Properties

Label 495.2.bj.a.118.1
Level $495$
Weight $2$
Character 495.118
Analytic conductor $3.953$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(28,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 118.1
Character \(\chi\) \(=\) 495.118
Dual form 495.2.bj.a.172.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50135 - 0.237790i) q^{2} +(0.295389 + 0.0959778i) q^{4} +(1.89470 + 1.18749i) q^{5} +(0.170602 - 0.0869260i) q^{7} +(2.28811 + 1.16585i) q^{8} +(-2.56223 - 2.23337i) q^{10} +(-1.77694 + 2.80044i) q^{11} +(-0.484259 + 3.05749i) q^{13} +(-0.276803 + 0.0899388i) q^{14} +(-3.66057 - 2.65956i) q^{16} +(-0.579827 - 3.66088i) q^{17} +(-0.229844 - 0.707388i) q^{19} +(0.445701 + 0.532619i) q^{20} +(3.33373 - 3.78190i) q^{22} +(1.14886 + 1.14886i) q^{23} +(2.17976 + 4.49985i) q^{25} +(1.45408 - 4.47521i) q^{26} +(0.0587369 - 0.00930302i) q^{28} +(-2.95025 + 9.07993i) q^{29} +(-0.283900 + 0.206266i) q^{31} +(1.23166 + 1.23166i) q^{32} +5.63413i q^{34} +(0.426463 + 0.0378887i) q^{35} +(2.45398 + 4.81621i) q^{37} +(0.176866 + 1.11669i) q^{38} +(2.95085 + 4.92603i) q^{40} +(-6.36824 + 2.06917i) q^{41} +(3.72708 - 3.72708i) q^{43} +(-0.793670 + 0.656674i) q^{44} +(-1.45165 - 1.99802i) q^{46} +(11.0165 + 5.61318i) q^{47} +(-4.09295 + 5.63346i) q^{49} +(-2.20256 - 7.27417i) q^{50} +(-0.436496 + 0.856672i) q^{52} +(8.91914 + 1.41265i) q^{53} +(-6.69225 + 3.19590i) q^{55} +0.491699 q^{56} +(6.58847 - 12.9306i) q^{58} +(9.15496 + 2.97463i) q^{59} +(-3.46383 + 4.76756i) q^{61} +(0.475281 - 0.242168i) q^{62} +(3.76284 + 5.17911i) q^{64} +(-4.54825 + 5.21797i) q^{65} +(4.13426 - 4.13426i) q^{67} +(0.180089 - 1.13704i) q^{68} +(-0.631259 - 0.158293i) q^{70} +(-9.27272 - 6.73702i) q^{71} +(1.09042 + 2.14008i) q^{73} +(-2.53903 - 7.81434i) q^{74} -0.231015i q^{76} +(-0.0597184 + 0.632224i) q^{77} +(-0.542434 + 0.394101i) q^{79} +(-3.77749 - 9.38594i) q^{80} +(10.0530 - 1.59224i) q^{82} +(-16.4776 + 2.60980i) q^{83} +(3.24865 - 7.62480i) q^{85} +(-6.48191 + 4.70938i) q^{86} +(-7.33074 + 4.33608i) q^{88} -7.92190i q^{89} +(0.183160 + 0.563709i) q^{91} +(0.229095 + 0.449625i) q^{92} +(-15.2048 - 11.0469i) q^{94} +(0.404527 - 1.61322i) q^{95} +(-0.215721 + 1.36201i) q^{97} +(7.48452 - 7.48452i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8} + 24 q^{11} - 10 q^{13} - 8 q^{16} - 16 q^{20} + 10 q^{22} + 24 q^{23} + 16 q^{25} - 20 q^{26} + 50 q^{28} - 28 q^{31} + 10 q^{35} - 8 q^{37} - 10 q^{38} - 50 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50135 0.237790i −1.06161 0.168143i −0.398884 0.917002i \(-0.630602\pi\)
−0.662730 + 0.748859i \(0.730602\pi\)
\(3\) 0 0
\(4\) 0.295389 + 0.0959778i 0.147695 + 0.0479889i
\(5\) 1.89470 + 1.18749i 0.847335 + 0.531060i
\(6\) 0 0
\(7\) 0.170602 0.0869260i 0.0644815 0.0328550i −0.421452 0.906851i \(-0.638480\pi\)
0.485934 + 0.873996i \(0.338480\pi\)
\(8\) 2.28811 + 1.16585i 0.808970 + 0.412191i
\(9\) 0 0
\(10\) −2.56223 2.23337i −0.810248 0.706253i
\(11\) −1.77694 + 2.80044i −0.535768 + 0.844365i
\(12\) 0 0
\(13\) −0.484259 + 3.05749i −0.134309 + 0.847995i 0.824896 + 0.565285i \(0.191234\pi\)
−0.959205 + 0.282711i \(0.908766\pi\)
\(14\) −0.276803 + 0.0899388i −0.0739787 + 0.0240372i
\(15\) 0 0
\(16\) −3.66057 2.65956i −0.915143 0.664890i
\(17\) −0.579827 3.66088i −0.140629 0.887894i −0.952606 0.304206i \(-0.901609\pi\)
0.811978 0.583688i \(-0.198391\pi\)
\(18\) 0 0
\(19\) −0.229844 0.707388i −0.0527299 0.162286i 0.921224 0.389033i \(-0.127191\pi\)
−0.973954 + 0.226747i \(0.927191\pi\)
\(20\) 0.445701 + 0.532619i 0.0996618 + 0.119097i
\(21\) 0 0
\(22\) 3.33373 3.78190i 0.710753 0.806304i
\(23\) 1.14886 + 1.14886i 0.239553 + 0.239553i 0.816665 0.577112i \(-0.195820\pi\)
−0.577112 + 0.816665i \(0.695820\pi\)
\(24\) 0 0
\(25\) 2.17976 + 4.49985i 0.435952 + 0.899970i
\(26\) 1.45408 4.47521i 0.285169 0.877660i
\(27\) 0 0
\(28\) 0.0587369 0.00930302i 0.0111002 0.00175811i
\(29\) −2.95025 + 9.07993i −0.547847 + 1.68610i 0.166275 + 0.986079i \(0.446826\pi\)
−0.714122 + 0.700021i \(0.753174\pi\)
\(30\) 0 0
\(31\) −0.283900 + 0.206266i −0.0509900 + 0.0370464i −0.612988 0.790092i \(-0.710033\pi\)
0.561998 + 0.827138i \(0.310033\pi\)
\(32\) 1.23166 + 1.23166i 0.217729 + 0.217729i
\(33\) 0 0
\(34\) 5.63413i 0.966246i
\(35\) 0.426463 + 0.0378887i 0.0720853 + 0.00640437i
\(36\) 0 0
\(37\) 2.45398 + 4.81621i 0.403432 + 0.791780i 0.999941 0.0108264i \(-0.00344622\pi\)
−0.596510 + 0.802606i \(0.703446\pi\)
\(38\) 0.176866 + 1.11669i 0.0286915 + 0.181151i
\(39\) 0 0
\(40\) 2.95085 + 4.92603i 0.466570 + 0.778874i
\(41\) −6.36824 + 2.06917i −0.994552 + 0.323150i −0.760687 0.649119i \(-0.775138\pi\)
−0.233866 + 0.972269i \(0.575138\pi\)
\(42\) 0 0
\(43\) 3.72708 3.72708i 0.568374 0.568374i −0.363299 0.931673i \(-0.618350\pi\)
0.931673 + 0.363299i \(0.118350\pi\)
\(44\) −0.793670 + 0.656674i −0.119650 + 0.0989973i
\(45\) 0 0
\(46\) −1.45165 1.99802i −0.214034 0.294592i
\(47\) 11.0165 + 5.61318i 1.60692 + 0.818766i 0.999706 + 0.0242272i \(0.00771250\pi\)
0.607213 + 0.794539i \(0.292287\pi\)
\(48\) 0 0
\(49\) −4.09295 + 5.63346i −0.584707 + 0.804780i
\(50\) −2.20256 7.27417i −0.311488 1.02872i
\(51\) 0 0
\(52\) −0.436496 + 0.856672i −0.0605311 + 0.118799i
\(53\) 8.91914 + 1.41265i 1.22514 + 0.194043i 0.735282 0.677761i \(-0.237050\pi\)
0.489855 + 0.871804i \(0.337050\pi\)
\(54\) 0 0
\(55\) −6.69225 + 3.19590i −0.902383 + 0.430935i
\(56\) 0.491699 0.0657061
\(57\) 0 0
\(58\) 6.58847 12.9306i 0.865108 1.69787i
\(59\) 9.15496 + 2.97463i 1.19187 + 0.387263i 0.836765 0.547562i \(-0.184444\pi\)
0.355108 + 0.934825i \(0.384444\pi\)
\(60\) 0 0
\(61\) −3.46383 + 4.76756i −0.443498 + 0.610423i −0.970985 0.239140i \(-0.923134\pi\)
0.527487 + 0.849563i \(0.323134\pi\)
\(62\) 0.475281 0.242168i 0.0603608 0.0307554i
\(63\) 0 0
\(64\) 3.76284 + 5.17911i 0.470356 + 0.647389i
\(65\) −4.54825 + 5.21797i −0.564141 + 0.647209i
\(66\) 0 0
\(67\) 4.13426 4.13426i 0.505081 0.505081i −0.407932 0.913012i \(-0.633750\pi\)
0.913012 + 0.407932i \(0.133750\pi\)
\(68\) 0.180089 1.13704i 0.0218390 0.137886i
\(69\) 0 0
\(70\) −0.631259 0.158293i −0.0754499 0.0189196i
\(71\) −9.27272 6.73702i −1.10047 0.799538i −0.119333 0.992854i \(-0.538075\pi\)
−0.981136 + 0.193317i \(0.938075\pi\)
\(72\) 0 0
\(73\) 1.09042 + 2.14008i 0.127624 + 0.250477i 0.945973 0.324245i \(-0.105110\pi\)
−0.818349 + 0.574722i \(0.805110\pi\)
\(74\) −2.53903 7.81434i −0.295156 0.908398i
\(75\) 0 0
\(76\) 0.231015i 0.0264992i
\(77\) −0.0597184 + 0.632224i −0.00680554 + 0.0720486i
