.l.a.52.1 yes 32
5.4 even 2 55.2.l.a.8.4 yes 32
11.7 odd 10 inner 275.2.bm.b.18.4 32
15.8 even 4 495.2.bj.a.217.4 32
15.14 odd 2 495.2.bj.a.118.1 32
20.3 even 4 880.2.cm.a.657.1 32
20.19 odd 2 880.2.cm.a.833.4 32
55.3 odd 20 605.2.m.c.457.4 32
55.4 even 10 605.2.m.e.403.4 32
55.7 even 20 inner 275.2.bm.b.7.1 32
55.8 even 20 605.2.m.d.457.1 32
55.9 even 10 605.2.e.b.483.3 32
55.13 even 20 605.2.e.b.362.3 32
55.14 even 10 605.2.m.c.578.4 32
55.18 even 20 55.2.l.a.7.4 32
55.19 odd 10 605.2.m.d.578.1 32
55.24 odd 10 605.2.e.b.483.14 32
55.28 even 20 605.2.m.c.112.4 32
55.29 odd 10 55.2.l.a.18.1 yes 32
55.38 odd 20 605.2.m.d.112.1 32
55.39 odd 10 605.2.m.c.233.4 32
55.43 even 4 605.2.m.e.602.4 32
55.48 odd 20 605.2.m.e.282.1 32
55.49 even 10 605.2.m.d.233.1 32
55.53 odd 20 605.2.e.b.362.14 32
55.54 odd 2 605.2.m.e.118.1 32
165.29 even 10 495.2.bj.a.73.4 32
165.128 odd 20 495.2.bj.a.172.1 32
220.139 even 10 880.2.cm.a.513.1 32
220.183 odd 20 880.2.cm.a.337.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 55.18 even 20
55.2.l.a.8.4 yes 32 5.4 even 2
55.2.l.a.18.1 yes 32 55.29 odd 10
55.2.l.a.52.1 yes 32 5.3 odd 4
275.2.bm.b.7.1 32 55.7 even 20 inner
275.2.bm.b.18.4 32 11.7 odd 10 inner
275.2.bm.b.107.4 32 5.2 odd 4 inner
275.2.bm.b.118.1 32 1.1 even 1 trivial
495.2.bj.a.73.4 32 165.29 even 10
495.2.bj.a.118.1 32 15.14 odd 2
495.2.bj.a.172.1 32 165.128 odd 20
495.2.bj.a.217.4 32 15.8 even 4
605.2.e.b.362.3 32 55.13 even 20
605.2.e.b.362.14 32 55.53 odd 20
605.2.e.b.483.3 32 55.9 even 10
605.2.e.b.483.14 32 55.24 odd 10
605.2.m.c.112.4 32 55.28 even 20
605.2.m.c.233.4 32 55.39 odd 10
605.2.m.c.457.4 32 55.3 odd 20
605.2.m.c.578.4 32 55.14 even 10
605.2.m.d.112.1 32 55.38 odd 20
605.2.m.d.233.1 32 55.49 even 10
605.2.m.d.457.1 32 55.8 even 20
605.2.m.d.578.1 32 55.19 odd 10
605.2.m.e.118.1 32 55.54 odd 2
605.2.m.e.282.1 32 55.48 odd 20
605.2.m.e.403.4 32 55.4 even 10
605.2.m.e.602.4 32 55.43 even 4
880.2.cm.a.337.4 32 220.183 odd 20
880.2.cm.a.513.1 32 220.139 even 10
880.2.cm.a.657.1 32 20.3 even 4
880.2.cm.a.833.4 32 20.19 odd 2