Properties

Label 880.2.cm.a.513.1
Level $880$
Weight $2$
Character 880.513
Analytic conductor $7.027$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(17,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 5, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 513.1
Character \(\chi\) \(=\) 880.513
Dual form 880.2.cm.a.657.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.710333 + 0.361933i) q^{3} +(-1.71486 + 1.43501i) q^{5} +(-0.0869260 + 0.170602i) q^{7} +(-1.38978 + 1.91287i) q^{9} +(-1.77694 - 2.80044i) q^{11} +(3.05749 - 0.484259i) q^{13} +(0.698743 - 1.64000i) q^{15} +(-3.66088 - 0.579827i) q^{17} +(-0.229844 + 0.707388i) q^{19} -0.152646i q^{21} +(1.14886 + 1.14886i) q^{23} +(0.881484 - 4.92169i) q^{25} +(0.669017 - 4.22401i) q^{27} +(-2.95025 - 9.07993i) q^{29} +(0.283900 + 0.206266i) q^{31} +(2.27579 + 1.34611i) q^{33} +(-0.0957498 - 0.417298i) q^{35} +(-4.81621 - 2.45398i) q^{37} +(-1.99657 + 1.45059i) q^{39} +(6.36824 + 2.06917i) q^{41} +(3.72708 - 3.72708i) q^{43} +(-0.361710 - 5.27464i) q^{45} +(-5.61318 - 11.0165i) q^{47} +(4.09295 + 5.63346i) q^{49} +(2.81030 - 0.913123i) q^{51} +(-1.41265 - 8.91914i) q^{53} +(7.06587 + 2.25243i) q^{55} +(-0.0927608 - 0.585669i) q^{57} +(-9.15496 + 2.97463i) q^{59} +(-3.46383 - 4.76756i) q^{61} +(-0.205531 - 0.403377i) q^{63} +(-4.54825 + 5.21797i) q^{65} +(-4.13426 + 4.13426i) q^{67} +(-1.23188 - 0.400262i) q^{69} +(-9.27272 + 6.73702i) q^{71} +(2.14008 + 1.09042i) q^{73} +(1.15517 + 3.81507i) q^{75} +(0.632224 - 0.0597184i) q^{77} +(-0.542434 - 0.394101i) q^{79} +(-1.13837 - 3.50353i) q^{81} +(2.60980 - 16.4776i) q^{83} +(7.10995 - 4.25908i) q^{85} +(5.38198 + 5.38198i) q^{87} +7.92190i q^{89} +(-0.183160 + 0.563709i) q^{91} +(-0.276318 - 0.0437645i) q^{93} +(-0.620959 - 1.54290i) q^{95} +(-1.36201 + 0.215721i) q^{97} +(7.82643 + 0.492943i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} - 2 q^{5} + 24 q^{11} - 10 q^{13} - 14 q^{15} + 24 q^{23} + 16 q^{25} + 16 q^{27} + 28 q^{31} + 66 q^{33} + 10 q^{35} - 8 q^{37} + 40 q^{41} - 28 q^{45} + 28 q^{47} - 20 q^{51} - 24 q^{53}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.710333 + 0.361933i −0.410111 + 0.208962i −0.646860 0.762609i \(-0.723918\pi\)
0.236749 + 0.971571i \(0.423918\pi\)
\(4\) 0 0
\(5\) −1.71486 + 1.43501i −0.766908 + 0.641757i
\(6\) 0 0
\(7\) −0.0869260 + 0.170602i −0.0328550 + 0.0644815i −0.906851 0.421452i \(-0.861520\pi\)
0.873996 + 0.485934i \(0.161520\pi\)
\(8\) 0 0
\(9\) −1.38978 + 1.91287i −0.463259 + 0.637622i
\(10\) 0 0
\(11\) −1.77694 2.80044i −0.535768 0.844365i
\(12\) 0 0
\(13\) 3.05749 0.484259i 0.847995 0.134309i 0.282711 0.959205i \(-0.408766\pi\)
0.565285 + 0.824896i \(0.308766\pi\)
\(14\) 0 0
\(15\) 0.698743 1.64000i 0.180415 0.423446i
\(16\) 0 0
\(17\) −3.66088 0.579827i −0.887894 0.140629i −0.304206 0.952606i \(-0.598391\pi\)
−0.583688 + 0.811978i \(0.698391\pi\)
\(18\) 0 0
\(19\) −0.229844 + 0.707388i −0.0527299 + 0.162286i −0.973954 0.226747i \(-0.927191\pi\)
0.921224 + 0.389033i \(0.127191\pi\)
\(20\) 0 0
\(21\) 0.152646i 0.0333100i
\(22\) 0 0
\(23\) 1.14886 + 1.14886i 0.239553 + 0.239553i 0.816665 0.577112i \(-0.195820\pi\)
−0.577112 + 0.816665i \(0.695820\pi\)
\(24\) 0 0
\(25\) 0.881484 4.92169i 0.176297 0.984337i
\(26\) 0 0
\(27\) 0.669017 4.22401i 0.128752 0.812911i
\(28\) 0 0
\(29\) −2.95025 9.07993i −0.547847 1.68610i −0.714122 0.700021i \(-0.753174\pi\)
0.166275 0.986079i \(-0.446826\pi\)
\(30\) 0 0
\(31\) 0.283900 + 0.206266i 0.0509900 + 0.0370464i 0.612988 0.790092i \(-0.289967\pi\)
−0.561998 + 0.827138i \(0.689967\pi\)
\(32\) 0 0
\(33\) 2.27579 + 1.34611i 0.396165 + 0.234328i
\(34\) 0 0
\(35\) −0.0957498 0.417298i −0.0161847 0.0705363i
\(36\) 0 0
\(37\) −4.81621 2.45398i −0.791780 0.403432i 0.0108264 0.999941i \(-0.496554\pi\)
−0.802606 + 0.596510i \(0.796554\pi\)
\(38\) 0 0
\(39\) −1.99657 + 1.45059i −0.319707 + 0.232280i
\(40\) 0 0
\(41\) 6.36824 + 2.06917i 0.994552 + 0.323150i 0.760687 0.649119i \(-0.224862\pi\)
0.233866 + 0.972269i \(0.424862\pi\)
\(42\) 0 0
\(43\) 3.72708 3.72708i 0.568374 0.568374i −0.363299 0.931673i \(-0.618350\pi\)
0.931673 + 0.363299i \(0.118350\pi\)
\(44\) 0 0
\(45\) −0.361710 5.27464i −0.0539205 0.786297i
\(46\) 0 0
\(47\) −5.61318 11.0165i −0.818766 1.60692i −0.794539 0.607213i \(-0.792287\pi\)
−0.0242272 0.999706i \(-0.507713\pi\)
\(48\) 0 0
\(49\) 4.09295 + 5.63346i 0.584707 + 0.804780i
\(50\) 0 0
\(51\) 2.81030 0.913123i 0.393521 0.127863i
\(52\) 0 0
\(53\) −1.41265 8.91914i −0.194043 1.22514i −0.871804 0.489855i \(-0.837050\pi\)
0.677761 0.735282i \(-0.262950\pi\)
\(54\) 0 0
\(55\) 7.06587 + 2.25243i 0.952762 + 0.303718i
\(56\) 0 0
\(57\) −0.0927608 0.585669i −0.0122865 0.0775737i
\(58\) 0 0
\(59\) −9.15496 + 2.97463i −1.19187 + 0.387263i −0.836765 0.547562i \(-0.815556\pi\)
−0.355108 + 0.934825i \(0.615556\pi\)
\(60\) 0 0
\(61\) −3.46383 4.76756i −0.443498 0.610423i 0.527487 0.849563i \(-0.323134\pi\)
−0.970985 + 0.239140i \(0.923134\pi\)
\(62\) 0 0
\(63\) −0.205531 0.403377i −0.0258944 0.0508207i
\(64\) 0 0
\(65\) −4.54825 + 5.21797i −0.564141 + 0.647209i
\(66\) 0 0
\(67\) −4.13426 + 4.13426i −0.505081 + 0.505081i −0.913012 0.407932i \(-0.866250\pi\)
0.407932 + 0.913012i \(0.366250\pi\)
\(68\) 0 0
\(69\) −1.23188 0.400262i −0.148301 0.0481859i
\(70\) 0 0
\(71\) −9.27272 + 6.73702i −1.10047 + 0.799538i −0.981136 0.193317i \(-0.938075\pi\)
−0.119333 + 0.992854i \(0.538075\pi\)
\(72\) 0 0
\(73\) 2.14008 + 1.09042i 0.250477 + 0.127624i 0.574722 0.818349i \(-0.305110\pi\)
−0.324245 + 0.945973i \(0.605110\pi\)
\(74\) 0 0
\(75\) 1.15517 + 3.81507i 0.133388 + 0.440527i
\(76\) 0 0
\(77\) 0.632224 0.0597184i 0.0720486 0.00680554i
\(78\) 0 0
\(79\) −0.542434 0.394101i −0.0610286 0.0443399i 0.556853 0.830611i \(-0.312009\pi\)
