Properties

Label 275.2.bm.b.107.4
Level $275$
Weight $2$
Character 275.107
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(7,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 107.4
Character \(\chi\) \(=\) 275.107
Dual form 275.2.bm.b.18.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.237790 - 1.50135i) q^{2} +(-0.710333 - 0.361933i) q^{3} +(-0.295389 - 0.0959778i) q^{4} +(-0.712297 + 0.980393i) q^{6} +(-0.0869260 - 0.170602i) q^{7} +(1.16585 - 2.28811i) q^{8} +(-1.38978 - 1.91287i) q^{9} +(1.77694 - 2.80044i) q^{11} +(0.175087 + 0.175087i) q^{12} +(-3.05749 - 0.484259i) q^{13} +(-0.276803 + 0.0899388i) q^{14} +(-3.66057 - 2.65956i) q^{16} +(3.66088 - 0.579827i) q^{17} +(-3.20235 + 1.63168i) q^{18} +(0.229844 + 0.707388i) q^{19} +0.152646i q^{21} +(-3.78190 - 3.33373i) q^{22} +(1.14886 - 1.14886i) q^{23} +(-1.65629 + 1.20336i) q^{24} +(-1.45408 + 4.47521i) q^{26} +(0.669017 + 4.22401i) q^{27} +(0.00930302 + 0.0587369i) q^{28} +(-2.95025 + 9.07993i) q^{29} +(-0.283900 + 0.206266i) q^{31} +(-1.23166 + 1.23166i) q^{32} +(-2.27579 + 1.34611i) q^{33} -5.63413i q^{34} +(0.226933 + 0.698428i) q^{36} +(4.81621 - 2.45398i) q^{37} +(1.11669 - 0.176866i) q^{38} +(1.99657 + 1.45059i) q^{39} +(6.36824 - 2.06917i) q^{41} +(0.229174 + 0.0362976i) q^{42} +(3.72708 + 3.72708i) q^{43} +(-0.793670 + 0.656674i) q^{44} +(-1.45165 - 1.99802i) q^{46} +(-5.61318 + 11.0165i) q^{47} +(1.63764 + 3.21405i) q^{48} +(4.09295 - 5.63346i) q^{49} +(-2.81030 - 0.913123i) q^{51} +(0.856672 + 0.436496i) q^{52} +(1.41265 - 8.91914i) q^{53} +6.50079 q^{54} -0.491699 q^{56} +(0.0927608 - 0.585669i) q^{57} +(12.9306 + 6.58847i) q^{58} +(9.15496 + 2.97463i) q^{59} +(-3.46383 + 4.76756i) q^{61} +(0.242168 + 0.475281i) q^{62} +(-0.205531 + 0.403377i) q^{63} +(-3.76284 - 5.17911i) q^{64} +(1.47982 + 3.73685i) q^{66} +(-4.13426 - 4.13426i) q^{67} +(-1.13704 - 0.180089i) q^{68} +(-1.23188 + 0.400262i) q^{69} +(9.27272 + 6.73702i) q^{71} +(-5.99713 + 0.949851i) q^{72} +(-2.14008 + 1.09042i) q^{73} +(-2.53903 - 7.81434i) q^{74} -0.231015i q^{76} +(-0.632224 - 0.0597184i) q^{77} +(2.65261 - 2.65261i) q^{78} +(0.542434 - 0.394101i) q^{79} +(-1.13837 + 3.50353i) q^{81} +(-1.59224 - 10.0530i) q^{82} +(2.60980 + 16.4776i) q^{83} +(0.0146506 - 0.0450899i) q^{84} +(6.48191 - 4.70938i) q^{86} +(5.38198 - 5.38198i) q^{87} +(-4.33608 - 7.33074i) q^{88} -7.92190i q^{89} +(0.183160 + 0.563709i) q^{91} +(-0.449625 + 0.229095i) q^{92} +(0.276318 - 0.0437645i) q^{93} +(15.2048 + 11.0469i) q^{94} +(1.32067 - 0.429111i) q^{96} +(1.36201 + 0.215721i) q^{97} +(-7.48452 - 7.48452i) q^{98} +(-7.82643 + 0.492943i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.237790 1.50135i 0.168143 1.06161i −0.748859 0.662730i \(-0.769398\pi\)
0.917002 0.398884i \(-0.130602\pi\)
\(3\) −0.710333 0.361933i −0.410111 0.208962i 0.236749 0.971571i \(-0.423918\pi\)