\(78\) 0 0
\(79\) −0.542434 + 0.394101i −0.0610286 + 0.0443399i −0.617881 0.786271i \(-0.712009\pi\)
0.556853 + 0.830611i \(0.312009\pi\)
\(80\) −3.77749 9.38594i −0.422336 1.04938i
\(81\) 0 0
\(82\) 10.0530 1.59224i 1.11017 0.175833i
\(83\) −16.4776 + 2.60980i −1.80865 + 0.286463i −0.967228 0.253909i \(-0.918284\pi\)
−0.841426 + 0.540372i \(0.818284\pi\)
\(84\) 0 0
\(85\) 3.24865 7.62480i 0.352365 0.827025i
\(86\) −6.48191 + 4.70938i −0.698962 + 0.507826i
\(87\) 0 0
\(88\) −7.33074 + 4.33608i −0.781460 + 0.462227i
\(89\) 7.92190i 0.839720i −0.907589 0.419860i \(-0.862079\pi\)
0.907589 0.419860i \(-0.137921\pi\)
\(90\) 0 0
\(91\) 0.183160 + 0.563709i 0.0192004 + 0.0590927i
\(92\) 0.229095 + 0.449625i 0.0238848 + 0.0468766i
\(93\) 0 0
\(94\) −15.2048 11.0469i −1.56826 1.13941i
\(95\) 0.404527 1.61322i 0.0415036 0.165513i
\(96\) 0 0
\(97\) −0.215721 + 1.36201i −0.0219032 + 0.138291i −0.996217 0.0869051i \(-0.972302\pi\)
0.974313 + 0.225196i \(0.0723023\pi\)
\(98\) 7.48452 7.48452i 0.756051 0.756051i
\(99\) 0 0
\(100\) 0.211991 + 1.53842i 0.0211991 + 0.153842i
\(101\) 2.83633 + 3.90387i 0.282225 + 0.388449i 0.926469 0.376370i \(-0.122828\pi\)
−0.644244 + 0.764820i \(0.722828\pi\)
\(102\) 0 0
\(103\) 2.88449 1.46972i 0.284217 0.144816i −0.306071 0.952009i \(-0.599014\pi\)
0.590287 + 0.807193i \(0.299014\pi\)
\(104\) −4.67262 + 6.43131i −0.458188 + 0.630641i
\(105\) 0 0
\(106\) −13.0548 4.24177i −1.26800 0.411997i
\(107\) 5.01911 9.85055i 0.485215 0.952289i −0.510505 0.859875i \(-0.670542\pi\)
0.995721 0.0924142i \(-0.0294584\pi\)
\(108\) 0 0
\(109\) 9.54212 0.913969 0.456985 0.889475i \(-0.348929\pi\)
0.456985 + 0.889475i \(0.348929\pi\)
\(110\) 10.8074 3.20681i 1.03044 0.305757i
\(111\) 0 0
\(112\) −0.855686 0.135527i −0.0808547 0.0128061i
\(113\) 1.88301 3.69562i 0.177139 0.347654i −0.785317 0.619094i \(-0.787500\pi\)
0.962455 + 0.271440i \(0.0874999\pi\)
\(114\) 0 0
\(115\) 0.812486 + 3.54099i 0.0757647 + 0.330199i
\(116\) −1.74294 + 2.39895i −0.161828 + 0.222737i
\(117\) 0 0
\(118\) −13.0374 6.64291i −1.20019 0.611529i
\(119\) −0.417145 0.574151i −0.0382397 0.0526324i
\(120\) 0 0
\(121\) −4.68496 9.95245i −0.425905 0.904768i
\(122\) 6.33410 6.33410i 0.573462 0.573462i
\(123\) 0 0
\(124\) −0.103658 + 0.0336805i −0.00930877 + 0.00302460i
\(125\) −1.21352 + 11.1143i −0.108541 + 0.994092i
\(126\) 0 0
\(127\) −2.27881 14.3879i −0.202212 1.27672i −0.854782 0.518987i \(-0.826309\pi\)
0.652570 0.757728i \(-0.273691\pi\)
\(128\) −5.99935 11.7744i −0.530273 1.04072i
\(129\) 0 0
\(130\) 8.06929 6.75246i 0.707723 0.592230i
\(131\) 9.76926i 0.853544i −0.904359 0.426772i \(-0.859651\pi\)
0.904359 0.426772i \(-0.140349\pi\)
\(132\) 0 0
\(133\) −0.100702 0.100702i −0.00873200 0.00873200i
\(134\) −7.19006 + 5.22388i −0.621126 + 0.451275i
\(135\) 0 0
\(136\) 2.94133 9.05250i 0.252217 0.776245i
\(137\) −4.27681 + 0.677380i −0.365392 + 0.0578725i −0.336431 0.941708i \(-0.609220\pi\)
−0.0289612 + 0.999581i \(0.509220\pi\)
\(138\) 0 0
\(139\) 3.24794 9.99613i 0.275487 0.847860i −0.713604 0.700550i \(-0.752938\pi\)
0.989090 0.147311i \(-0.0470618\pi\)
\(140\) 0.122336 + 0.0521228i 0.0103393 + 0.00440518i
\(141\) 0 0
\(142\) 12.3196 + 12.3196i 1.03384 + 1.03384i
\(143\) −7.70183 6.78912i −0.644059 0.567735i
\(144\) 0 0
\(145\) −16.3721 + 13.7003i −1.35963 + 1.13775i
\(146\) −1.12822 3.47229i −0.0933719 0.287369i
\(147\) 0 0
\(148\) 0.262630 + 1.65818i 0.0215881 + 0.136302i
\(149\) −4.66189 3.38706i −0.381917 0.277479i 0.380218 0.924897i \(-0.375849\pi\)
−0.762135 + 0.647418i \(0.775849\pi\)
\(150\) 0 0
\(151\) −14.2318 + 4.62419i −1.15817 + 0.376311i −0.824214 0.566278i \(-0.808383\pi\)
−0.333953 + 0.942590i \(0.608383\pi\)
\(152\) 0.298800 1.88655i 0.0242358 0.153019i
\(153\) 0 0
\(154\) 0.239995 0.934987i 0.0193393 0.0753434i
\(155\) −0.782843 + 0.0536836i −0.0628795 + 0.00431197i
\(156\) 0 0
\(157\) 4.40881 + 2.24640i 0.351861 + 0.179282i 0.620983 0.783824i \(-0.286733\pi\)
−0.269122 + 0.963106i \(0.586733\pi\)
\(158\) 0.908095 0.462698i 0.0722442 0.0368103i
\(159\) 0 0
\(160\) 0.871047 + 3.79621i 0.0688623 + 0.300117i
\(161\) 0.295863 + 0.0961317i 0.0233173 + 0.00757624i
\(162\) 0 0
\(163\) −9.89335 1.56695i −0.774907 0.122733i −0.243558 0.969886i \(-0.578315\pi\)
−0.531349 + 0.847153i \(0.678315\pi\)
\(164\) −2.07970 −0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) −11.9137 1.88695i −0.921913 0.146017i −0.322604 0.946534i \(-0.604558\pi\)
−0.599310 + 0.800517i \(0.704558\pi\)
\(168\) 0 0
\(169\) 3.24999 + 1.05599i 0.250000 + 0.0812298i
\(170\) −6.69045 + 10.6750i −0.513134 + 0.818734i
\(171\) 0 0
\(172\) 1.45866 0.743222i 0.111221 0.0566702i
\(173\) 11.1065 + 5.65903i 0.844410 + 0.430248i 0.821991 0.569501i \(-0.192863\pi\)
0.0224186 + 0.999749i \(0.492863\pi\)
\(174\) 0 0
\(175\) 0.763025 + 0.578206i 0.0576793 + 0.0437082i
\(176\) 13.9526 5.52533i 1.05171 0.416488i
\(177\) 0 0
\(178\) −1.88375 + 11.8935i −0.141193 + 0.891458i
\(179\) 19.1909 6.23551i 1.43440 0.466064i 0.514252 0.857639i \(-0.328070\pi\)
0.920146 + 0.391575i \(0.128070\pi\)
\(180\) 0 0
\(181\) −3.72935 2.70953i −0.277200 0.201398i 0.440495 0.897755i \(-0.354803\pi\)
−0.717695 + 0.696357i \(0.754803\pi\)
\(182\) −0.140943 0.889877i −0.0104474 0.0659620i
\(183\) 0 0
\(184\) 1.28932 + 3.96811i 0.0950497 + 0.292533i
\(185\) −1.06962 + 12.0393i −0.0786403 + 0.885148i
\(186\) 0 0
\(187\) 11.2824 + 4.88140i 0.825051 + 0.356963i
\(188\) 2.71541 + 2.71541i 0.198042 + 0.198042i
\(189\) 0 0
\(190\) −0.990944 + 2.32582i −0.0718907 + 0.168732i
\(191\) −1.95493 + 6.01667i −0.141454 + 0.435351i −0.996538 0.0831389i \(-0.973505\pi\)
0.855084 + 0.518490i \(0.173505\pi\)
\(192\) 0 0
\(193\) 5.85885 0.927951i 0.421729 0.0667954i 0.0580368 0.998314i \(-0.481516\pi\)
0.363692 + 0.931519i \(0.381516\pi\)
\(194\) 0.647745 1.99355i 0.0465054 0.143129i
\(195\) 0 0
\(196\) −1.74970 + 1.27123i −0.124979 + 0.0908022i
\(197\) 9.90515 + 9.90515i 0.705713 + 0.705713i 0.965631 0.259918i \(-0.0836955\pi\)
−0.259918 + 0.965631i \(0.583696\pi\)
\(198\) 0 0
\(199\) 13.3828i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(200\) −0.258626 + 12.8374i −0.0182876 + 0.907744i
\(201\) 0 0
\(202\) −3.33001 6.53551i −0.234299 0.459837i
\(203\) 0.285964 + 1.80551i 0.0200708 + 0.126722i
\(204\) 0 0
\(205\) −14.5230 3.64175i −1.01433 0.254351i
\(206\) −4.68010 + 1.52066i −0.326078 + 0.105949i
\(207\) 0 0
\(208\) 9.90424 9.90424i 0.686736 0.686736i
\(209\) 2.38942 + 0.613321i 0.165280 + 0.0424243i