−0.617881 + 0.786271i \(0.712009\pi\)
\(80\) 0 0
\(81\) −1.13837 3.50353i −0.126485 0.389282i
\(82\) 0 0
\(83\) 2.60980 16.4776i 0.286463 1.80865i −0.253909 0.967228i \(-0.581716\pi\)
0.540372 0.841426i \(-0.318284\pi\)
\(84\) 0 0
\(85\) 7.10995 4.25908i 0.771183 0.461963i
\(86\) 0 0
\(87\) 5.38198 + 5.38198i 0.577009 + 0.577009i
\(88\) 0 0
\(89\) 7.92190i 0.839720i 0.907589 + 0.419860i \(0.137921\pi\)
−0.907589 + 0.419860i \(0.862079\pi\)
\(90\) 0 0
\(91\) −0.183160 + 0.563709i −0.0192004 + 0.0590927i
\(92\) 0 0
\(93\) −0.276318 0.0437645i −0.0286528 0.00453817i
\(94\) 0 0
\(95\) −0.620959 1.54290i −0.0637090 0.158298i
\(96\) 0 0
\(97\) −1.36201 + 0.215721i −0.138291 + 0.0219032i −0.225196 0.974313i \(-0.572302\pi\)
0.0869051 + 0.996217i \(0.472302\pi\)
\(98\) 0 0
\(99\) 7.82643 + 0.492943i 0.786585 + 0.0495427i
\(100\) 0 0
\(101\) −2.83633 + 3.90387i −0.282225 + 0.388449i −0.926469 0.376370i \(-0.877172\pi\)
0.644244 + 0.764820i \(0.277172\pi\)
\(102\) 0 0
\(103\) 1.46972 2.88449i 0.144816 0.284217i −0.807193 0.590287i \(-0.799014\pi\)
0.952009 + 0.306071i \(0.0990144\pi\)
\(104\) 0 0
\(105\) 0.219048 + 0.261766i 0.0213769 + 0.0255457i
\(106\) 0 0
\(107\) 9.85055 5.01911i 0.952289 0.485215i 0.0924142 0.995721i \(-0.470542\pi\)
0.859875 + 0.510505i \(0.170542\pi\)
\(108\) 0 0
\(109\) −9.54212 −0.913969 −0.456985 0.889475i \(-0.651071\pi\)
−0.456985 + 0.889475i \(0.651071\pi\)
\(110\) 0 0
\(111\) 4.30929 0.409019
\(112\) 0 0
\(113\) 3.69562 1.88301i 0.347654 0.177139i −0.271440 0.962455i \(-0.587500\pi\)
0.619094 + 0.785317i \(0.287500\pi\)
\(114\) 0 0
\(115\) −3.61875 0.321505i −0.337450 0.0299805i
\(116\) 0 0
\(117\) −3.32291 + 6.52158i −0.307203 + 0.602920i
\(118\) 0 0
\(119\) 0.417145 0.574151i 0.0382397 0.0526324i
\(120\) 0 0
\(121\) −4.68496 + 9.95245i −0.425905 + 0.904768i
\(122\) 0 0
\(123\) −5.27247 + 0.835077i −0.475403 + 0.0752964i
\(124\) 0 0
\(125\) 5.55105 + 9.70494i 0.496501 + 0.868036i
\(126\) 0 0
\(127\) −14.3879 2.27881i −1.27672 0.202212i −0.518987 0.854782i \(-0.673691\pi\)
−0.757728 + 0.652570i \(0.773691\pi\)
\(128\) 0 0
\(129\) −1.29851 + 3.99642i −0.114328 + 0.351865i
\(130\) 0 0
\(131\) 9.76926i 0.853544i 0.904359 + 0.426772i \(0.140349\pi\)
−0.904359 + 0.426772i \(0.859651\pi\)
\(132\) 0 0
\(133\) −0.100702 0.100702i −0.00873200 0.00873200i
\(134\) 0 0
\(135\) 4.91423 + 8.20363i 0.422949 + 0.706056i
\(136\) 0 0
\(137\) 0.677380 4.27681i 0.0578725 0.365392i −0.941708 0.336431i \(-0.890780\pi\)
0.999581 0.0289612i \(-0.00921994\pi\)
\(138\) 0 0
\(139\) 3.24794 + 9.99613i 0.275487 + 0.847860i 0.989090 + 0.147311i \(0.0470618\pi\)
−0.713604 + 0.700550i \(0.752938\pi\)
\(140\) 0 0
\(141\) 7.97445 + 5.79378i 0.671570 + 0.487924i
\(142\) 0 0
\(143\) −6.78912 7.70183i −0.567735 0.644059i
\(144\) 0 0
\(145\) 18.0891 + 11.3372i 1.50221 + 0.941500i
\(146\) 0 0
\(147\) −4.94629 2.52026i −0.407963 0.207868i
\(148\) 0 0
\(149\) −4.66189 + 3.38706i −0.381917 + 0.277479i −0.762135 0.647418i \(-0.775849\pi\)
0.380218 + 0.924897i \(0.375849\pi\)
\(150\) 0 0
\(151\) 14.2318 + 4.62419i 1.15817 + 0.376311i 0.824214 0.566278i \(-0.191617\pi\)
0.333953 + 0.942590i \(0.391617\pi\)
\(152\) 0 0
\(153\) 6.19694 6.19694i 0.500993 0.500993i
\(154\) 0 0
\(155\) −0.782843 + 0.0536836i −0.0628795 + 0.00431197i
\(156\) 0 0
\(157\) −2.24640 4.40881i −0.179282 0.351861i 0.783824 0.620983i \(-0.213267\pi\)
−0.963106 + 0.269122i \(0.913267\pi\)
\(158\) 0 0
\(159\) 4.23158 + 5.82427i 0.335586 + 0.461895i
\(160\) 0 0
\(161\) −0.295863 + 0.0961317i −0.0233173 + 0.00757624i
\(162\) 0 0
\(163\) 1.56695 + 9.89335i 0.122733 + 0.774907i 0.969886 + 0.243558i \(0.0783147\pi\)
−0.847153 + 0.531349i \(0.821685\pi\)
\(164\) 0 0
\(165\) −5.83435 + 0.957393i −0.454204 + 0.0745329i
\(166\) 0 0
\(167\) 1.88695 + 11.9137i 0.146017 + 0.921913i 0.946534 + 0.322604i \(0.104558\pi\)
−0.800517 + 0.599310i \(0.795442\pi\)
\(168\) 0 0
\(169\) −3.24999 + 1.05599i −0.250000 + 0.0812298i
\(170\) 0 0
\(171\) −1.03371 1.42277i −0.0790494 0.108802i
\(172\) 0 0
\(173\) −5.65903 11.1065i −0.430248 0.844410i −0.999749 0.0224186i \(-0.992863\pi\)
0.569501 0.821991i \(-0.307137\pi\)
\(174\) 0 0
\(175\) 0.763025 + 0.578206i 0.0576793 + 0.0437082i
\(176\) 0 0
\(177\) 5.42645 5.42645i 0.407877 0.407877i
\(178\) 0 0
\(179\) −19.1909 6.23551i −1.43440 0.466064i −0.514252 0.857639i \(-0.671930\pi\)
−0.920146 + 0.391575i \(0.871930\pi\)
\(180\) 0 0
\(181\) −3.72935 + 2.70953i −0.277200 + 0.201398i −0.717695 0.696357i \(-0.754803\pi\)
0.440495 + 0.897755i \(0.354803\pi\)
\(182\) 0 0
\(183\) 4.18601 + 2.13288i 0.309439 + 0.157667i
\(184\) 0 0
\(185\) 11.7806 2.70308i 0.866127 0.198735i
\(186\) 0 0
\(187\) 4.88140 + 11.2824i 0.356963 + 0.825051i
\(188\) 0 0
\(189\) 0.662469 + 0.481312i 0.0481875 + 0.0350103i
\(190\) 0 0
\(191\) −1.95493 6.01667i −0.141454 0.435351i 0.855084 0.518490i \(-0.173505\pi\)
−0.996538 + 0.0831389i \(0.973505\pi\)
\(192\) 0 0
\(193\) −0.927951 + 5.85885i −0.0667954 + 0.421729i 0.931519 + 0.363692i \(0.118484\pi\)
−0.998314 + 0.0580368i \(0.981516\pi\)
\(194\) 0 0
\(195\) 1.34222 5.35265i 0.0961181 0.383312i
\(196\) 0 0
\(197\) 9.90515 + 9.90515i 0.705713 + 0.705713i 0.965631 0.259918i \(-0.0836955\pi\)
−0.259918 + 0.965631i \(0.583696\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i −0.880342 0.474340i \(-0.842687\pi\)
0.880342 0.474340i \(-0.157313\pi\)
\(200\) 0 0
\(201\) 1.44038 4.43303i 0.101596 0.312682i
\(202\) 0 0
\(203\) 1.80551 + 0.285964i 0.126722 + 0.0200708i
\(204\) 0 0
\(205\) −13.8899 + 5.59017i −0.970114 + 0.390434i
\(206\) 0 0
\(207\) −3.79427 + 0.600953i −0.263720 + 0.0417691i
\(208\) 0 0
\(209\) 2.38942 0.613321i 0.165280 0.0424243i
\(210\) 0 0