−0.646860 + 0.762609i \(0.723918\pi\)
\(4\) −0.295389 0.0959778i −0.147695 0.0479889i
\(5\) 0 0
\(6\) −0.712297 + 0.980393i −0.290794 + 0.400244i
\(7\) −0.0869260 0.170602i −0.0328550 0.0644815i 0.873996 0.485934i \(-0.161520\pi\)
−0.906851 + 0.421452i \(0.861520\pi\)
\(8\) 1.16585 2.28811i 0.412191 0.808970i
\(9\) −1.38978 1.91287i −0.463259 0.637622i
\(10\) 0 0
\(11\) 1.77694 2.80044i 0.535768 0.844365i
\(12\) 0.175087 + 0.175087i 0.0505433 + 0.0505433i
\(13\) −3.05749 0.484259i −0.847995 0.134309i −0.282711 0.959205i \(-0.591234\pi\)
−0.565285 + 0.824896i \(0.691234\pi\)
\(14\) −0.276803 + 0.0899388i −0.0739787 + 0.0240372i
\(15\) 0 0
\(16\) −3.66057 2.65956i −0.915143 0.664890i
\(17\) 3.66088 0.579827i 0.887894 0.140629i 0.304206 0.952606i \(-0.401609\pi\)
0.583688 + 0.811978i \(0.301609\pi\)
\(18\) −3.20235 + 1.63168i −0.754802 + 0.384591i
\(19\) 0.229844 + 0.707388i 0.0527299 + 0.162286i 0.973954 0.226747i \(-0.0728091\pi\)
−0.921224 + 0.389033i \(0.872809\pi\)
\(20\) 0 0
\(21\) 0.152646i 0.0333100i
\(22\) −3.78190 3.33373i −0.806304 0.710753i
\(23\) 1.14886 1.14886i 0.239553 0.239553i −0.577112 0.816665i \(-0.695820\pi\)
0.816665 + 0.577112i \(0.195820\pi\)
\(24\) −1.65629 + 1.20336i −0.338088 + 0.245635i
\(25\) 0 0
\(26\) −1.45408 + 4.47521i −0.285169 + 0.877660i
\(27\) 0.669017 + 4.22401i 0.128752 + 0.812911i
\(28\) 0.00930302 + 0.0587369i 0.00175811 + 0.0111002i
\(29\) −2.95025 + 9.07993i −0.547847 + 1.68610i 0.166275 + 0.986079i \(0.446826\pi\)
−0.714122 + 0.700021i \(0.753174\pi\)
\(30\) 0 0
\(31\) −0.283900 + 0.206266i −0.0509900 + 0.0370464i −0.612988 0.790092i \(-0.710033\pi\)
0.561998 + 0.827138i \(0.310033\pi\)
\(32\) −1.23166 + 1.23166i −0.217729 + 0.217729i
\(33\) −2.27579 + 1.34611i −0.396165 + 0.234328i
\(34\) 5.63413i 0.966246i
\(35\) 0 0
\(36\) 0.226933 + 0.698428i 0.0378222 + 0.116405i
\(37\) 4.81621 2.45398i 0.791780 0.403432i −0.0108264 0.999941i \(-0.503446\pi\)
0.802606 + 0.596510i \(0.203446\pi\)
\(38\) 1.11669 0.176866i 0.181151 0.0286915i
\(39\) 1.99657 + 1.45059i 0.319707 + 0.232280i
\(40\) 0 0
\(41\) 6.36824 2.06917i 0.994552 0.323150i 0.233866 0.972269i \(-0.424862\pi\)
0.760687 + 0.649119i \(0.224862\pi\)
\(42\) 0.229174 + 0.0362976i 0.0353623 + 0.00560084i
\(43\) 3.72708 + 3.72708i 0.568374 + 0.568374i 0.931673 0.363299i \(-0.118350\pi\)
−0.363299 + 0.931673i \(0.618350\pi\)
\(44\) −0.793670 + 0.656674i −0.119650 + 0.0989973i
\(45\) 0 0
\(46\) −1.45165 1.99802i −0.214034 0.294592i
\(47\) −5.61318 + 11.0165i −0.818766 + 1.60692i −0.0242272 + 0.999706i \(0.507713\pi\)
−0.794539 + 0.607213i \(0.792287\pi\)
\(48\) 1.63764 + 3.21405i 0.236373 + 0.463909i
\(49\) 4.09295 5.63346i 0.584707 0.804780i
\(50\) 0 0
\(51\) −2.81030 0.913123i −0.393521 0.127863i
\(52\) 0.856672 + 0.436496i 0.118799 + 0.0605311i