\(210\) 0 0
\(211\) 3.48696 + 4.79939i 0.240052 + 0.330404i 0.911996 0.410198i \(-0.134540\pi\)
−0.671944 + 0.740602i \(0.734540\pi\)
\(212\) 2.49903 + 1.27332i 0.171634 + 0.0874521i
\(213\) 0 0
\(214\) −9.87779 + 13.5956i −0.675232 + 0.929377i
\(215\) 11.4875 2.63584i 0.783444 0.179763i
\(216\) 0 0
\(217\) −0.0305041 + 0.0598677i −0.00207075 + 0.00406408i
\(218\) −14.3260 2.26902i −0.970282 0.153678i
\(219\) 0 0
\(220\) −2.28355 + 0.301727i −0.153957 + 0.0203424i
\(221\) 11.4739 0.771818
\(222\) 0 0
\(223\) 9.64984 18.9389i 0.646201 1.26824i −0.302826 0.953046i \(-0.597930\pi\)
0.949027 0.315195i \(-0.102070\pi\)
\(224\) 0.317188 + 0.103060i 0.0211930 + 0.00688602i
\(225\) 0 0
\(226\) −3.70584 + 5.10065i −0.246509 + 0.339290i
\(227\) −11.6456 + 5.93372i −0.772944 + 0.393835i −0.795533 0.605910i \(-0.792809\pi\)
0.0225888 + 0.999745i \(0.492809\pi\)
\(228\) 0 0
\(229\) −9.65796 13.2930i −0.638216 0.878429i 0.360303 0.932835i \(-0.382673\pi\)
−0.998519 + 0.0544066i \(0.982673\pi\)
\(230\) −0.377812 5.50946i −0.0249122 0.363283i
\(231\) 0 0
\(232\) −17.3363 + 17.3363i −1.13819 + 1.13819i
\(233\) −2.44720 + 15.4510i −0.160321 + 1.01223i 0.768000 + 0.640450i \(0.221252\pi\)
−0.928321 + 0.371779i \(0.878748\pi\)
\(234\) 0 0
\(235\) 14.2073 + 23.7172i 0.926785 + 1.54714i
\(236\) 2.41878 + 1.75734i 0.157449 + 0.114393i
\(237\) 0 0
\(238\) 0.489753 + 0.961194i 0.0317460 + 0.0623050i
\(239\) −1.63214 5.02322i −0.105575 0.324925i 0.884290 0.466938i \(-0.154643\pi\)
−0.989865 + 0.142012i \(0.954643\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i −0.853726 0.520722i \(-0.825663\pi\)
0.853726 0.520722i \(-0.174337\pi\)
\(242\) 4.66716 + 16.0561i 0.300016 + 1.03213i
\(243\) 0 0
\(244\) −1.48076 + 1.07583i −0.0947959 + 0.0688732i
\(245\) −14.4445 + 5.81339i −0.922828 + 0.371404i
\(246\) 0 0
\(247\) 2.27413 0.360188i 0.144700 0.0229182i
\(248\) −0.890071 + 0.140973i −0.0565196 + 0.00895182i
\(249\) 0 0
\(250\) 4.46479 16.3978i 0.282378 1.03709i
\(251\) 15.6486 11.3694i 0.987729 0.717627i 0.0283063 0.999599i \(-0.490989\pi\)
0.959423 + 0.281972i \(0.0909886\pi\)
\(252\) 0 0
\(253\) −5.25876 + 1.17586i −0.330615 + 0.0739254i
\(254\) 22.1431i 1.38938i
\(255\) 0 0
\(256\) 2.25079 + 6.92722i 0.140674 + 0.432951i
\(257\) −2.13653 4.19318i −0.133273 0.261563i 0.814720 0.579855i \(-0.196891\pi\)
−0.947993 + 0.318292i \(0.896891\pi\)
\(258\) 0 0
\(259\) 0.837308 + 0.608340i 0.0520278 + 0.0378004i
\(260\) −1.84431 + 1.10480i −0.114379 + 0.0685169i
\(261\) 0 0
\(262\) −2.32303 + 14.6671i −0.143517 + 0.906134i
\(263\) 11.2218 11.2218i 0.691964 0.691964i −0.270700 0.962664i \(-0.587255\pi\)
0.962664 + 0.270700i \(0.0872550\pi\)
\(264\) 0 0
\(265\) 15.2216 + 13.2679i 0.935053 + 0.815040i
\(266\) 0.127243 + 0.175135i 0.00780178 + 0.0107382i
\(267\) 0 0
\(268\) 1.61801 0.824419i 0.0988359 0.0503594i
\(269\) −6.64926 + 9.15192i −0.405412 + 0.558002i −0.962092 0.272725i \(-0.912075\pi\)
0.556680 + 0.830727i \(0.312075\pi\)
\(270\) 0 0
\(271\) 16.9556 + 5.50921i 1.02998 + 0.334661i 0.774782 0.632228i \(-0.217859\pi\)
0.255198 + 0.966889i \(0.417859\pi\)
\(272\) −7.61384 + 14.9430i −0.461657 + 0.906052i
\(273\) 0 0
\(274\) 6.58205 0.397636
\(275\) −16.4749 1.89169i −0.993472 0.114073i
\(276\) 0 0
\(277\) −4.62395 0.732361i −0.277826 0.0440033i 0.0159666 0.999873i \(-0.494917\pi\)
−0.293793 + 0.955869i \(0.594917\pi\)
\(278\) −7.25327 + 14.2353i −0.435022 + 0.853779i
\(279\) 0 0
\(280\) 0.931621 + 0.583886i 0.0556750 + 0.0348938i
\(281\) 7.75247 10.6704i 0.462474 0.636541i −0.512546 0.858660i \(-0.671297\pi\)
0.975019 + 0.222119i \(0.0712975\pi\)
\(282\) 0 0
\(283\) 20.3029 + 10.3449i 1.20688 + 0.614938i 0.937463 0.348084i \(-0.113168\pi\)
0.269421 + 0.963022i \(0.413168\pi\)
\(284\) −2.09246 2.88002i −0.124164 0.170898i
\(285\) 0 0
\(286\) 9.94874 + 12.0243i 0.588281 + 0.711009i
\(287\) −0.906570 + 0.906570i −0.0535131 + 0.0535131i
\(288\) 0 0
\(289\) 3.10211 1.00794i 0.182477 0.0592904i
\(290\) 27.8380 16.6759i 1.63471 0.979240i
\(291\) 0 0
\(292\) 0.116700 + 0.736812i 0.00682933 + 0.0431187i
\(293\) 3.28132 + 6.43996i 0.191697 + 0.376226i 0.966771 0.255644i \(-0.0822875\pi\)
−0.775074 + 0.631870i \(0.782287\pi\)
\(294\) 0 0
\(295\) 13.8135 + 16.5074i 0.804256 + 0.961097i
\(296\) 13.8810i 0.806817i
\(297\) 0 0
\(298\) 6.19371 + 6.19371i 0.358792 + 0.358792i
\(299\) −4.06896 + 2.95628i −0.235314 + 0.170966i
\(300\) 0 0
\(301\) 0.311867 0.959827i 0.0179757 0.0553235i
\(302\) 22.4665 3.55834i 1.29280 0.204759i
\(303\) 0 0
\(304\) −1.03998 + 3.20073i −0.0596469 + 0.183574i
\(305\) −12.2243 + 4.91983i −0.699963 + 0.281709i
\(306\) 0 0
\(307\) −20.1272 20.1272i −1.14872 1.14872i −0.986804 0.161918i \(-0.948232\pi\)
−0.161918 0.986804i \(-0.551768\pi\)
\(308\) −0.0783196 + 0.181020i −0.00446267 + 0.0103146i
\(309\) 0 0
\(310\) 1.18809 + 0.105555i 0.0674787 + 0.00599509i
\(311\) 2.32254 + 7.14803i 0.131699 + 0.405328i 0.995062 0.0992557i \(-0.0316462\pi\)
−0.863363 + 0.504583i \(0.831646\pi\)
\(312\) 0 0
\(313\) −0.210574 1.32951i −0.0119023 0.0751483i 0.981022 0.193895i \(-0.0621122\pi\)
−0.992925 + 0.118747i \(0.962112\pi\)
\(314\) −6.08499 4.42100i −0.343396 0.249492i
\(315\) 0 0
\(316\) −0.198054 + 0.0643517i −0.0111414 + 0.00362006i
\(317\) 1.77271 11.1924i 0.0995652 0.628630i −0.886558 0.462617i \(-0.846911\pi\)
0.986124 0.166013i \(-0.0530894\pi\)
\(318\) 0 0
\(319\) −20.1854 24.3965i −1.13017 1.36594i
\(320\) 0.979335 + 14.2812i 0.0547465 + 0.798342i
\(321\) 0 0
\(322\) −0.421334 0.214680i −0.0234800 0.0119637i
\(323\) −2.45639 + 1.25159i −0.136677 + 0.0696406i
\(324\) 0 0
\(325\) −14.8138 + 4.48550i −0.821723 + 0.248811i
\(326\) 14.4808 + 4.70509i 0.802015 + 0.260591i
\(327\) 0 0
\(328\) −16.9836 2.68994i −0.937762 0.148527i
\(329\) 2.36737 0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) −5.11780 0.810579i −0.280876 0.0444863i
\(333\) 0 0
\(334\) 17.4380 + 5.66594i 0.954164 + 0.310027i
\(335\) 12.7426 2.92380i 0.696200 0.159744i
\(336\) 0 0
\(337\) 6.78954 3.45945i 0.369850 0.188448i −0.259180 0.965829i \(-0.583452\pi\)
0.629030 + 0.777381i \(0.283452\pi\)
\(338\) −4.62827 2.35822i −0.251745 0.128270i
\(339\) 0 0
\(340\) 1.69143 1.94049i 0.0917305 0.105238i
\(341\) −0.0731608 1.16157i −0.00396188 0.0629025i
\(342\) 0 0
\(343\) −0.418239 + 2.64066i −0.0225828 + 0.142582i
\(344\) 12.8732 4.18275i 0.694076 0.225519i
\(345\) 0 0
\(346\) −15.3290 11.1372i −0.824093 0.598739i
\(347\) −1.46011 9.21879i −0.0783830 0.494891i −0.995381 0.0959998i \(-0.969395\pi\)