\(211\) −3.48696 + 4.79939i −0.240052 + 0.330404i −0.911996 0.410198i \(-0.865460\pi\)
0.671944 + 0.740602i \(0.265460\pi\)
\(212\) 0 0
\(213\) 4.14837 8.14163i 0.284241 0.557855i
\(214\) 0 0
\(215\) −1.04301 + 11.7398i −0.0711330 + 0.800649i
\(216\) 0 0
\(217\) −0.0598677 + 0.0305041i −0.00406408 + 0.00207075i
\(218\) 0 0
\(219\) −1.91483 −0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) 0 0
\(223\) 18.9389 9.64984i 1.26824 0.646201i 0.315195 0.949027i \(-0.397930\pi\)
0.953046 + 0.302826i \(0.0979300\pi\)
\(224\) 0 0
\(225\) 8.18945 + 8.52621i 0.545964 + 0.568414i
\(226\) 0 0
\(227\) −5.93372 + 11.6456i −0.393835 + 0.772944i −0.999745 0.0225888i \(-0.992809\pi\)
0.605910 + 0.795533i \(0.292809\pi\)
\(228\) 0 0
\(229\) 9.65796 13.2930i 0.638216 0.878429i −0.360303 0.932835i \(-0.617327\pi\)
0.998519 + 0.0544066i \(0.0173267\pi\)
\(230\) 0 0
\(231\) −0.427475 + 0.271242i −0.0281258 + 0.0178464i
\(232\) 0 0
\(233\) −15.4510 + 2.44720i −1.01223 + 0.160321i −0.640450 0.768000i \(-0.721252\pi\)
−0.371779 + 0.928321i \(0.621252\pi\)
\(234\) 0 0
\(235\) 25.4346 + 10.8367i 1.65917 + 0.706911i
\(236\) 0 0
\(237\) 0.527947 + 0.0836185i 0.0342938 + 0.00543161i
\(238\) 0 0
\(239\) 1.63214 5.02322i 0.105575 0.324925i −0.884290 0.466938i \(-0.845357\pi\)
0.989865 + 0.142012i \(0.0453572\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i 0.853726 + 0.520722i \(0.174337\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(242\) 0 0
\(243\) 11.1488 + 11.1488i 0.715198 + 0.715198i
\(244\) 0 0
\(245\) −15.1029 3.78716i −0.964889 0.241953i
\(246\) 0 0
\(247\) −0.360188 + 2.27413i −0.0229182 + 0.144700i
\(248\) 0 0
\(249\) 4.10997 + 12.6492i 0.260458 + 0.801609i
\(250\) 0 0
\(251\) 15.6486 + 11.3694i 0.987729 + 0.717627i 0.959423 0.281972i \(-0.0909886\pi\)
0.0283063 + 0.999599i \(0.490989\pi\)
\(252\) 0 0
\(253\) 1.17586 5.25876i 0.0739254 0.330615i
\(254\) 0 0
\(255\) −3.50893 + 5.59869i −0.219738 + 0.350604i
\(256\) 0 0
\(257\) −4.19318 2.13653i −0.261563 0.133273i 0.318292 0.947993i \(-0.396891\pi\)
−0.579855 + 0.814720i \(0.696891\pi\)
\(258\) 0 0
\(259\) 0.837308 0.608340i 0.0520278 0.0378004i
\(260\) 0 0
\(261\) 21.4689 + 6.97566i 1.32889 + 0.431783i
\(262\) 0 0
\(263\) −11.2218 + 11.2218i −0.691964 + 0.691964i −0.962664 0.270700i \(-0.912745\pi\)
0.270700 + 0.962664i \(0.412745\pi\)
\(264\) 0 0
\(265\) 15.2216 + 13.2679i 0.935053 + 0.815040i
\(266\) 0 0
\(267\) −2.86720 5.62719i −0.175470 0.344378i
\(268\) 0 0
\(269\) −6.64926 9.15192i −0.405412 0.558002i 0.556680 0.830727i \(-0.312075\pi\)
−0.962092 + 0.272725i \(0.912075\pi\)
\(270\) 0 0
\(271\) −16.9556 + 5.50921i −1.02998 + 0.334661i −0.774782 0.632228i \(-0.782141\pi\)
−0.255198 + 0.966889i \(0.582141\pi\)
\(272\) 0 0
\(273\) −0.0739200 0.466712i −0.00447384 0.0282467i
\(274\) 0 0
\(275\) −15.3492 + 6.27700i −0.925594 + 0.378517i
\(276\) 0 0
\(277\) 0.732361 + 4.62395i 0.0440033 + 0.277826i 0.999873 0.0159666i \(-0.00508253\pi\)
−0.955869 + 0.293793i \(0.905083\pi\)
\(278\) 0 0
\(279\) −0.789117 + 0.256400i −0.0472432 + 0.0153502i
\(280\) 0 0
\(281\) −7.75247 10.6704i −0.462474 0.636541i 0.512546 0.858660i \(-0.328703\pi\)
−0.975019 + 0.222119i \(0.928703\pi\)
\(282\) 0 0
\(283\) −10.3449 20.3029i −0.614938 1.20688i −0.963022 0.269421i \(-0.913168\pi\)
0.348084 0.937463i \(-0.386832\pi\)
\(284\) 0 0
\(285\) 0.999513 + 0.871227i 0.0592061 + 0.0516070i
\(286\) 0 0
\(287\) −0.906570 + 0.906570i −0.0535131 + 0.0535131i
\(288\) 0 0
\(289\) −3.10211 1.00794i −0.182477 0.0592904i
\(290\) 0 0
\(291\) 0.889404 0.646190i 0.0521378 0.0378803i
\(292\) 0 0
\(293\) −6.43996 3.28132i −0.376226 0.191697i 0.255644 0.966771i \(-0.417713\pi\)
−0.631870 + 0.775074i \(0.717713\pi\)
\(294\) 0 0
\(295\) 11.4308 18.2385i 0.665529 1.06189i
\(296\) 0 0
\(297\) −13.0179 + 5.63227i −0.755375 + 0.326818i
\(298\) 0 0
\(299\) 4.06896 + 2.95628i 0.235314 + 0.170966i
\(300\) 0 0
\(301\) 0.311867 + 0.959827i 0.0179757 + 0.0553235i
\(302\) 0 0
\(303\) 0.601798 3.79960i 0.0345724 0.218282i
\(304\) 0 0
\(305\) 12.7815 + 3.20505i 0.731866 + 0.183521i
\(306\) 0 0
\(307\) −20.1272 20.1272i −1.14872 1.14872i −0.986804 0.161918i \(-0.948232\pi\)
−0.161918 0.986804i \(-0.551768\pi\)
\(308\) 0 0
\(309\) 2.58088i 0.146821i
\(310\) 0 0
\(311\) 2.32254 7.14803i 0.131699 0.405328i −0.863363 0.504583i \(-0.831646\pi\)
0.995062 + 0.0992557i \(0.0316462\pi\)
\(312\) 0 0
\(313\) −1.32951 0.210574i −0.0751483 0.0119023i 0.118747 0.992925i \(-0.462112\pi\)
−0.193895 + 0.981022i \(0.562112\pi\)
\(314\) 0 0
\(315\) 0.931306 + 0.396795i 0.0524732 + 0.0223569i
\(316\) 0 0
\(317\) −11.1924 + 1.77271i −0.628630 + 0.0995652i −0.462617 0.886558i \(-0.653089\pi\)
−0.166013 + 0.986124i \(0.553089\pi\)
\(318\) 0 0
\(319\) −20.1854 + 24.3965i −1.13017 + 1.36594i
\(320\) 0 0
\(321\) −5.18059 + 7.13047i −0.289152 + 0.397984i
\(322\) 0 0
\(323\) 1.25159 2.45639i 0.0696406 0.136677i
\(324\) 0 0
\(325\) 0.311760 15.4749i 0.0172934 0.858391i
\(326\) 0 0
\(327\) 6.77808 3.45360i 0.374829 0.190985i
\(328\) 0 0
\(329\) 2.36737 0.130517
\(330\) 0 0
\(331\) 17.7048 0.973145 0.486572 0.873640i \(-0.338247\pi\)
0.486572 + 0.873640i \(0.338247\pi\)
\(332\) 0 0
\(333\) 11.3876 5.80227i 0.624036 0.317962i
\(334\) 0 0
\(335\) 1.15696 13.0224i 0.0632117 0.711489i
\(336\) 0 0
\(337\) 3.45945 6.78954i 0.188448 0.369850i −0.777381 0.629030i \(-0.783452\pi\)
0.965829 + 0.259180i \(0.0834523\pi\)
\(338\) 0 0
\(339\) −1.94359 + 2.67513i −0.105562 + 0.145293i
\(340\) 0 0
\(341\) 0.0731608 1.16157i 0.00396188 0.0629025i
\(342\) 0 0
\(343\) −2.64066 + 0.418239i −0.142582 + 0.0225828i
\(344\) 0 0
\(345\) 2.68688 1.08137i 0.144657 0.0582189i
\(346\) 0 0
\(347\) 9.21879 + 1.46011i 0.494891 + 0.0783830i 0.398891 0.916998i \(-0.369395\pi\)