\(53\) 1.41265 8.91914i 0.194043 1.22514i −0.677761 0.735282i \(-0.737050\pi\)
0.871804 0.489855i \(-0.162950\pi\)
\(54\) 6.50079 0.884646
\(55\) 0 0
\(56\) −0.491699 −0.0657061
\(57\) 0.0927608 0.585669i 0.0122865 0.0775737i
\(58\) 12.9306 + 6.58847i 1.69787 + 0.865108i
\(59\) 9.15496 + 2.97463i 1.19187 + 0.387263i 0.836765 0.547562i \(-0.184444\pi\)
0.355108 + 0.934825i \(0.384444\pi\)
\(60\) 0 0
\(61\) −3.46383 + 4.76756i −0.443498 + 0.610423i −0.970985 0.239140i \(-0.923134\pi\)
0.527487 + 0.849563i \(0.323134\pi\)
\(62\) 0.242168 + 0.475281i 0.0307554 + 0.0603608i
\(63\) −0.205531 + 0.403377i −0.0258944 + 0.0508207i
\(64\) −3.76284 5.17911i −0.470356 0.647389i
\(65\) 0 0
\(66\) 1.47982 + 3.73685i 0.182154 + 0.459974i
\(67\) −4.13426 4.13426i −0.505081 0.505081i 0.407932 0.913012i \(-0.366250\pi\)
−0.913012 + 0.407932i \(0.866250\pi\)
\(68\) −1.13704 0.180089i −0.137886 0.0218390i
\(69\) −1.23188 + 0.400262i −0.148301 + 0.0481859i
\(70\) 0 0
\(71\) 9.27272 + 6.73702i 1.10047 + 0.799538i 0.981136 0.193317i \(-0.0619245\pi\)
0.119333 + 0.992854i \(0.461925\pi\)
\(72\) −5.99713 + 0.949851i −0.706768 + 0.111941i
\(73\) −2.14008 + 1.09042i −0.250477 + 0.127624i −0.574722 0.818349i \(-0.694890\pi\)
0.324245 + 0.945973i \(0.394890\pi\)
\(74\) −2.53903 7.81434i −0.295156 0.908398i
\(75\) 0 0
\(76\) 0.231015i 0.0264992i
\(77\) −0.632224 0.0597184i −0.0720486 0.00680554i
\(78\) 2.65261 2.65261i 0.300348 0.300348i
\(79\) 0.542434 0.394101i 0.0610286 0.0443399i −0.556853 0.830611i \(-0.687991\pi\)
0.617881 + 0.786271i \(0.287991\pi\)
\(80\) 0 0
\(81\) −1.13837 + 3.50353i −0.126485 + 0.389282i
\(82\) −1.59224 10.0530i −0.175833 1.11017i
\(83\) 2.60980 + 16.4776i 0.286463 + 1.80865i 0.540372 + 0.841426i \(0.318284\pi\)
−0.253909 + 0.967228i \(0.581716\pi\)
\(84\) 0.0146506 0.0450899i 0.00159851 0.00491971i
\(85\) 0 0
\(86\) 6.48191 4.70938i 0.698962 0.507826i
\(87\) 5.38198 5.38198i 0.577009 0.577009i
\(88\) −4.33608 7.33074i −0.462227 0.781460i
\(89\) 7.92190i 0.839720i −0.907589 0.419860i \(-0.862079\pi\)
0.907589 0.419860i \(-0.137921\pi\)
\(90\) 0 0
\(91\) 0.183160 + 0.563709i 0.0192004 + 0.0590927i
\(92\) −0.449625 + 0.229095i −0.0468766 + 0.0238848i
\(93\) 0.276318 0.0437645i 0.0286528 0.00453817i
\(94\) 15.2048 + 11.0469i 1.56826 + 1.13941i
\(95\) 0 0
\(96\) 1.32067 0.429111i 0.134790 0.0437960i
\(97\) 1.36201 + 0.215721i 0.138291 + 0.0219032i 0.225196 0.974313i \(-0.427698\pi\)
−0.0869051 + 0.996217i \(0.527698\pi\)
\(98\) −7.48452 7.48452i −0.756051 0.756051i
\(99\) −7.82643 + 0.492943i −0.786585 + 0.0495427i
\(100\) 0 0
\(101\) −2.83633 3.90387i −0.282225 0.388449i 0.644244 0.764820i \(-0.277172\pi\)
−0.926469 + 0.376370i \(0.877172\pi\)
\(102\) −2.03918 + 4.00211i −0.201909 + 0.396268i
\(103\) 1.46972 + 2.88449i 0.144816 + 0.284217i 0.952009 0.306071i \(-0.0990144\pi\)