0.916998 0.398891i \(-0.130605\pi\)
\(348\) 0 0
\(349\) −0.464073 1.42827i −0.0248413 0.0764536i 0.937867 0.346994i \(-0.112798\pi\)
−0.962709 + 0.270540i \(0.912798\pi\)
\(350\) −1.00807 1.04953i −0.0538839 0.0560996i
\(351\) 0 0
\(352\) −5.63779 + 1.26061i −0.300495 + 0.0671906i
\(353\) −4.40229 4.40229i −0.234310 0.234310i 0.580179 0.814489i \(-0.302983\pi\)
−0.814489 + 0.580179i \(0.802983\pi\)
\(354\) 0 0
\(355\) −9.56888 23.7758i −0.507863 1.26189i
\(356\) 0.760327 2.34004i 0.0402972 0.124022i
\(357\) 0 0
\(358\) −30.2950 + 4.79826i −1.60114 + 0.253596i
\(359\) 8.12845 25.0168i 0.429003 1.32034i −0.470105 0.882611i \(-0.655784\pi\)
0.899108 0.437726i \(-0.144216\pi\)
\(360\) 0 0
\(361\) 14.9238 10.8427i 0.785461 0.570671i
\(362\) 4.95475 + 4.95475i 0.260416 + 0.260416i
\(363\) 0 0
\(364\) 0.184093i 0.00964908i
\(365\) −0.475287 + 5.34966i −0.0248776 + 0.280014i
\(366\) 0 0
\(367\) −3.70869 7.27872i −0.193592 0.379946i 0.773723 0.633524i \(-0.218392\pi\)
−0.967315 + 0.253579i \(0.918392\pi\)
\(368\) −1.15002 7.26093i −0.0599488 0.378502i
\(369\) 0 0
\(370\) 4.46871 17.8209i 0.232317 0.926463i
\(371\) 1.64442 0.534304i 0.0853740 0.0277397i
\(372\) 0 0
\(373\) −6.12473 + 6.12473i −0.317126 + 0.317126i −0.847662 0.530536i \(-0.821991\pi\)
0.530536 + 0.847662i \(0.321991\pi\)
\(374\) −15.7781 10.0115i −0.815864 0.517684i
\(375\) 0 0
\(376\) 18.6628 + 25.6872i 0.962461 + 1.32471i
\(377\) −26.3331 13.4174i −1.35622 0.691031i
\(378\) 0 0
\(379\) 0.363481 0.500288i 0.0186708 0.0256981i −0.799580 0.600560i \(-0.794944\pi\)
0.818250 + 0.574862i \(0.194944\pi\)
\(380\) 0.274326 0.437703i 0.0140726 0.0224537i
\(381\) 0 0
\(382\) 4.36574 8.56825i 0.223371 0.438390i
\(383\) −10.2511 1.62362i −0.523807 0.0829629i −0.111069 0.993813i \(-0.535428\pi\)
−0.412738 + 0.910850i \(0.635428\pi\)
\(384\) 0 0
\(385\) −0.863904 + 1.12696i −0.0440286 + 0.0574351i
\(386\) −9.01683 −0.458945
\(387\) 0 0
\(388\) −0.194444 + 0.381619i −0.00987142 + 0.0193737i
\(389\) −21.0630 6.84378i −1.06794 0.346993i −0.278252 0.960508i \(-0.589755\pi\)
−0.789683 + 0.613515i \(0.789755\pi\)
\(390\) 0 0
\(391\) 3.53969 4.87197i 0.179010 0.246386i
\(392\) −15.9329 + 8.11822i −0.804733 + 0.410032i
\(393\) 0 0
\(394\) −12.5157 17.2264i −0.630534 0.867855i
\(395\) −1.49574 + 0.102571i −0.0752587 + 0.00516089i
\(396\) 0 0
\(397\) 10.7769 10.7769i 0.540876 0.540876i −0.382910 0.923786i \(-0.625078\pi\)
0.923786 + 0.382910i \(0.125078\pi\)
\(398\) 3.18229 20.0922i 0.159514 1.00713i
\(399\) 0 0
\(400\) 3.98847 22.2692i 0.199423 1.11346i
\(401\) −3.46399 2.51673i −0.172983 0.125680i 0.497925 0.867220i \(-0.334096\pi\)
−0.670908 + 0.741540i \(0.734096\pi\)
\(402\) 0 0
\(403\) −0.493174 0.967909i −0.0245668 0.0482150i
\(404\) 0.463135 + 1.42538i 0.0230418 + 0.0709155i
\(405\) 0 0
\(406\) 2.77869i 0.137904i
\(407\) −17.8481 1.68589i −0.884697 0.0835664i
\(408\) 0 0
\(409\) −3.47523 + 2.52490i −0.171839 + 0.124848i −0.670381 0.742017i \(-0.733869\pi\)
0.498541 + 0.866866i \(0.333869\pi\)
\(410\) 20.9381 + 8.92096i 1.03406 + 0.440575i
\(411\) 0 0
\(412\) 0.993106 0.157293i 0.0489268 0.00774925i
\(413\) 1.82043 0.288327i 0.0895773 0.0141877i
\(414\) 0 0
\(415\) −34.3192 14.6222i −1.68466 0.717773i
\(416\) −4.36224 + 3.16935i −0.213876 + 0.155390i
\(417\) 0 0
\(418\) −3.44151 1.48899i −0.168330 0.0728288i
\(419\) 1.20241i 0.0587414i 0.999569 + 0.0293707i \(0.00935032\pi\)
−0.999569 + 0.0293707i \(0.990650\pi\)
\(420\) 0 0
\(421\) 9.67493 + 29.7764i 0.471527 + 1.45121i 0.850584 + 0.525839i \(0.176248\pi\)
−0.379057 + 0.925373i \(0.623752\pi\)
\(422\) −4.09390 8.03473i −0.199288 0.391124i
\(423\) 0 0
\(424\) 18.7610 + 13.6307i 0.911117 + 0.661965i
\(425\) 15.2095 10.5890i 0.737771 0.513640i
\(426\) 0 0
\(427\) −0.176512 + 1.11445i −0.00854201 + 0.0539321i
\(428\) 2.42802 2.42802i 0.117363 0.117363i
\(429\) 0 0
\(430\) −17.8736 + 1.22568i −0.861940 + 0.0591078i
\(431\) 5.81395 + 8.00222i 0.280048 + 0.385453i 0.925750 0.378137i \(-0.123435\pi\)
−0.645702 + 0.763590i \(0.723435\pi\)
\(432\) 0 0
\(433\) −24.0414 + 12.2497i −1.15536 + 0.588683i −0.923323 0.384025i \(-0.874538\pi\)
−0.232033 + 0.972708i \(0.574538\pi\)
\(434\) 0.0600332 0.0826286i 0.00288169 0.00396630i
\(435\) 0 0
\(436\) 2.81864 + 0.915831i 0.134988 + 0.0438604i
\(437\) 0.548629 1.07675i 0.0262445 0.0515077i
\(438\) 0 0
\(439\) 24.5862 1.17344 0.586718 0.809791i \(-0.300420\pi\)
0.586718 + 0.809791i \(0.300420\pi\)
\(440\) −19.0386 0.489593i −0.907628 0.0233404i
\(441\) 0 0
\(442\) −17.2263 2.72838i −0.819372 0.129776i
\(443\) 13.9816 27.4404i 0.664286 1.30373i −0.275279 0.961364i \(-0.588770\pi\)
0.939565 0.342370i \(-0.111230\pi\)
\(444\) 0 0
\(445\) 9.40714 15.0096i 0.445941 0.711524i
\(446\) −18.9912 + 26.1392i −0.899262 + 1.23773i
\(447\) 0 0
\(448\) 1.09215 + 0.556477i 0.0515992 + 0.0262911i
\(449\) −4.30536 5.92582i −0.203182 0.279657i 0.695250 0.718768i \(-0.255293\pi\)
−0.898433 + 0.439111i \(0.855293\pi\)
\(450\) 0 0
\(451\) 5.52141 21.5107i 0.259993 1.01290i
\(452\) 0.910918 0.910918i 0.0428460 0.0428460i
\(453\) 0 0
\(454\) 18.8951 6.13938i 0.886789 0.288135i
\(455\) −0.322363 + 1.28556i −0.0151126 + 0.0602678i
\(456\) 0 0
\(457\) 1.05368 + 6.65265i 0.0492889 + 0.311198i 0.999999 + 0.00111791i \(0.000355842\pi\)
−0.950710 + 0.310080i \(0.899644\pi\)
\(458\) 11.3390 + 22.2540i 0.529837 + 1.03986i
\(459\) 0 0
\(460\) −0.0998565 + 1.12395i −0.00465583 + 0.0524044i
\(461\) 29.0801i 1.35440i −0.735801 0.677198i \(-0.763194\pi\)
0.735801 0.677198i \(-0.236806\pi\)
\(462\) 0 0
\(463\) 17.5146 + 17.5146i 0.813970 + 0.813970i 0.985227 0.171256i \(-0.0547826\pi\)
−0.171256 + 0.985227i \(0.554783\pi\)
\(464\) 34.9482 25.3914i 1.62243 1.17876i
\(465\) 0 0
\(466\) 7.34819 22.6154i 0.340398 1.04764i
\(467\) 26.1320 4.13890i 1.20924 0.191525i 0.480923 0.876763i \(-0.340302\pi\)
0.728320 + 0.685237i \(0.240302\pi\)
\(468\) 0 0
\(469\) 0.345938 1.06469i 0.0159739 0.0491627i
\(470\) −15.6904 38.9861i −0.723746 1.79830i
\(471\) 0 0
\(472\) 17.4796 + 17.4796i 0.804563 + 0.804563i
\(473\) 3.81467 + 17.0603i 0.175399 + 0.784432i
\(474\) 0 0
\(475\) 2.68213 2.57620i 0.123065 0.118204i
\(476\) −0.0681145 0.209635i −0.00312202 0.00960860i
\(477\) 0 0
\(478\) 1.25594 + 7.92972i 0.0574455 + 0.362697i
\(479\) 21.2408 + 15.4324i 0.970519 + 0.705123i 0.955570 0.294765i \(-0.0952413\pi\)
0.0149492 + 0.999888i \(0.495241\pi\)
\(480\) 0 0
\(481\) −15.9139 + 5.17073i −0.725610 + 0.235765i
\(482\) −3.84449 + 24.2731i −0.175112 + 1.10561i