0.0959998 + 0.995381i \(0.469395\pi\)
\(348\) 0 0
\(349\) 0.464073 1.42827i 0.0248413 0.0764536i −0.937867 0.346994i \(-0.887202\pi\)
0.962709 + 0.270540i \(0.0872024\pi\)
\(350\) 0 0
\(351\) 13.2388i 0.706637i
\(352\) 0 0
\(353\) 4.40229 + 4.40229i 0.234310 + 0.234310i 0.814489 0.580179i \(-0.197017\pi\)
−0.580179 + 0.814489i \(0.697017\pi\)
\(354\) 0 0
\(355\) 6.23370 24.8595i 0.330850 1.31941i
\(356\) 0 0
\(357\) −0.0885080 + 0.558817i −0.00468434 + 0.0295757i
\(358\) 0 0
\(359\) −8.12845 25.0168i −0.429003 1.32034i −0.899108 0.437726i \(-0.855784\pi\)
0.470105 0.882611i \(-0.344216\pi\)
\(360\) 0 0
\(361\) 14.9238 + 10.8427i 0.785461 + 0.570671i
\(362\) 0 0
\(363\) −0.274237 8.76519i −0.0143937 0.460053i
\(364\) 0 0
\(365\) −5.23470 + 1.20111i −0.273997 + 0.0628691i
\(366\) 0 0
\(367\) −7.27872 3.70869i −0.379946 0.193592i 0.253579 0.967315i \(-0.418392\pi\)
−0.633524 + 0.773723i \(0.718392\pi\)
\(368\) 0 0
\(369\) −12.8085 + 9.30591i −0.666783 + 0.484446i
\(370\) 0 0
\(371\) 1.64442 + 0.534304i 0.0853740 + 0.0277397i
\(372\) 0 0
\(373\) 6.12473 6.12473i 0.317126 0.317126i −0.530536 0.847662i \(-0.678009\pi\)
0.847662 + 0.530536i \(0.178009\pi\)
\(374\) 0 0
\(375\) −7.45563 4.88463i −0.385007 0.252241i
\(376\) 0 0
\(377\) −13.4174 26.3331i −0.691031 1.35622i
\(378\) 0 0
\(379\) 0.363481 + 0.500288i 0.0186708 + 0.0256981i 0.818250 0.574862i \(-0.194944\pi\)
−0.799580 + 0.600560i \(0.794944\pi\)
\(380\) 0 0
\(381\) 11.0449 3.58872i 0.565849 0.183856i
\(382\) 0 0
\(383\) −1.62362 10.2511i −0.0829629 0.523807i −0.993813 0.111069i \(-0.964572\pi\)
0.910850 0.412738i \(-0.135428\pi\)
\(384\) 0 0
\(385\) −0.998478 + 1.00966i −0.0508871 + 0.0514569i
\(386\) 0 0
\(387\) 1.94959 + 12.3092i 0.0991031 + 0.625712i
\(388\) 0 0
\(389\) −21.0630 + 6.84378i −1.06794 + 0.346993i −0.789683 0.613515i \(-0.789755\pi\)
−0.278252 + 0.960508i \(0.589755\pi\)
\(390\) 0 0
\(391\) −3.53969 4.87197i −0.179010 0.246386i
\(392\) 0 0
\(393\) −3.53581 6.93942i −0.178358 0.350048i
\(394\) 0 0
\(395\) 1.49574 0.102571i 0.0752587 0.00516089i
\(396\) 0 0
\(397\) 10.7769 10.7769i 0.540876 0.540876i −0.382910 0.923786i \(-0.625078\pi\)
0.923786 + 0.382910i \(0.125078\pi\)
\(398\) 0 0
\(399\) 0.107980 + 0.0350847i 0.00540574 + 0.00175643i
\(400\) 0 0
\(401\) 3.46399 2.51673i 0.172983 0.125680i −0.497925 0.867220i \(-0.665904\pi\)
0.670908 + 0.741540i \(0.265904\pi\)
\(402\) 0 0
\(403\) 0.967909 + 0.493174i 0.0482150 + 0.0245668i
\(404\) 0 0
\(405\) 6.97975 + 4.37450i 0.346827 + 0.217371i
\(406\) 0 0
\(407\) 1.68589 + 17.8481i 0.0835664 + 0.884697i
\(408\) 0 0
\(409\) 3.47523 + 2.52490i 0.171839 + 0.124848i 0.670381 0.742017i \(-0.266131\pi\)
−0.498541 + 0.866866i \(0.666131\pi\)
\(410\) 0 0
\(411\) 1.06675 + 3.28312i 0.0526190 + 0.161945i
\(412\) 0 0
\(413\) 0.288327 1.82043i 0.0141877 0.0895773i
\(414\) 0 0
\(415\) 19.1701 + 32.0019i 0.941025 + 1.57091i
\(416\) 0 0
\(417\) −5.92504 5.92504i −0.290151 0.290151i
\(418\) 0 0
\(419\) 1.20241i 0.0587414i 0.999569 + 0.0293707i \(0.00935032\pi\)
−0.999569 + 0.0293707i \(0.990650\pi\)
\(420\) 0 0
\(421\) 9.67493 29.7764i 0.471527 1.45121i −0.379057 0.925373i \(-0.623752\pi\)
0.850584 0.525839i \(-0.176248\pi\)
\(422\) 0 0
\(423\) 28.8741 + 4.57321i 1.40391 + 0.222357i
\(424\) 0 0
\(425\) −6.08073 + 17.5066i −0.294959 + 0.849195i
\(426\) 0 0
\(427\) 1.11445 0.176512i 0.0539321 0.00854201i
\(428\) 0 0
\(429\) 7.61008 + 3.01366i 0.367418 + 0.145501i
\(430\) 0 0
\(431\) 5.81395 8.00222i 0.280048 0.385453i −0.645702 0.763590i \(-0.723435\pi\)
0.925750 + 0.378137i \(0.123435\pi\)
\(432\) 0 0
\(433\) 12.2497 24.0414i 0.588683 1.15536i −0.384025 0.923323i \(-0.625462\pi\)
0.972708 0.232033i \(-0.0745378\pi\)
\(434\) 0 0
\(435\) −16.9525 1.50614i −0.812812 0.0722137i
\(436\) 0 0
\(437\) −1.07675 + 0.548629i −0.0515077 + 0.0262445i
\(438\) 0 0
\(439\) 24.5862 1.17344 0.586718 0.809791i \(-0.300420\pi\)
0.586718 + 0.809791i \(0.300420\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) 0 0
\(443\) −27.4404 + 13.9816i −1.30373 + 0.664286i −0.961364 0.275279i \(-0.911230\pi\)
−0.342370 + 0.939565i \(0.611230\pi\)
\(444\) 0 0
\(445\) −11.3680 13.5849i −0.538896 0.643988i
\(446\) 0 0
\(447\) 2.08561 4.09323i 0.0986458 0.193603i
\(448\) 0 0
\(449\) −4.30536 + 5.92582i −0.203182 + 0.279657i −0.898433 0.439111i \(-0.855293\pi\)
0.695250 + 0.718768i \(0.255293\pi\)
\(450\) 0 0
\(451\) −5.52141 21.5107i −0.259993 1.01290i
\(452\) 0 0
\(453\) −11.7830 + 1.86624i −0.553612 + 0.0876835i
\(454\) 0 0
\(455\) −0.494835 1.22952i −0.0231982 0.0576407i
\(456\) 0 0
\(457\) −6.65265 1.05368i −0.311198 0.0492889i −0.00111791 0.999999i \(-0.500356\pi\)
−0.310080 + 0.950710i \(0.600356\pi\)
\(458\) 0 0
\(459\) −4.89838 + 15.0757i −0.228637 + 0.703672i
\(460\) 0 0
\(461\) 29.0801i 1.35440i −0.735801 0.677198i \(-0.763194\pi\)
0.735801 0.677198i \(-0.236806\pi\)
\(462\) 0 0
\(463\) −17.5146 17.5146i −0.813970 0.813970i 0.171256 0.985227i \(-0.445217\pi\)
−0.985227 + 0.171256i \(0.945217\pi\)
\(464\) 0 0
\(465\) 0.536649 0.321470i 0.0248865 0.0149078i
\(466\) 0 0
\(467\) 4.13890 26.1320i 0.191525 1.20924i −0.685237 0.728320i \(-0.740302\pi\)
0.876763 0.480923i \(-0.159698\pi\)
\(468\) 0 0
\(469\) −0.345938 1.06469i −0.0159739 0.0491627i
\(470\) 0 0
\(471\) 3.19138 + 2.31868i 0.147051 + 0.106839i
\(472\) 0 0
\(473\) −17.0603 3.81467i −0.784432 0.175399i
\(474\) 0 0
\(475\) 3.27894 + 1.75477i 0.150448 + 0.0805145i
\(476\) 0 0
\(477\) 19.0244 + 9.69341i 0.871067 + 0.443831i
\(478\) 0 0
\(479\) −21.2408 + 15.4324i −0.970519 + 0.705123i −0.955570 0.294765i \(-0.904759\pi\)
−0.0149492 + 0.999888i \(0.504759\pi\)
\(480\) 0 0
\(481\) −15.9139 5.17073i −0.725610 0.235765i
\(482\) 0 0
\(483\) 0.175368 0.175368i 0.00797952 0.00797952i