\(483\) 0 0
\(484\) −0.428672 3.38950i −0.0194851 0.154068i
\(485\) −2.02609 + 2.32443i −0.0920001 + 0.105547i
\(486\) 0 0
\(487\) −20.7917 10.5939i −0.942163 0.480056i −0.0857326 0.996318i \(-0.527323\pi\)
−0.856431 + 0.516262i \(0.827323\pi\)
\(488\) −13.4839 + 6.87039i −0.610388 + 0.311008i
\(489\) 0 0
\(490\) 23.0687 5.29315i 1.04214 0.239120i
\(491\) −17.4497 5.66974i −0.787493 0.255872i −0.112457 0.993657i \(-0.535872\pi\)
−0.675036 + 0.737785i \(0.735872\pi\)
\(492\) 0 0
\(493\) 34.9512 + 5.53572i 1.57412 + 0.249316i
\(494\) −3.49992 −0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) −2.16757 0.343309i −0.0972286 0.0153995i
\(498\) 0 0
\(499\) −11.1824 3.63339i −0.500595 0.162653i 0.0478260 0.998856i \(-0.484771\pi\)
−0.548421 + 0.836203i \(0.684771\pi\)
\(500\) −1.42519 + 3.16657i −0.0637363 + 0.141613i
\(501\) 0 0
\(502\) −26.1975 + 13.3483i −1.16925 + 0.595763i
\(503\) 4.75855 + 2.42460i 0.212173 + 0.108108i 0.556848 0.830615i \(-0.312011\pi\)
−0.344674 + 0.938722i \(0.612011\pi\)
\(504\) 0 0
\(505\) 0.738195 + 10.7647i 0.0328492 + 0.479025i
\(506\) 8.17484 0.514888i 0.363416 0.0228896i
\(507\) 0 0
\(508\) 0.707777 4.46873i 0.0314025 0.198268i
\(509\) −18.6283 + 6.05272i −0.825687 + 0.268282i −0.691228 0.722637i \(-0.742930\pi\)
−0.134459 + 0.990919i \(0.542930\pi\)
\(510\) 0 0
\(511\) 0.372057 + 0.270315i 0.0164588 + 0.0119580i
\(512\) 2.40248 + 15.1686i 0.106175 + 0.670365i
\(513\) 0 0
\(514\) 2.21058 + 6.80347i 0.0975046 + 0.300088i
\(515\) 7.21050 + 0.640611i 0.317732 + 0.0282287i
\(516\) 0 0
\(517\) −35.2950 + 20.8767i −1.55227 + 0.918158i
\(518\) −1.11243 1.11243i −0.0488775 0.0488775i
\(519\) 0 0
\(520\) −16.4903 + 6.63672i −0.723147 + 0.291039i
\(521\) −5.78913 + 17.8171i −0.253626 + 0.780582i 0.740471 + 0.672089i \(0.234603\pi\)
−0.994097 + 0.108493i \(0.965397\pi\)
\(522\) 0 0
\(523\) −2.55051 + 0.403961i −0.111526 + 0.0176640i −0.211948 0.977281i \(-0.567981\pi\)
0.100422 + 0.994945i \(0.467981\pi\)
\(524\) 0.937631 2.88573i 0.0409606 0.126064i
\(525\) 0 0
\(526\) −19.5162 + 14.1794i −0.850948 + 0.618250i
\(527\) 0.919727 + 0.919727i 0.0400639 + 0.0400639i
\(528\) 0 0
\(529\) 20.3603i 0.885228i
\(530\) −19.6979 23.5393i −0.855622 1.02248i
\(531\) 0 0
\(532\) −0.0200812 0.0394115i −0.000870630 0.00170871i
\(533\) −3.24258 20.4729i −0.140452 0.886778i
\(534\) 0 0
\(535\) 21.2071 12.7037i 0.916862 0.549229i
\(536\) 14.2796 4.63972i 0.616784 0.200405i
\(537\) 0 0
\(538\) 12.1591 12.1591i 0.524216 0.524216i
\(539\) −8.50325 21.4724i −0.366261 0.924881i
\(540\) 0 0
\(541\) 5.42829 + 7.47139i 0.233380 + 0.321220i 0.909604 0.415476i \(-0.136385\pi\)
−0.676224 + 0.736696i \(0.736385\pi\)
\(542\) −24.1462 12.3031i −1.03717 0.528464i
\(543\) 0 0
\(544\) 3.79482 5.22312i 0.162701 0.223939i
\(545\) 18.0794 + 11.3311i 0.774438 + 0.485372i
\(546\) 0 0
\(547\) 0.486237 0.954295i 0.0207900 0.0408027i −0.880378 0.474273i \(-0.842711\pi\)
0.901168 + 0.433470i \(0.142711\pi\)
\(548\) −1.32834 0.210388i −0.0567437 0.00898732i
\(549\) 0 0
\(550\) 24.2847 + 6.75764i 1.03550 + 0.288147i
\(551\) 7.10113 0.302518
\(552\) 0 0
\(553\) −0.0582826 + 0.114386i −0.00247843 + 0.00486419i
\(554\) 6.76800 + 2.19906i 0.287545 + 0.0934290i
\(555\) 0 0
\(556\) 1.91881 2.64102i 0.0813758 0.112004i
\(557\) 38.3462 19.5384i 1.62478 0.827868i 0.625934 0.779876i \(-0.284718\pi\)
0.998848 0.0479915i \(-0.0152820\pi\)
\(558\) 0 0
\(559\) 9.59064 + 13.2004i 0.405641 + 0.558316i
\(560\) −1.46033 1.27290i −0.0617102 0.0537897i
\(561\) 0 0
\(562\) −14.1765 + 14.1765i −0.597998 + 0.597998i
\(563\) −4.04575 + 25.5439i −0.170508 + 1.07655i 0.742871 + 0.669435i \(0.233464\pi\)
−0.913379 + 0.407111i \(0.866536\pi\)
\(564\) 0 0
\(565\) 7.95622 4.76603i 0.334721 0.200508i
\(566\) −28.0219 20.3591i −1.17785 0.855756i
\(567\) 0 0
\(568\) −13.3626 26.2257i −0.560684 1.10040i
\(569\) 8.39651 + 25.8418i 0.352000 + 1.08334i 0.957729 + 0.287673i \(0.0928816\pi\)
−0.605729 + 0.795671i \(0.707118\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i 0.529308 + 0.848430i \(0.322451\pi\)
−0.529308 + 0.848430i \(0.677549\pi\)
\(572\) −1.62343 2.74464i −0.0678791 0.114759i
\(573\) 0 0
\(574\) 1.57665 1.14550i 0.0658081 0.0478124i
\(575\) −2.66546 + 7.67392i −0.111157 + 0.320024i
\(576\) 0 0
\(577\) 33.3917 5.28872i 1.39011 0.220172i 0.583914 0.811815i \(-0.301521\pi\)
0.806200 + 0.591643i \(0.201521\pi\)
\(578\) −4.89703 + 0.775613i −0.203689 + 0.0322612i
\(579\) 0 0
\(580\) −6.15107 + 2.47558i −0.255409 + 0.102793i
\(581\) −2.58426 + 1.87757i −0.107213 + 0.0778948i
\(582\) 0 0
\(583\) −19.8048 + 22.4673i −0.820233 + 0.930502i
\(584\) 6.16801i 0.255234i
\(585\) 0 0
\(586\) −3.39505 10.4489i −0.140248 0.431640i
\(587\) 4.39649 + 8.62859i 0.181462 + 0.356140i 0.963763 0.266762i \(-0.0859536\pi\)
−0.782300 + 0.622902i \(0.785954\pi\)
\(588\) 0 0
\(589\) 0.211163 + 0.153419i 0.00870081 + 0.00632151i
\(590\) −16.8137 28.0681i −0.692207 1.15554i
\(591\) 0 0
\(592\) 3.82603 24.1566i 0.157249 0.992829i
\(593\) −14.0452 + 14.0452i −0.576769 + 0.576769i −0.934012 0.357243i \(-0.883717\pi\)
0.357243 + 0.934012i \(0.383717\pi\)
\(594\) 0 0
\(595\) −0.108568 1.58320i −0.00445086 0.0649048i
\(596\) −1.05199 1.44794i −0.0430912 0.0593099i
\(597\) 0 0
\(598\) 6.81191 3.47084i 0.278560 0.141933i
\(599\) 2.65433 3.65338i 0.108453 0.149273i −0.751340 0.659915i \(-0.770592\pi\)
0.859793 + 0.510642i \(0.170592\pi\)
\(600\) 0 0
\(601\) −7.96746 2.58878i −0.324999 0.105599i 0.141973 0.989871i \(-0.454655\pi\)
−0.466973 + 0.884272i \(0.654655\pi\)
\(602\) −0.696458 + 1.36688i −0.0283855 + 0.0557097i
\(603\) 0 0
\(604\) −4.64774 −0.189114
\(605\) 2.94181 24.4202i 0.119601 0.992822i
\(606\) 0 0
\(607\) −7.58425 1.20123i −0.307835 0.0487563i 0.000605683 1.00000i \(-0.499807\pi\)
−0.308441 + 0.951244i \(0.599807\pi\)
\(608\) 0.588172 1.15435i 0.0238535 0.0468152i
\(609\) 0 0
\(610\) 19.5229 4.47955i 0.790457 0.181372i
\(611\) −22.4971 + 30.9646i −0.910134 + 1.25269i
\(612\) 0 0
\(613\) 38.2477 + 19.4882i 1.54481 + 0.787120i 0.998719 0.0506058i \(-0.0161152\pi\)
0.546091 + 0.837726i \(0.316115\pi\)
\(614\) 25.4319 + 35.0041i 1.02635 + 1.41265i
\(615\) 0 0
\(616\) −0.873721 + 1.37698i −0.0352032 + 0.0554799i
\(617\) −33.4407 + 33.4407i −1.34627 + 1.34627i −0.456601 + 0.889671i \(0.650933\pi\)
−0.889671 + 0.456601i \(0.849067\pi\)
\(618\) 0 0
\(619\) 20.0674 6.52029i 0.806576 0.262073i 0.123429 0.992353i \(-0.460611\pi\)
0.683147 + 0.730281i \(0.260611\pi\)
\(620\) −0.236396 0.0592779i −0.00949388 0.00238066i
\(621\) 0 0
\(622\) −1.78720 11.2840i −0.0716603 0.452445i
\(623\) −0.688620 1.35149i −0.0275890 0.0541464i
\(624\) 0 0
\(625\) −15.4973 + 19.6172i −0.619892 + 0.784687i
\(626\) 2.04613i 0.0817798i
\(627\) 0 0
\(628\) 1.08671 + 1.08671i 0.0433645 + 0.0433645i
\(629\) 16.2087 11.7763i 0.646282 0.469552i
\(630\) 0 0
\(631\) −8.72043 + 26.8387i −0.347155 + 1.06843i 0.613265 + 0.789877i \(0.289856\pi\)
−0.960420 + 0.278555i \(0.910144\pi\)
\(632\) −1.70061 + 0.269351i −0.0676467 + 0.0107142i
\(633\) 0 0
\(634\) −5.32290 + 16.3822i −0.211399 + 0.650621i
\(635\) 12.7677 29.9667i 0.506671 1.18919i
\(636\) 0 0
\(637\) −15.2422 15.2422i −0.603918 0.603918i
\(638\) 24.5041 + 41.4275i 0.970125 + 1.64013i
\(639\) 0 0
\(640\) 2.61496 29.4330i 0.103365 1.16344i
\(641\) 5.23436 + 16.1097i 0.206745 + 0.636295i 0.999637 + 0.0269333i \(0.00857417\pi\)
−0.792893 + 0.609362i \(0.791426\pi\)
\(642\) 0 0
\(643\) 0.981726 + 6.19838i 0.0387155 + 0.244440i 0.999455 0.0330121i \(-0.0105100\pi\)
−0.960739 + 0.277452i \(0.910510\pi\)
\(644\) 0.0781682 + 0.0567925i 0.00308026 + 0.00223794i
\(645\) 0 0
\(646\) 3.98552 1.29497i 0.156808 0.0509500i
\(647\) 6.80289 42.9518i 0.267449 1.68861i −0.378798 0.925479i \(-0.623662\pi\)
0.646247 0.763128i \(-0.276338\pi\)
\(648\) 0 0
\(649\) −24.5981 + 20.3522i −0.965559 + 0.798893i
\(650\) 23.3073 3.21171i 0.914188 0.125974i
\(651\) 0 0
\(652\) −2.77200 1.41240i −0.108560 0.0553140i
\(653\) −8.67042 + 4.41780i −0.339300 + 0.172882i −0.615335 0.788266i \(-0.710979\pi\)
0.276035 + 0.961147i \(0.410979\pi\)
\(654\) 0 0
\(655\) 11.6008 18.5098i 0.453283 0.723237i
\(656\) 28.8145 + 9.36239i 1.12502 + 0.365540i
\(657\) 0 0
\(658\) −3.55424 0.562936i −0.138559 0.0219455i
\(659\) −3.37375 −0.131423 −0.0657113 0.997839i \(-0.520932\pi\)
−0.0657113 + 0.997839i \(0.520932\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) 26.5811 + 4.21003i 1.03310 + 0.163628i
\(663\) 0 0
\(664\) −40.7453 13.2389i −1.58122 0.513771i
\(665\) −0.0712179 0.310383i −0.00276171 0.0120361i
\(666\) 0 0
\(667\) −13.8210 + 7.04213i −0.535150 + 0.272672i
\(668\) −3.33809 1.70084i −0.129154 0.0658075i
\(669\) 0 0
\(670\) −19.8263 + 1.35959i −0.765955 + 0.0525256i
\(671\) −7.19624 18.1719i −0.277808 0.701520i
\(672\) 0 0
\(673\) 5.98412 37.7823i 0.230671 1.45640i −0.551938 0.833885i \(-0.686111\pi\)
0.782609 0.622514i \(-0.213889\pi\)
\(674\) −11.0161 + 3.57935i −0.424324 + 0.137871i
\(675\) 0 0
\(676\) 0.858662 + 0.623855i 0.0330255 + 0.0239944i
\(677\) −5.03592 31.7956i −0.193546 1.22200i −0.872792 0.488092i \(-0.837693\pi\)
0.679246 0.733911i \(-0.262307\pi\)
\(678\) 0 0
\(679\) 0.0815917 + 0.251113i 0.00313120 + 0.00963684i
\(680\) 16.3226 13.6590i 0.625945 0.523797i
\(681\) 0 0
\(682\) −0.166370 + 1.76132i −0.00637063 + 0.0674443i
\(683\) 28.7223 + 28.7223i 1.09903 + 1.09903i 0.994524 + 0.104505i \(0.0333260\pi\)
0.104505 + 0.994524i \(0.466674\pi\)
\(684\) 0 0
\(685\) −8.90764 3.79522i −0.340343 0.145008i
\(686\) 1.25585 3.86510i 0.0479484 0.147570i
\(687\) 0 0
\(688\) −23.5556 + 3.73084i −0.898050 + 0.142237i
\(689\) −8.63834 + 26.5861i −0.329095 + 1.01285i
\(690\) 0 0
\(691\) 20.4397 14.8503i 0.777564 0.564933i −0.126683 0.991943i \(-0.540433\pi\)
0.904247 + 0.427010i \(0.140433\pi\)
\(692\) 2.73759 + 2.73759i 0.104068 + 0.104068i
\(693\) 0 0
\(694\) 14.1878i 0.538562i
\(695\) 18.0241 15.0828i 0.683694 0.572122i
\(696\) 0 0
\(697\) 11.2675 + 22.1136i 0.426785 + 0.837613i
\(698\) 0.357107 + 2.25468i 0.0135167 + 0.0853410i
\(699\) 0 0
\(700\) 0.169895 + 0.244029i 0.00642141 + 0.00922344i
\(701\) −26.8458 + 8.72273i −1.01395 + 0.329453i −0.768427 0.639937i \(-0.778960\pi\)
−0.245525 + 0.969390i \(0.578960\pi\)
\(702\) 0 0
\(703\) 2.84289 2.84289i 0.107222 0.107222i
\(704\) −21.1902 + 1.33465i −0.798634 + 0.0503015i
\(705\) 0 0
\(706\) 5.56255 + 7.65620i 0.209349 + 0.288145i
\(707\) 0.823230 + 0.419457i 0.0309608 + 0.0157753i
\(708\) 0 0
\(709\) −4.79615 + 6.60134i −0.180123 + 0.247918i −0.889526 0.456885i \(-0.848965\pi\)
0.709402 + 0.704804i \(0.248965\pi\)
\(710\) 8.71256 + 37.9712i 0.326977 + 1.42503i
\(711\) 0 0
\(712\) 9.23576 18.1262i 0.346125 0.679308i
\(713\) −0.563131 0.0891912i −0.0210894 0.00334024i
\(714\) 0 0
\(715\) −6.53065 22.0091i −0.244232 0.823095i
\(716\) 6.26727 0.234219
\(717\) 0 0
\(718\) −18.1524 + 35.6261i −0.677441 + 1.32955i
\(719\) 0.986856 + 0.320649i 0.0368035 + 0.0119582i 0.327361 0.944899i \(-0.393841\pi\)
−0.290557 + 0.956858i \(0.593841\pi\)
\(720\) 0 0
\(721\) 0.364342 0.501474i 0.0135688 0.0186759i
\(722\) −24.9840 + 12.7300i −0.929810 + 0.473762i
\(723\) 0 0
\(724\) −0.841554 1.15830i −0.0312761 0.0430479i
\(725\) −47.2892 + 6.51637i −1.75627 + 0.242012i
\(726\) 0 0
\(727\) −3.27903 + 3.27903i −0.121612 + 0.121612i −0.765294 0.643681i \(-0.777406\pi\)
0.643681 + 0.765294i \(0.277406\pi\)
\(728\) −0.238110 + 1.50337i −0.00882493 + 0.0557184i
\(729\) 0 0
\(730\) 1.98567 7.91869i 0.0734929 0.293084i
\(731\) −15.8055 11.4833i −0.584586 0.424726i
\(732\) 0 0
\(733\) 20.7361 + 40.6968i 0.765904 + 1.50317i 0.861504 + 0.507751i \(0.169523\pi\)
−0.0956003 + 0.995420i \(0.530477\pi\)
\(734\) 3.83723 + 11.8098i 0.141635 + 0.435907i
\(735\) 0 0
\(736\) 2.83001i 0.104315i
\(737\) 4.23142 + 18.9241i 0.155866 + 0.697079i
\(738\) 0 0
\(739\) 3.07164 2.23167i 0.112992 0.0820934i −0.529854 0.848089i \(-0.677753\pi\)
0.642846 + 0.765995i \(0.277753\pi\)
\(740\) −1.47146 + 3.45363i −0.0540920 + 0.126958i
\(741\) 0 0
\(742\) −2.59590 + 0.411150i −0.0952984 + 0.0150938i
\(743\) 41.9067 6.63736i 1.53741 0.243501i 0.670476 0.741931i \(-0.266090\pi\)
0.866930 + 0.498430i \(0.166090\pi\)
\(744\) 0 0
\(745\) −4.81079 11.9534i −0.176254 0.437938i
\(746\) 10.6517 7.73895i 0.389988 0.283343i
\(747\) 0 0
\(748\) 2.86419 + 2.52477i 0.104725 + 0.0923149i
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) −3.08775 9.50312i −0.112674 0.346774i 0.878781 0.477225i \(-0.158357\pi\)
−0.991455 + 0.130451i \(0.958357\pi\)
\(752\) −25.3980 49.8464i −0.926171 1.81771i
\(753\) 0 0
\(754\) 36.3446 + 26.4059i 1.32359 + 0.961647i
\(755\) −32.4561 8.13861i −1.18120 0.296194i
\(756\) 0 0
\(757\) 4.59658 29.0217i 0.167065 1.05481i −0.751555 0.659670i \(-0.770696\pi\)
0.918621 0.395140i \(-0.129304\pi\)
\(758\) −0.664675 + 0.664675i −0.0241421 + 0.0241421i
\(759\) 0 0
\(760\) 2.80638 3.21961i 0.101798 0.116788i
\(761\) 17.8404 + 24.5552i 0.646713 + 0.890124i 0.998951 0.0457864i \(-0.0145794\pi\)
−0.352238 + 0.935910i \(0.614579\pi\)