\(484\) 0 0
\(485\) 2.02609 2.32443i 0.0920001 0.105547i
\(486\) 0 0
\(487\) −10.5939 20.7917i −0.480056 0.942163i −0.996318 0.0857326i \(-0.972677\pi\)
0.516262 0.856431i \(-0.327323\pi\)
\(488\) 0 0
\(489\) −4.69379 6.46044i −0.212260 0.292151i
\(490\) 0 0
\(491\) −17.4497 + 5.66974i −0.787493 + 0.255872i −0.675036 0.737785i \(-0.735872\pi\)
−0.112457 + 0.993657i \(0.535872\pi\)
\(492\) 0 0
\(493\) 5.53572 + 34.9512i 0.249316 + 1.57412i
\(494\) 0 0
\(495\) −14.1286 + 10.3857i −0.635033 + 0.466802i
\(496\) 0 0
\(497\) −0.343309 2.16757i −0.0153995 0.0972286i
\(498\) 0 0
\(499\) −11.1824 + 3.63339i −0.500595 + 0.162653i −0.548421 0.836203i \(-0.684771\pi\)
0.0478260 + 0.998856i \(0.484771\pi\)
\(500\) 0 0
\(501\) −5.65234 7.77978i −0.252528 0.347575i
\(502\) 0 0
\(503\) 2.42460 + 4.75855i 0.108108 + 0.212173i 0.938722 0.344674i \(-0.112011\pi\)
−0.830615 + 0.556848i \(0.812011\pi\)
\(504\) 0 0
\(505\) −0.738195 10.7647i −0.0328492 0.479025i
\(506\) 0 0
\(507\) 1.92638 1.92638i 0.0855536 0.0855536i
\(508\) 0 0
\(509\) −18.6283 6.05272i −0.825687 0.268282i −0.134459 0.990919i \(-0.542930\pi\)
−0.691228 + 0.722637i \(0.742930\pi\)
\(510\) 0 0
\(511\) −0.372057 + 0.270315i −0.0164588 + 0.0119580i
\(512\) 0 0
\(513\) 2.83424 + 1.44412i 0.125135 + 0.0637594i
\(514\) 0 0
\(515\) 1.61891 + 7.05555i 0.0713376 + 0.310905i
\(516\) 0 0
\(517\) −20.8767 + 35.2950i −0.918158 + 1.55227i
\(518\) 0 0
\(519\) 8.03959 + 5.84110i 0.352899 + 0.256396i
\(520\) 0 0
\(521\) 5.78913 + 17.8171i 0.253626 + 0.780582i 0.994097 + 0.108493i \(0.0346026\pi\)
−0.740471 + 0.672089i \(0.765397\pi\)
\(522\) 0 0
\(523\) −0.403961 + 2.55051i −0.0176640 + 0.111526i −0.994945 0.100422i \(-0.967981\pi\)
0.977281 + 0.211948i \(0.0679807\pi\)
\(524\) 0 0
\(525\) −0.751273 0.134555i −0.0327883 0.00587245i
\(526\) 0 0
\(527\) −0.919727 0.919727i −0.0400639 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) 0 0
\(531\) 7.03330 21.6463i 0.305219 0.939368i
\(532\) 0 0
\(533\) 20.4729 + 3.24258i 0.886778 + 0.140452i
\(534\) 0 0
\(535\) −9.68984 + 22.7427i −0.418928 + 0.983253i
\(536\) 0 0
\(537\) 15.8888 2.51654i 0.685652 0.108597i
\(538\) 0 0
\(539\) 8.50325 21.4724i 0.366261 0.924881i
\(540\) 0 0
\(541\) 5.42829 7.47139i 0.233380 0.321220i −0.676224 0.736696i \(-0.736385\pi\)
0.909604 + 0.415476i \(0.136385\pi\)
\(542\) 0 0
\(543\) 1.66841 3.27444i 0.0715983 0.140520i
\(544\) 0 0
\(545\) 16.3634 13.6931i 0.700931 0.586546i
\(546\) 0 0
\(547\) −0.954295 + 0.486237i −0.0408027 + 0.0207900i −0.474273 0.880378i \(-0.657289\pi\)
0.433470 + 0.901168i \(0.357289\pi\)
\(548\) 0 0
\(549\) 13.9337 0.594674
\(550\) 0 0
\(551\) 7.10113 0.302518
\(552\) 0 0
\(553\) 0.114386 0.0582826i 0.00486419 0.00247843i
\(554\) 0 0
\(555\) −7.38982 + 6.18387i −0.313680 + 0.262491i
\(556\) 0 0
\(557\) −19.5384 + 38.3462i −0.827868 + 1.62478i −0.0479915 + 0.998848i \(0.515282\pi\)
−0.779876 + 0.625934i \(0.784718\pi\)
\(558\) 0 0
\(559\) 9.59064 13.2004i 0.405641 0.558316i
\(560\) 0 0
\(561\) −7.55089 6.24752i −0.318799 0.263771i
\(562\) 0 0
\(563\) 25.5439 4.04575i 1.07655 0.170508i 0.407111 0.913379i \(-0.366536\pi\)
0.669435 + 0.742871i \(0.266536\pi\)
\(564\) 0 0
\(565\) −3.63532 + 8.53235i −0.152939 + 0.358959i
\(566\) 0 0
\(567\) 0.696664 + 0.110341i 0.0292571 + 0.00463387i
\(568\) 0 0
\(569\) 8.39651 25.8418i 0.352000 1.08334i −0.605729 0.795671i \(-0.707118\pi\)
0.957729 0.287673i \(-0.0928816\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i 0.529308 + 0.848430i \(0.322451\pi\)
−0.529308 + 0.848430i \(0.677549\pi\)
\(572\) 0 0
\(573\) 3.56628 + 3.56628i 0.148984 + 0.148984i
\(574\) 0 0
\(575\) 6.66701 4.64161i 0.278034 0.193569i
\(576\) 0 0
\(577\) 5.28872 33.3917i 0.220172 1.39011i −0.591643 0.806200i \(-0.701521\pi\)
0.811815 0.583914i \(-0.198479\pi\)
\(578\) 0 0
\(579\) −1.46136 4.49759i −0.0607319 0.186913i
\(580\) 0 0
\(581\) 2.58426 + 1.87757i 0.107213 + 0.0778948i
\(582\) 0 0
\(583\) −22.4673 + 19.8048i −0.930502 + 0.820233i
\(584\) 0 0
\(585\) −3.66022 15.9520i −0.151331 0.659534i
\(586\) 0 0
\(587\) −8.62859 4.39649i −0.356140 0.181462i 0.266762 0.963763i \(-0.414046\pi\)
−0.622902 + 0.782300i \(0.714046\pi\)
\(588\) 0 0
\(589\) −0.211163 + 0.153419i −0.00870081 + 0.00632151i
\(590\) 0 0
\(591\) −10.6210 3.45096i −0.436888 0.141953i
\(592\) 0 0
\(593\) −14.0452 + 14.0452i −0.576769 + 0.576769i −0.934012 0.357243i \(-0.883717\pi\)
0.357243 + 0.934012i \(0.383717\pi\)
\(594\) 0 0
\(595\) 0.108568 + 1.58320i 0.00445086 + 0.0649048i
\(596\) 0 0
\(597\) 4.84367 + 9.50623i 0.198238 + 0.389064i
\(598\) 0 0
\(599\) −2.65433 3.65338i −0.108453 0.149273i 0.751340 0.659915i \(-0.229408\pi\)
−0.859793 + 0.510642i \(0.829408\pi\)
\(600\) 0 0
\(601\) −7.96746 + 2.58878i −0.324999 + 0.105599i −0.466973 0.884272i \(-0.654655\pi\)
0.141973 + 0.989871i \(0.454655\pi\)
\(602\) 0 0
\(603\) −2.16258 13.6540i −0.0880671 0.556034i
\(604\) 0 0
\(605\) −6.24783 23.7900i −0.254011 0.967201i
\(606\) 0 0
\(607\) −1.20123 7.58425i −0.0487563 0.307835i 0.951244 0.308441i \(-0.0998072\pi\)
−1.00000 0.000605683i \(0.999807\pi\)
\(608\) 0 0
\(609\) −1.38601 + 0.450342i −0.0561640 + 0.0182488i
\(610\) 0 0
\(611\) −22.4971 30.9646i −0.910134 1.25269i
\(612\) 0 0
\(613\) 19.4882 + 38.2477i 0.787120 + 1.54481i 0.837726 + 0.546091i \(0.183885\pi\)
−0.0506058 + 0.998719i \(0.516115\pi\)
\(614\) 0 0
\(615\) 7.84320 8.99810i 0.316268 0.362838i
\(616\) 0 0
\(617\) 33.4407 33.4407i 1.34627 1.34627i 0.456601 0.889671i \(-0.349067\pi\)
0.889671 0.456601i \(-0.150933\pi\)
\(618\) 0 0
\(619\) 20.0674 + 6.52029i 0.806576 + 0.262073i 0.683147 0.730281i \(-0.260611\pi\)
0.123429 + 0.992353i \(0.460611\pi\)
\(620\) 0 0
\(621\) 5.62139 4.08418i 0.225578 0.163892i