\(762\) 0 0
\(763\) 1.62790 0.829459i 0.0589341 0.0300284i
\(764\) −1.15493 + 1.58963i −0.0417840 + 0.0575107i
\(765\) 0 0
\(766\) 15.0044 + 4.87523i 0.542131 + 0.176149i
\(767\) −13.5283 + 26.5507i −0.488477 + 0.958690i
\(768\) 0 0
\(769\) −37.6421 −1.35741 −0.678705 0.734411i \(-0.737458\pi\)
−0.678705 + 0.734411i \(0.737458\pi\)
\(770\) 1.56500 1.48653i 0.0563987 0.0535707i
\(771\) 0 0
\(772\) 1.81970 + 0.288213i 0.0654926 + 0.0103730i
\(773\) 11.7188 22.9995i 0.421497 0.827234i −0.578437 0.815727i \(-0.696337\pi\)
0.999934 0.0115072i \(-0.00366294\pi\)
\(774\) 0 0
\(775\) −1.54700 0.827900i −0.0555698 0.0297390i
\(776\) −2.08149 + 2.86493i −0.0747213 + 0.102845i
\(777\) 0 0
\(778\) 29.9955 + 15.2835i 1.07539 + 0.547939i
\(779\) 2.92741 + 4.02923i 0.104885 + 0.144362i
\(780\) 0 0
\(781\) 35.3437 13.9964i 1.26470 0.500831i
\(782\) −6.47282 + 6.47282i −0.231467 + 0.231467i
\(783\) 0 0
\(784\) 29.9651 9.73624i 1.07018 0.347723i
\(785\) 5.68579 + 9.49165i 0.202935 + 0.338771i
\(786\) 0 0
\(787\) 2.70244 + 17.0625i 0.0963315 + 0.608213i 0.987872 + 0.155272i \(0.0496254\pi\)
−0.891540 + 0.452942i \(0.850375\pi\)
\(788\) 1.97520 + 3.87655i 0.0703636 + 0.138096i
\(789\) 0 0
\(790\) 2.27001 + 0.201678i 0.0807634 + 0.00717537i
\(791\) 0.794162i 0.0282372i
\(792\) 0 0
\(793\) −12.8994 12.8994i −0.458070 0.458070i
\(794\) −18.7425 + 13.6172i −0.665145 + 0.483256i
\(795\) 0 0
\(796\) −1.28445 + 3.95313i −0.0455261 + 0.140115i
\(797\) 44.0203 6.97213i 1.55928 0.246965i 0.683599 0.729858i \(-0.260414\pi\)
0.875680 + 0.482892i \(0.160414\pi\)
\(798\) 0 0
\(799\) 14.1615 43.5847i 0.500999 1.54192i
\(800\) −2.85757 + 8.22702i −0.101030 + 0.290869i
\(801\) 0 0
\(802\) 4.60219 + 4.60219i 0.162509 + 0.162509i
\(803\) −7.93078 0.749124i −0.279871 0.0264360i
\(804\) 0 0
\(805\) 0.446416 + 0.533473i 0.0157341 + 0.0188025i
\(806\) 0.510267 + 1.57044i 0.0179734 + 0.0553164i
\(807\) 0 0
\(808\) 1.93850 + 12.2392i 0.0681962 + 0.430574i
\(809\) 12.3255 + 8.95497i 0.433340 + 0.314840i 0.782983 0.622043i \(-0.213697\pi\)
−0.349643 + 0.936883i \(0.613697\pi\)
\(810\) 0 0
\(811\) −43.3276 + 14.0780i −1.52144 + 0.494345i −0.946183 0.323631i \(-0.895096\pi\)
−0.575253 + 0.817976i \(0.695096\pi\)
\(812\) −0.0888178 + 0.560774i −0.00311689 + 0.0196793i
\(813\) 0 0
\(814\) 26.3953 + 6.77521i 0.925155 + 0.237471i
\(815\) −16.8842 14.7171i −0.591427 0.515518i
\(816\) 0 0
\(817\) −3.49314 1.77984i −0.122209 0.0622688i
\(818\) 5.81793 2.96438i 0.203419 0.103647i
\(819\) 0 0
\(820\) −3.94041 2.46962i −0.137605 0.0862428i
\(821\) 27.3071 + 8.87260i 0.953023 + 0.309656i 0.743943 0.668243i \(-0.232953\pi\)
0.209079 + 0.977899i \(0.432953\pi\)
\(822\) 0 0
\(823\) −26.6252 4.21701i −0.928095 0.146996i −0.325954 0.945386i \(-0.605686\pi\)
−0.602141 + 0.798390i \(0.705686\pi\)
\(824\) 8.31350 0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) −39.1944 6.20779i −1.36292 0.215866i −0.568227 0.822872i \(-0.692370\pi\)
−0.794697 + 0.607006i \(0.792370\pi\)
\(828\) 0 0
\(829\) −10.3353 3.35814i −0.358959 0.116633i 0.123985 0.992284i \(-0.460433\pi\)
−0.482944 + 0.875651i \(0.660433\pi\)
\(830\) 48.0481 + 30.1137i 1.66777 + 1.04526i
\(831\) 0 0
\(832\) −17.6573 + 8.99683i −0.612156 + 0.311909i
\(833\) 22.9966 + 11.7174i 0.796786 + 0.405983i
\(834\) 0 0
\(835\) −20.3322 17.7226i −0.703625 0.613316i
\(836\) 0.646943 + 0.410500i 0.0223750 + 0.0141974i
\(837\) 0 0
\(838\) 0.285920 1.80523i 0.00987695 0.0623606i
\(839\) −38.3426 + 12.4583i −1.32373 + 0.430107i −0.883775 0.467912i \(-0.845007\pi\)
−0.439958 + 0.898019i \(0.645007\pi\)
\(840\) 0 0
\(841\) −50.2797 36.5303i −1.73378 1.25967i
\(842\) −7.44491 47.0053i −0.256569 1.61991i
\(843\) 0 0
\(844\) 0.569376 + 1.75236i 0.0195987 + 0.0603187i
\(845\) 4.90379 + 5.86010i 0.168695 + 0.201593i
\(846\) 0 0
\(847\) −1.66439 1.29066i −0.0571891 0.0443477i
\(848\) −28.8921 28.8921i −0.992159 0.992159i
\(849\) 0 0
\(850\) −25.3528 + 12.2810i −0.869593 + 0.421237i
\(851\) −2.71386 + 8.35241i −0.0930300 + 0.286317i
\(852\) 0 0
\(853\) 13.7845 2.18326i 0.471974 0.0747533i 0.0840831 0.996459i \(-0.473204\pi\)
0.387890 + 0.921705i \(0.373204\pi\)
\(854\) 0.530012 1.63121i 0.0181366 0.0558188i
\(855\) 0 0
\(856\) 22.9686 16.6876i 0.785049 0.570372i
\(857\) 26.9229 + 26.9229i 0.919668 + 0.919668i 0.997005 0.0773373i \(-0.0246418\pi\)
−0.0773373 + 0.997005i \(0.524642\pi\)
\(858\) 0 0
\(859\) 18.3200i 0.625071i −0.949906 0.312535i \(-0.898822\pi\)
0.949906 0.312535i \(-0.101178\pi\)
\(860\) 3.64628 + 0.323951i 0.124337 + 0.0110466i
\(861\) 0 0
\(862\) −6.82592 13.3966i −0.232492 0.456291i
\(863\) 1.90114 + 12.0033i 0.0647154 + 0.408597i 0.998686 + 0.0512472i \(0.0163196\pi\)
−0.933971 + 0.357350i \(0.883680\pi\)
\(864\) 0 0
\(865\) 14.3234 + 23.9109i 0.487010 + 0.812996i
\(866\) 39.0074 12.6743i 1.32552 0.430689i
\(867\) 0 0
\(868\) −0.0147565 + 0.0147565i −0.000500870 + 0.000500870i
\(869\) −0.139785 2.21935i −0.00474187 0.0752863i
\(870\) 0 0
\(871\) 10.6384 + 14.6425i 0.360469 + 0.496143i
\(872\) 21.8334 + 11.1247i 0.739374 + 0.376730i
\(873\) 0 0
\(874\) −1.07972 + 1.48611i −0.0365222 + 0.0502685i
\(875\) 0.759091 + 2.00161i 0.0256620 + 0.0676666i
\(876\) 0 0
\(877\) −5.82698 + 11.4361i −0.196763 + 0.386169i −0.968215 0.250118i \(-0.919531\pi\)
0.771452 + 0.636287i \(0.219531\pi\)
\(878\) −36.9125 5.84636i −1.24574 0.197305i
\(879\) 0 0
\(880\) 32.9971 + 6.09963i 1.11233 + 0.205618i
\(881\) −13.8380 −0.466216 −0.233108 0.972451i \(-0.574890\pi\)
−0.233108 + 0.972451i \(0.574890\pi\)
\(882\) 0 0
\(883\) −19.7888 + 38.8377i −0.665947 + 1.30699i 0.272695 + 0.962100i \(0.412085\pi\)
−0.938642 + 0.344893i \(0.887915\pi\)
\(884\) 3.38926 + 1.10124i 0.113993 + 0.0370387i
\(885\) 0 0
\(886\) −27.5163 + 37.8730i −0.924429 + 1.27237i
\(887\) 9.26576 4.72114i 0.311114 0.158520i −0.291461 0.956583i \(-0.594141\pi\)
0.602575 + 0.798062i \(0.294141\pi\)
\(888\) 0 0
\(889\) −1.63945 2.25651i −0.0549853 0.0756808i
\(890\) −17.6925 + 20.2977i −0.593055 + 0.680381i
\(891\) 0 0
\(892\) 4.66817 4.66817i 0.156302 0.156302i
\(893\) 1.43862 9.08308i 0.0481415 0.303954i
\(894\) 0 0
\(895\) 43.7656 + 10.9745i 1.46292 + 0.366838i
\(896\) −2.04700 1.48723i −0.0683855 0.0496850i
\(897\) 0 0
\(898\) 5.05474 + 9.92048i 0.168679 + 0.331051i
\(899\) −1.03530 3.18633i −0.0345292 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) −13.4046 + 30.9821i −0.446324 + 1.03159i
\(903\) 0 0
\(904\) 8.61708 6.26067i 0.286600 0.208227i
\(905\) −3.84846 9.56228i −0.127927 0.317861i