\(622\) 0 0
\(623\) −1.35149 0.688620i −0.0541464 0.0275890i
\(624\) 0 0
\(625\) −23.4460 8.67678i −0.937839 0.347071i
\(626\) 0 0
\(627\) −1.47530 + 1.30047i −0.0589179 + 0.0519358i
\(628\) 0 0
\(629\) 16.2087 + 11.7763i 0.646282 + 0.469552i
\(630\) 0 0
\(631\) 8.72043 + 26.8387i 0.347155 + 1.06843i 0.960420 + 0.278555i \(0.0898556\pi\)
−0.613265 + 0.789877i \(0.710144\pi\)
\(632\) 0 0
\(633\) 0.739847 4.67121i 0.0294063 0.185664i
\(634\) 0 0
\(635\) 27.9433 16.7389i 1.10889 0.664263i
\(636\) 0 0
\(637\) 15.2422 + 15.2422i 0.603918 + 0.603918i
\(638\) 0 0
\(639\) 27.1004i 1.07208i
\(640\) 0 0
\(641\) −5.23436 + 16.1097i −0.206745 + 0.636295i 0.792893 + 0.609362i \(0.208574\pi\)
−0.999637 + 0.0269333i \(0.991426\pi\)
\(642\) 0 0
\(643\) −6.19838 0.981726i −0.244440 0.0387155i 0.0330121 0.999455i \(-0.489490\pi\)
−0.277452 + 0.960739i \(0.589490\pi\)
\(644\) 0 0
\(645\) −3.50814 8.71668i −0.138133 0.343219i
\(646\) 0 0
\(647\) 42.9518 6.80289i 1.68861 0.267449i 0.763128 0.646247i \(-0.223662\pi\)
0.925479 + 0.378798i \(0.123662\pi\)
\(648\) 0 0
\(649\) 24.5981 + 20.3522i 0.965559 + 0.798893i
\(650\) 0 0
\(651\) 0.0314855 0.0433361i 0.00123402 0.00169848i
\(652\) 0 0
\(653\) −4.41780 + 8.67042i −0.172882 + 0.339300i −0.961147 0.276035i \(-0.910979\pi\)
0.788266 + 0.615335i \(0.210979\pi\)
\(654\) 0 0
\(655\) −14.0190 16.7529i −0.547767 0.654590i
\(656\) 0 0
\(657\) −5.06007 + 2.57823i −0.197412 + 0.100586i
\(658\) 0 0
\(659\) 3.37375 0.131423 0.0657113 0.997839i \(-0.479068\pi\)
0.0657113 + 0.997839i \(0.479068\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) 0 0
\(663\) 8.15028 4.15278i 0.316531 0.161280i
\(664\) 0 0
\(665\) 0.317199 + 0.0281813i 0.0123005 + 0.00109282i
\(666\) 0 0
\(667\) 7.04213 13.8210i 0.272672 0.535150i
\(668\) 0 0
\(669\) −9.96031 + 13.7092i −0.385088 + 0.530028i
\(670\) 0 0
\(671\) −7.19624 + 18.1719i −0.277808 + 0.701520i
\(672\) 0 0
\(673\) −37.7823 + 5.98412i −1.45640 + 0.230671i −0.833885 0.551938i \(-0.813889\pi\)
−0.622514 + 0.782609i \(0.713889\pi\)
\(674\) 0 0
\(675\) −20.1995 7.01609i −0.777479 0.270049i
\(676\) 0 0
\(677\) −31.7956 5.03592i −1.22200 0.193546i −0.488092 0.872792i \(-0.662307\pi\)
−0.733911 + 0.679246i \(0.762307\pi\)
\(678\) 0 0
\(679\) 0.0815917 0.251113i 0.00313120 0.00963684i
\(680\) 0 0
\(681\) 10.4198i 0.399289i
\(682\) 0 0
\(683\) 28.7223 + 28.7223i 1.09903 + 1.09903i 0.994524 + 0.104505i \(0.0333260\pi\)
0.104505 + 0.994524i \(0.466674\pi\)
\(684\) 0 0
\(685\) 4.97566 + 8.30617i 0.190110 + 0.317363i
\(686\) 0 0
\(687\) −2.04918 + 12.9380i −0.0781811 + 0.493616i
\(688\) 0 0
\(689\) −8.63834 26.5861i −0.329095 1.01285i
\(690\) 0 0
\(691\) −20.4397 14.8503i −0.777564 0.564933i 0.126683 0.991943i \(-0.459567\pi\)
−0.904247 + 0.427010i \(0.859567\pi\)
\(692\) 0 0
\(693\) −0.764417 + 1.29235i −0.0290378 + 0.0490925i
\(694\) 0 0
\(695\) −19.9143 12.4811i −0.755393 0.473436i
\(696\) 0 0
\(697\) −22.1136 11.2675i −0.837613 0.426785i
\(698\) 0 0
\(699\) 10.0896 7.33055i 0.381625 0.277267i
\(700\) 0 0
\(701\) 26.8458 + 8.72273i 1.01395 + 0.329453i 0.768427 0.639937i \(-0.221040\pi\)
0.245525 + 0.969390i \(0.421040\pi\)
\(702\) 0 0
\(703\) 2.84289 2.84289i 0.107222 0.107222i
\(704\) 0 0
\(705\) −21.9892 + 1.50791i −0.828161 + 0.0567914i
\(706\) 0 0
\(707\) −0.419457 0.823230i −0.0157753 0.0309608i
\(708\) 0 0
\(709\) 4.79615 + 6.60134i 0.180123 + 0.247918i 0.889526 0.456885i \(-0.151035\pi\)
−0.709402 + 0.704804i \(0.751035\pi\)
\(710\) 0 0
\(711\) 1.50773 0.489890i 0.0565441 0.0183723i
\(712\) 0 0
\(713\) 0.0891912 + 0.563131i 0.00334024 + 0.0210894i
\(714\) 0 0
\(715\) 22.6946 + 3.46508i 0.848730 + 0.129587i
\(716\) 0 0
\(717\) 0.658703 + 4.15889i 0.0245997 + 0.155317i
\(718\) 0 0
\(719\) −0.986856 + 0.320649i −0.0368035 + 0.0119582i −0.327361 0.944899i \(-0.606159\pi\)
0.290557 + 0.956858i \(0.406159\pi\)
\(720\) 0 0
\(721\) 0.364342 + 0.501474i 0.0135688 + 0.0186759i
\(722\) 0 0
\(723\) −5.85157 11.4843i −0.217622 0.427107i
\(724\) 0 0
\(725\) −47.2892 + 6.51637i −1.75627 + 0.242012i
\(726\) 0 0
\(727\) 3.27903 3.27903i 0.121612 0.121612i −0.643681 0.765294i \(-0.722594\pi\)
0.765294 + 0.643681i \(0.222594\pi\)
\(728\) 0 0
\(729\) −1.44390 0.469153i −0.0534779 0.0173760i
\(730\) 0 0
\(731\) −15.8055 + 11.4833i −0.584586 + 0.424726i
\(732\) 0 0
\(733\) 40.6968 + 20.7361i 1.50317 + 0.765904i 0.995420 0.0956003i \(-0.0304771\pi\)
0.507751 + 0.861504i \(0.330477\pi\)
\(734\) 0 0
\(735\) 12.0988 2.77609i 0.446271 0.102398i
\(736\) 0 0
\(737\) 18.9241 + 4.23142i 0.697079 + 0.155866i
\(738\) 0 0
\(739\) 3.07164 + 2.23167i 0.112992 + 0.0820934i 0.642846 0.765995i \(-0.277753\pi\)
−0.529854 + 0.848089i \(0.677753\pi\)
\(740\) 0 0
\(741\) −0.567231 1.74576i −0.0208377 0.0641320i
\(742\) 0 0
\(743\) −6.63736 + 41.9067i −0.243501 + 1.53741i 0.498430 + 0.866930i \(0.333910\pi\)
−0.741931 + 0.670476i \(0.766090\pi\)
\(744\) 0 0
\(745\) 3.13401 12.4982i 0.114821 0.457899i
\(746\) 0 0
\(747\) 27.8924 + 27.8924i 1.02053 + 1.02053i
\(748\) 0 0
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) 3.08775 9.50312i 0.112674 0.346774i −0.878781 0.477225i \(-0.841643\pi\)
0.991455 + 0.130451i \(0.0416427\pi\)
\(752\) 0 0
\(753\) −15.2306 2.41230i −0.555035 0.0879089i
\(754\) 0 0
\(755\) −31.0413 + 12.4930i −1.12971 + 0.454665i
\(756\) 0 0
\(757\) 29.0217 4.59658i 1.05481 0.167065i 0.395140 0.918621i \(-0.370696\pi\)
0.659670 + 0.751555i \(0.270696\pi\)
\(758\) 0 0
\(759\) 1.06807 + 4.16105i 0.0387684 + 0.151037i
\(760\) 0 0
\(761\) −17.8404 + 24.5552i −0.646713 + 0.890124i −0.998951 0.0457864i \(-0.985421\pi\)
0.352238 + 0.935910i \(0.385421\pi\)
\(762\) 0 0
\(763\) 0.829459 1.62790i 0.0300284 0.0589341i
\(764\) 0 0
\(765\) −1.73420 + 19.5196i −0.0627002 + 0.705731i