\(906\) 0 0
\(907\) 16.1062 2.55097i 0.534798 0.0847036i 0.116806 0.993155i \(-0.462734\pi\)
0.417991 + 0.908451i \(0.362734\pi\)
\(908\) −4.00948 + 0.635040i −0.133059 + 0.0210745i
\(909\) 0 0
\(910\) 0.789672 1.85341i 0.0261774 0.0614401i
\(911\) −14.3281 + 10.4099i −0.474710 + 0.344897i −0.799274 0.600967i \(-0.794782\pi\)
0.324564 + 0.945864i \(0.394782\pi\)
\(912\) 0 0
\(913\) 21.9712 50.7821i 0.727140 1.68064i
\(914\) 10.2385i 0.338659i
\(915\) 0 0
\(916\) −1.57702 4.85357i −0.0521062 0.160366i
\(917\) −0.849203 1.66665i −0.0280431 0.0550378i
\(918\) 0 0
\(919\) 7.38632 + 5.36648i 0.243652 + 0.177024i 0.702909 0.711280i \(-0.251884\pi\)
−0.459257 + 0.888304i \(0.651884\pi\)
\(920\) −2.26921 + 9.04942i −0.0748135 + 0.298350i
\(921\) 0 0
\(922\) −6.91497 + 43.6594i −0.227732 + 1.43785i
\(923\) 25.0888 25.0888i 0.825807 0.825807i
\(924\) 0 0
\(925\) −16.3231 + 21.5407i −0.536701 + 0.708254i
\(926\) −22.1307 30.4602i −0.727259 1.00099i
\(927\) 0 0
\(928\) −14.8171 + 7.54970i −0.486396 + 0.247831i
\(929\) 1.06529 1.46625i 0.0349511 0.0481061i −0.791184 0.611578i \(-0.790535\pi\)
0.826135 + 0.563472i \(0.190535\pi\)
\(930\) 0 0
\(931\) 4.92578 + 1.60048i 0.161436 + 0.0524537i
\(932\) −2.20583 + 4.32918i −0.0722543 + 0.141807i
\(933\) 0 0
\(934\) −40.2174 −1.31595
\(935\) 15.5802 + 22.6465i 0.509525 + 0.740619i
\(936\) 0 0
\(937\) 14.9726 + 2.37143i 0.489133 + 0.0774711i 0.396130 0.918195i \(-0.370353\pi\)
0.0930039 + 0.995666i \(0.470353\pi\)
\(938\) −0.772546 + 1.51621i −0.0252245 + 0.0495059i
\(939\) 0 0
\(940\) 1.92037 + 8.36939i 0.0626356 + 0.272979i
\(941\) 12.8308 17.6600i 0.418271 0.575701i −0.546940 0.837172i \(-0.684208\pi\)
0.965211 + 0.261471i \(0.0842075\pi\)
\(942\) 0 0
\(943\) −9.69338 4.93902i −0.315660 0.160837i
\(944\) −25.6012 35.2370i −0.833247 1.14687i
\(945\) 0 0
\(946\) −1.67038 26.5205i −0.0543087 0.862256i
\(947\) −6.90662 + 6.90662i −0.224435 + 0.224435i −0.810363 0.585928i \(-0.800730\pi\)
0.585928 + 0.810363i \(0.300730\pi\)
\(948\) 0 0
\(949\) −7.07131 + 2.29761i −0.229545 + 0.0745835i
\(950\) −4.63941 + 3.22999i −0.150522 + 0.104795i
\(951\) 0 0
\(952\) −0.285100 1.80005i −0.00924015 0.0583400i
\(953\) 5.92153 + 11.6216i 0.191817 + 0.376462i 0.966806 0.255513i \(-0.0822444\pi\)
−0.774989 + 0.631975i \(0.782244\pi\)
\(954\) 0 0
\(955\) −10.8487 + 9.07831i −0.351056 + 0.293767i
\(956\) 1.64046i 0.0530561i
\(957\) 0 0
\(958\) −28.2202 28.2202i −0.911755 0.911755i
\(959\) −0.670750 + 0.487328i −0.0216596 + 0.0157367i
\(960\) 0 0
\(961\) −9.54147 + 29.3656i −0.307789 + 0.947279i
\(962\) 25.1218 3.97890i 0.809960 0.128285i
\(963\) 0 0
\(964\) 1.55173 4.77572i 0.0499777 0.153816i
\(965\) 12.2027 + 5.19911i 0.392818 + 0.167365i
\(966\) 0 0
\(967\) 13.6319 + 13.6319i 0.438372 + 0.438372i 0.891464 0.453092i \(-0.149679\pi\)
−0.453092 + 0.891464i \(0.649679\pi\)
\(968\) 0.883368 28.2343i 0.0283925 0.907484i
\(969\) 0 0
\(970\) 3.59460 3.00800i 0.115416 0.0965809i
\(971\) −1.26967 3.90765i −0.0407457 0.125403i 0.928615 0.371046i \(-0.121001\pi\)
−0.969360 + 0.245643i \(0.921001\pi\)
\(972\) 0 0
\(973\) −0.314819 1.98769i −0.0100926 0.0637224i
\(974\) 28.6965 + 20.8492i 0.919495 + 0.668052i
\(975\) 0 0
\(976\) 25.3592 8.23971i 0.811729 0.263747i
\(977\) −4.80402 + 30.3314i −0.153694 + 0.970386i 0.783453 + 0.621451i \(0.213457\pi\)
−0.937147 + 0.348935i \(0.886543\pi\)
\(978\) 0 0
\(979\) 22.1848 + 14.0768i 0.709030 + 0.449895i
\(980\) −4.82472 + 0.330856i −0.154120 + 0.0105688i
\(981\) 0 0
\(982\) 24.8498 + 12.6616i 0.792990 + 0.404048i
\(983\) −24.7035 + 12.5871i −0.787919 + 0.401465i −0.801162 0.598447i \(-0.795785\pi\)
0.0132429 + 0.999912i \(0.495785\pi\)
\(984\) 0 0
\(985\) 7.00505 + 30.5295i 0.223199 + 0.972750i
\(986\) −51.1575 16.6221i −1.62919 0.529355i
\(987\) 0 0
\(988\) 0.706325 + 0.111871i 0.0224712 + 0.00355909i
\(989\) 8.56376 0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) −0.603719 0.0956197i −0.0191681 0.00303593i
\(993\) 0 0
\(994\) 3.17264 + 1.03085i 0.100630 + 0.0326966i
\(995\) −15.8919 + 25.3563i −0.503806 + 0.803849i
\(996\) 0 0
\(997\) 25.7239 13.1070i 0.814685 0.415103i 0.00357282 0.999994i \(-0.498863\pi\)
0.811112 + 0.584891i \(0.198863\pi\)
\(998\) 15.9247 + 8.11406i 0.504089 + 0.256846i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.bj.a.118.1 32
3.2 odd 2 55.2.l.a.8.4 yes 32
5.2 odd 4 inner 495.2.bj.a.217.4 32
11.7 odd 10 inner 495.2.bj.a.73.4 32
12.11 even 2 880.2.cm.a.833.4 32
15.2 even 4 55.2.l.a.52.1 yes 32
15.8 even 4 275.2.bm.b.107.4 32
15.14 odd 2 275.2.bm.b.118.1 32
33.2 even 10 605.2.e.b.483.14 32
33.5 odd 10 605.2.m.d.233.1 32
33.8 even 10 605.2.m.d.578.1 32
33.14 odd 10 605.2.m.c.578.4 32
33.17 even 10 605.2.m.c.233.4 32
33.20 odd 10 605.2.e.b.483.3 32
33.26 odd 10 605.2.m.e.403.4 32
33.29 even 10 55.2.l.a.18.1 yes 32
33.32 even 2 605.2.m.e.118.1 32
55.7 even 20 inner 495.2.bj.a.172.1 32
60.47 odd 4 880.2.cm.a.657.1 32
132.95 odd 10 880.2.cm.a.513.1 32
165.2 odd 20 605.2.e.b.362.3 32
165.17 odd 20 605.2.m.c.112.4 32
165.29 even 10 275.2.bm.b.18.4 32
165.32 odd 4 605.2.m.e.602.4 32
165.47 even 20 605.2.m.c.457.4 32
165.62 odd 20 55.2.l.a.7.4 32
165.92 even 20 605.2.m.e.282.1 32
165.107 odd 20 605.2.m.d.457.1 32
165.128 odd 20 275.2.bm.b.7.1 32
165.137 even 20 605.2.m.d.112.1 32
165.152 even 20 605.2.e.b.362.14 32
660.227 even 20 880.2.cm.a.337.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 165.62 odd 20
55.2.l.a.8.4 yes 32 3.2 odd 2
55.2.l.a.18.1 yes 32 33.29 even 10
55.2.l.a.52.1 yes 32 15.2 even 4
275.2.bm.b.7.1 32 165.128 odd 20
275.2.bm.b.18.4 32 165.29 even 10
275.2.bm.b.107.4 32 15.8 even 4
275.2.bm.b.118.1 32 15.14 odd 2
495.2.bj.a.73.4 32 11.7 odd 10 inner
495.2.bj.a.118.1 32 1.1 even 1 trivial
495.2.bj.a.172.1 32 55.7 even 20 inner
495.2.bj.a.217.4 32 5.2 odd 4 inner
605.2.e.b.362.3 32 165.2 odd 20
605.2.e.b.362.14 32 165.152 even 20
605.2.e.b.483.3 32 33.20 odd 10
605.2.e.b.483.14 32 33.2 even 10
605.2.m.c.112.4 32 165.17 odd 20
605.2.m.c.233.4 32 33.17 even 10
605.2.m.c.457.4 32 165.47 even 20
605.2.m.c.578.4 32 33.14 odd 10
605.2.m.d.112.1 32 165.137 even 20
605.2.m.d.233.1 32 33.5 odd 10
605.2.m.d.457.1 32 165.107 odd 20
605.2.m.d.578.1 32 33.8 even 10
605.2.m.e.118.1 32 33.32 even 2
605.2.m.e.282.1 32 165.92 even 20
605.2.m.e.403.4 32 33.26 odd 10
605.2.m.e.602.4 32 165.32 odd 4
880.2.cm.a.337.4 32 660.227 even 20
880.2.cm.a.513.1 32 132.95 odd 10
880.2.cm.a.657.1 32 60.47 odd 4
880.2.cm.a.833.4 32 12.11 even 2