\(766\) 0 0
\(767\) −26.5507 + 13.5283i −0.958690 + 0.488477i
\(768\) 0 0
\(769\) 37.6421 1.35741 0.678705 0.734411i \(-0.262542\pi\)
0.678705 + 0.734411i \(0.262542\pi\)
\(770\) 0 0
\(771\) 3.75184 0.135119
\(772\) 0 0
\(773\) 22.9995 11.7188i 0.827234 0.421497i 0.0115072 0.999934i \(-0.496337\pi\)
0.815727 + 0.578437i \(0.196337\pi\)
\(774\) 0 0
\(775\) 1.26543 1.21545i 0.0454555 0.0436602i
\(776\) 0 0
\(777\) −0.374589 + 0.735173i −0.0134383 + 0.0263742i
\(778\) 0 0
\(779\) −2.92741 + 4.02923i −0.104885 + 0.144362i
\(780\) 0 0
\(781\) 35.3437 + 13.9964i 1.26470 + 0.500831i
\(782\) 0 0
\(783\) −40.3275 + 6.38724i −1.44119 + 0.228261i
\(784\) 0 0
\(785\) 10.1790 + 4.33688i 0.363302 + 0.154790i
\(786\) 0 0
\(787\) 17.0625 + 2.70244i 0.608213 + 0.0963315i 0.452942 0.891540i \(-0.350375\pi\)
0.155272 + 0.987872i \(0.450375\pi\)
\(788\) 0 0
\(789\) 3.90967 12.0327i 0.139188 0.428376i
\(790\) 0 0
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 12.8994i −0.458070 0.458070i
\(794\) 0 0
\(795\) −15.6145 3.91544i −0.553788 0.138866i
\(796\) 0 0
\(797\) −6.97213 + 44.0203i −0.246965 + 1.55928i 0.482892 + 0.875680i \(0.339586\pi\)
−0.729858 + 0.683599i \(0.760414\pi\)
\(798\) 0 0
\(799\) 14.1615 + 43.5847i 0.500999 + 1.54192i
\(800\) 0 0
\(801\) −15.1535 11.0097i −0.535424 0.389008i
\(802\) 0 0
\(803\) −0.749124 7.93078i −0.0264360 0.279871i
\(804\) 0 0
\(805\) 0.369413 0.589419i 0.0130201 0.0207743i
\(806\) 0 0
\(807\) 8.03556 + 4.09432i 0.282865 + 0.144127i
\(808\) 0 0
\(809\) 12.3255 8.95497i 0.433340 0.314840i −0.349643 0.936883i \(-0.613697\pi\)
0.782983 + 0.622043i \(0.213697\pi\)
\(810\) 0 0
\(811\) 43.3276 + 14.0780i 1.52144 + 0.494345i 0.946183 0.323631i \(-0.104904\pi\)
0.575253 + 0.817976i \(0.304904\pi\)
\(812\) 0 0
\(813\) 10.0502 10.0502i 0.352475 0.352475i
\(814\) 0 0
\(815\) −16.8842 14.7171i −0.591427 0.515518i
\(816\) 0 0
\(817\) 1.77984 + 3.49314i 0.0622688 + 0.122209i
\(818\) 0 0
\(819\) −0.823747 1.13379i −0.0287840 0.0396178i
\(820\) 0 0
\(821\) −27.3071 + 8.87260i −0.953023 + 0.309656i −0.743943 0.668243i \(-0.767047\pi\)
−0.209079 + 0.977899i \(0.567047\pi\)
\(822\) 0 0
\(823\) 4.21701 + 26.6252i 0.146996 + 0.928095i 0.945386 + 0.325954i \(0.105686\pi\)
−0.798390 + 0.602141i \(0.794314\pi\)
\(824\) 0 0
\(825\) 8.63122 10.0142i 0.300501 0.348648i
\(826\) 0 0
\(827\) 6.20779 + 39.1944i 0.215866 + 1.36292i 0.822872 + 0.568227i \(0.192370\pi\)
−0.607006 + 0.794697i \(0.707630\pi\)
\(828\) 0 0
\(829\) 10.3353 3.35814i 0.358959 0.116633i −0.123985 0.992284i \(-0.539567\pi\)
0.482944 + 0.875651i \(0.339567\pi\)
\(830\) 0 0
\(831\) −2.19378 3.01948i −0.0761013 0.104744i
\(832\) 0 0
\(833\) −11.7174 22.9966i −0.405983 0.796786i
\(834\) 0 0
\(835\) −20.3322 17.7226i −0.703625 0.613316i
\(836\) 0 0
\(837\) 1.06120 1.06120i 0.0366805 0.0366805i
\(838\) 0 0
\(839\) 38.3426 + 12.4583i 1.32373 + 0.430107i 0.883775 0.467912i \(-0.154993\pi\)
0.439958 + 0.898019i \(0.354993\pi\)
\(840\) 0 0
\(841\) −50.2797 + 36.5303i −1.73378 + 1.25967i
\(842\) 0 0
\(843\) 9.36879 + 4.77364i 0.322678 + 0.164413i
\(844\) 0 0
\(845\) 4.05793 6.47465i 0.139597 0.222735i
\(846\) 0 0
\(847\) −1.29066 1.66439i −0.0443477 0.0571891i
\(848\) 0 0
\(849\) 14.6966 + 10.6777i 0.504386 + 0.366458i
\(850\) 0 0
\(851\) −2.71386 8.35241i −0.0930300 0.286317i
\(852\) 0 0
\(853\) −2.18326 + 13.7845i −0.0747533 + 0.471974i 0.921705 + 0.387890i \(0.126796\pi\)
−0.996459 + 0.0840831i \(0.973204\pi\)
\(854\) 0 0
\(855\) 3.81435 + 0.956477i 0.130448 + 0.0327108i
\(856\) 0 0
\(857\) 26.9229 + 26.9229i 0.919668 + 0.919668i 0.997005 0.0773373i \(-0.0246418\pi\)
−0.0773373 + 0.997005i \(0.524642\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i 0.949906 + 0.312535i \(0.101178\pi\)
−0.949906 + 0.312535i \(0.898822\pi\)
\(860\) 0 0
\(861\) 0.315849 0.972084i 0.0107641 0.0331285i
\(862\) 0 0
\(863\) 12.0033 + 1.90114i 0.408597 + 0.0647154i 0.357350 0.933971i \(-0.383680\pi\)
0.0512472 + 0.998686i \(0.483680\pi\)
\(864\) 0 0
\(865\) 25.6424 + 10.9253i 0.871866 + 0.371470i
\(866\) 0 0
\(867\) 2.56834 0.406785i 0.0872253 0.0138151i
\(868\) 0 0
\(869\) −0.139785 + 2.21935i −0.00474187 + 0.0752863i
\(870\) 0 0
\(871\) −10.6384 + 14.6425i −0.360469 + 0.496143i
\(872\) 0 0
\(873\) 1.48025 2.90515i 0.0500987 0.0983243i
\(874\) 0 0
\(875\) −2.13821 + 0.103409i −0.0722848 + 0.00349585i
\(876\) 0 0
\(877\) −11.4361 + 5.82698i −0.386169 + 0.196763i −0.636287 0.771452i \(-0.719531\pi\)
0.250118 + 0.968215i \(0.419531\pi\)
\(878\) 0 0
\(879\) 5.76213 0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) 0 0
\(883\) −38.8377 + 19.7888i −1.30699 + 0.665947i −0.962100 0.272695i \(-0.912085\pi\)
−0.344893 + 0.938642i \(0.612085\pi\)
\(884\) 0 0
\(885\) −1.51858 + 17.0926i −0.0510465 + 0.574562i
\(886\) 0 0
\(887\) 4.72114 9.26576i 0.158520 0.311114i −0.798062 0.602575i \(-0.794141\pi\)
0.956583 + 0.291461i \(0.0941414\pi\)
\(888\) 0 0
\(889\) 1.63945 2.25651i 0.0549853 0.0756808i
\(890\) 0 0
\(891\) −7.78863 + 9.41351i −0.260929 + 0.315364i
\(892\) 0 0
\(893\) 9.08308 1.43862i 0.303954 0.0481415i
\(894\) 0 0
\(895\) 41.8578 16.8462i 1.39915 0.563106i
\(896\) 0 0
\(897\) −3.96029 0.627249i −0.132230 0.0209432i
\(898\) 0 0
\(899\) 1.03530 3.18633i 0.0345292 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) 0 0
\(903\) −0.568922 0.568922i −0.0189325 0.0189325i
\(904\) 0 0
\(905\) 2.50710 9.99811i 0.0833388 0.332349i
\(906\) 0 0
\(907\) −2.55097 + 16.1062i −0.0847036 + 0.534798i 0.908451 + 0.417991i \(0.137266\pi\)
−0.993155 + 0.116806i \(0.962734\pi\)
\(908\) 0 0
\(909\) −3.52571 10.8510i −0.116940 0.359906i
\(910\) 0 0
\(911\) −14.3281 10.4099i −0.474710 0.344897i 0.324564 0.945864i \(-0.394782\pi\)
−0.799274 + 0.600967i \(0.794782\pi\)
\(912\) 0 0
\(913\) −50.7821 + 21.9712i −1.68064 + 0.727140i
\(914\) 0 0
\(915\) −10.2391 + 2.34939i −0.338495 + 0.0776683i
\(916\) 0 0
\(917\) −1.66665 0.849203i −0.0550378 0.0280431i
\(918\) 0 0
\(919\) 7.38632 5.36648i 0.243652 0.177024i −0.459257 0.888304i \(-0.651884\pi\)
0.702909 + 0.711280i \(0.251884\pi\)
\(920\) 0 0
\(921\) 21.5818 + 7.01234i 0.711143 + 0.231064i
\(922\) 0 0
\(923\) −25.0888 + 25.0888i −0.825807 + 0.825807i
\(924\) 0 0
\(925\) −16.3231 + 21.5407i −0.536701 + 0.708254i
\(926\) 0 0
\(927\) 3.47505 + 6.82017i 0.114136 + 0.224004i
\(928\) 0 0
\(929\) 1.06529 + 1.46625i 0.0349511 + 0.0481061i 0.826135 0.563472i \(-0.190535\pi\)
−0.791184 + 0.611578i \(0.790535\pi\)
\(930\) 0 0
\(931\) −4.92578 + 1.60048i −0.161436 + 0.0524537i
\(932\) 0 0
\(933\) 0.937332 + 5.91808i 0.0306869 + 0.193749i
\(934\) 0 0
\(935\) −24.5613 12.3429i −0.803240 0.403655i
\(936\) 0 0
\(937\) −2.37143 14.9726i −0.0774711 0.489133i −0.995666 0.0930039i \(-0.970353\pi\)
0.918195 0.396130i \(-0.129647\pi\)
\(938\) 0 0
\(939\) 1.02061 0.331616i 0.0333063 0.0108219i
\(940\) 0 0
\(941\) −12.8308 17.6600i −0.418271 0.575701i 0.546940 0.837172i \(-0.315792\pi\)
−0.965211 + 0.261471i \(0.915792\pi\)
\(942\) 0 0
\(943\) 4.93902 + 9.69338i 0.160837 + 0.315660i
\(944\) 0 0
\(945\) −1.82673 + 0.125268i −0.0594235 + 0.00407498i
\(946\) 0 0
\(947\) −6.90662 + 6.90662i −0.224435 + 0.224435i −0.810363 0.585928i \(-0.800730\pi\)
0.585928 + 0.810363i \(0.300730\pi\)
\(948\) 0 0
\(949\) 7.07131 + 2.29761i 0.229545 + 0.0745835i
\(950\) 0 0
\(951\) 7.30875 5.31012i 0.237003 0.172192i
\(952\) 0 0
\(953\) −11.6216 5.92153i −0.376462 0.191817i 0.255513 0.966806i \(-0.417756\pi\)
−0.631975 + 0.774989i \(0.717756\pi\)
\(954\) 0 0
\(955\) 11.9864 + 7.51238i 0.387871 + 0.243095i
\(956\) 0 0
\(957\) 5.50846 24.6354i 0.178063 0.796349i
\(958\) 0 0
\(959\) 0.670750 + 0.487328i 0.0216596 + 0.0157367i
\(960\) 0 0
\(961\) −9.54147 29.3656i −0.307789 0.947279i
\(962\) 0 0
\(963\) −4.08921 + 25.8182i −0.131773 + 0.831981i
\(964\) 0 0
\(965\) −6.81621 11.3787i −0.219422 0.366294i
\(966\) 0 0
\(967\) 13.6319 + 13.6319i 0.438372 + 0.438372i 0.891464 0.453092i \(-0.149679\pi\)
−0.453092 + 0.891464i \(0.649679\pi\)
\(968\) 0 0
\(969\) 2.19785i 0.0706051i
\(970\) 0 0
\(971\) −1.26967 + 3.90765i −0.0407457 + 0.125403i −0.969360 0.245643i \(-0.921001\pi\)
0.928615 + 0.371046i \(0.121001\pi\)
\(972\) 0 0
\(973\) −1.98769 0.314819i −0.0637224 0.0100926i
\(974\) 0 0
\(975\) 5.37941 + 11.1051i 0.172279 + 0.355649i
\(976\) 0 0
\(977\) 30.3314 4.80402i 0.970386 0.153694i 0.348935 0.937147i \(-0.386543\pi\)
0.621451 + 0.783453i \(0.286543\pi\)
\(978\) 0 0
\(979\) 22.1848 14.0768i 0.709030 0.449895i
\(980\) 0 0
\(981\) 13.2614 18.2528i 0.423405 0.582767i
\(982\) 0 0
\(983\) 12.5871 24.7035i 0.401465 0.787919i −0.598447 0.801162i \(-0.704215\pi\)
0.999912 + 0.0132429i \(0.00421546\pi\)
\(984\) 0 0
\(985\) −31.1999 2.77194i −0.994113 0.0883212i
\(986\) 0 0
\(987\) −1.68162 + 0.856827i −0.0535265 + 0.0272731i
\(988\) 0 0
\(989\) 8.56376 0.272312
\(990\) 0 0
\(991\) −9.10087 −0.289099 −0.144549 0.989498i \(-0.546173\pi\)
−0.144549 + 0.989498i \(0.546173\pi\)
\(992\) 0 0
\(993\) −12.5763 + 6.40795i −0.399097 + 0.203350i
\(994\) 0 0
\(995\) 19.2044 + 22.9496i 0.608822 + 0.727551i
\(996\) 0 0
\(997\) 13.1070 25.7239i 0.415103 0.814685i −0.584891 0.811112i \(-0.698863\pi\)
0.999994 0.00357282i \(-0.00113727\pi\)
\(998\) 0 0
\(999\) −13.5878 + 18.7019i −0.429898 + 0.591703i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.a.513.1 32
4.3 odd 2 55.2.l.a.18.1 yes 32
5.2 odd 4 inner 880.2.cm.a.337.4 32
11.8 odd 10 inner 880.2.cm.a.833.4 32
12.11 even 2 495.2.bj.a.73.4 32
20.3 even 4 275.2.bm.b.7.1 32
20.7 even 4 55.2.l.a.7.4 32
20.19 odd 2 275.2.bm.b.18.4 32
44.3 odd 10 605.2.m.e.118.1 32
44.7 even 10 605.2.m.d.233.1 32
44.15 odd 10 605.2.m.c.233.4 32
44.19 even 10 55.2.l.a.8.4 yes 32
44.27 odd 10 605.2.e.b.483.14 32
44.31 odd 10 605.2.m.d.578.1 32
44.35 even 10 605.2.m.c.578.4 32
44.39 even 10 605.2.e.b.483.3 32
44.43 even 2 605.2.m.e.403.4 32
55.52 even 20 inner 880.2.cm.a.657.1 32
60.47 odd 4 495.2.bj.a.172.1 32
132.107 odd 10 495.2.bj.a.118.1 32
220.7 odd 20 605.2.m.d.112.1 32
220.19 even 10 275.2.bm.b.118.1 32
220.27 even 20 605.2.e.b.362.3 32
220.47 even 20 605.2.m.e.602.4 32
220.63 odd 20 275.2.bm.b.107.4 32
220.87 odd 4 605.2.m.e.282.1 32
220.107 odd 20 55.2.l.a.52.1 yes 32
220.127 odd 20 605.2.e.b.362.14 32
220.147 even 20 605.2.m.c.112.4 32
220.167 odd 20 605.2.m.c.457.4 32
220.207 even 20 605.2.m.d.457.1 32
660.107 even 20 495.2.bj.a.217.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 20.7 even 4
55.2.l.a.8.4 yes 32 44.19 even 10
55.2.l.a.18.1 yes 32 4.3 odd 2
55.2.l.a.52.1 yes 32 220.107 odd 20
275.2.bm.b.7.1 32 20.3 even 4
275.2.bm.b.18.4 32 20.19 odd 2
275.2.bm.b.107.4 32 220.63 odd 20
275.2.bm.b.118.1 32 220.19 even 10
495.2.bj.a.73.4 32 12.11 even 2
495.2.bj.a.118.1 32 132.107 odd 10
495.2.bj.a.172.1 32 60.47 odd 4
495.2.bj.a.217.4 32 660.107 even 20
605.2.e.b.362.3 32 220.27 even 20
605.2.e.b.362.14 32 220.127 odd 20
605.2.e.b.483.3 32 44.39 even 10
605.2.e.b.483.14 32 44.27 odd 10
605.2.m.c.112.4 32 220.147 even 20
605.2.m.c.233.4 32 44.15 odd 10
605.2.m.c.457.4 32 220.167 odd 20
605.2.m.c.578.4 32 44.35 even 10
605.2.m.d.112.1 32 220.7 odd 20
605.2.m.d.233.1 32 44.7 even 10
605.2.m.d.457.1 32 220.207 even 20
605.2.m.d.578.1 32 44.31 odd 10
605.2.m.e.118.1 32 44.3 odd 10
605.2.m.e.282.1 32 220.87 odd 4
605.2.m.e.403.4 32 44.43 even 2
605.2.m.e.602.4 32 220.47 even 20
880.2.cm.a.337.4 32 5.2 odd 4 inner
880.2.cm.a.513.1 32 1.1 even 1 trivial
880.2.cm.a.657.1 32 55.52 even 20 inner
880.2.cm.a.833.4 32 11.8 odd 10 inner