−0.807193 + 0.590287i \(0.799014\pi\)
\(104\) −4.67262 + 6.43131i −0.458188 + 0.630641i
\(105\) 0 0
\(106\) −13.0548 4.24177i −1.26800 0.411997i
\(107\) 9.85055 + 5.01911i 0.952289 + 0.485215i 0.859875 0.510505i \(-0.170542\pi\)
0.0924142 + 0.995721i \(0.470542\pi\)
\(108\) 0.207790 1.31194i 0.0199946 0.126241i
\(109\) −9.54212 −0.913969 −0.456985 0.889475i \(-0.651071\pi\)
−0.456985 + 0.889475i \(0.651071\pi\)
\(110\) 0 0
\(111\) −4.30929 −0.409019
\(112\) −0.135527 + 0.855686i −0.0128061 + 0.0808547i
\(113\) −3.69562 1.88301i −0.347654 0.177139i 0.271440 0.962455i \(-0.412500\pi\)
−0.619094 + 0.785317i \(0.712500\pi\)
\(114\) −0.857235 0.278533i −0.0802874 0.0260870i
\(115\) 0 0
\(116\) 1.74294 2.39895i 0.161828 0.222737i
\(117\) 3.32291 + 6.52158i 0.307203 + 0.602920i
\(118\) 6.64291 13.0374i 0.611529 1.20019i
\(119\) −0.417145 0.574151i −0.0382397 0.0526324i
\(120\) 0 0
\(121\) −4.68496 9.95245i −0.425905 0.904768i
\(122\) 6.33410 + 6.33410i 0.573462 + 0.573462i
\(123\) −5.27247 0.835077i −0.475403 0.0752964i
\(124\) 0.103658 0.0336805i 0.00930877 0.00302460i
\(125\) 0 0
\(126\) 0.556736 + 0.404492i 0.0495980 + 0.0360350i
\(127\) −14.3879 + 2.27881i −1.27672 + 0.202212i −0.757728 0.652570i \(-0.773691\pi\)
−0.518987 + 0.854782i \(0.673691\pi\)
\(128\) −11.7744 + 5.99935i −1.04072 + 0.530273i
\(129\) −1.29851 3.99642i −0.114328 0.351865i
\(130\) 0 0
\(131\) 9.76926i 0.853544i 0.904359 + 0.426772i \(0.140349\pi\)
−0.904359 + 0.426772i \(0.859651\pi\)
\(132\) 0.801441 0.179202i 0.0697565 0.0155975i
\(133\) 0.100702 0.100702i 0.00873200 0.00873200i
\(134\) −7.19006 + 5.22388i −0.621126 + 0.451275i
\(135\) 0 0
\(136\) 2.94133 9.05250i 0.252217 0.776245i
\(137\) −0.677380 4.27681i −0.0578725 0.365392i −0.999581 0.0289612i \(-0.990780\pi\)
0.941708 0.336431i \(-0.109220\pi\)
\(138\) 0.308004 + 1.94466i 0.0262190 + 0.165540i
\(139\) −3.24794 + 9.99613i −0.275487 + 0.847860i 0.713604 + 0.700550i \(0.247062\pi\)
−0.989090 + 0.147311i \(0.952938\pi\)
\(140\) 0 0
\(141\) 7.97445 5.79378i 0.671570 0.487924i
\(142\) 12.3196 12.3196i 1.03384 1.03384i
\(143\) −6.78912 + 7.70183i −0.567735 + 0.644059i
\(144\) 10.6984i 0.891532i
\(145\) 0 0
\(146\) 1.12822 + 3.47229i 0.0933719 + 0.287369i
\(147\) −4.94629 + 2.52026i −0.407963 + 0.207868i
\(148\) −1.65818 + 0.262630i −0.136302 + 0.0215881i
\(149\) −4.66189 3.38706i −0.381917 0.277479i 0.380218 0.924897i \(-0.375849\pi\)
−0.762135 + 0.647418i \(0.775849\pi\)
\(150\) 0 0
\(151\) −14.2318 + 4.62419i −1.15817 + 0.376311i −0.824214 0.566278i \(-0.808383\pi\)
−0.333953 + 0.942590i \(0.608383\pi\)
\(152\) 1.88655 + 0.298800i 0.153019 + 0.0242358i
\(153\) −6.19694 6.19694i −0.500993 0.500993i
\(154\) −0.239995 + 0.934987i −0.0193393 + 0.0753434i
\(155\) 0 0
\(156\) −0.450540 0.620115i −0.0360721 0.0496489i
\(157\) 2.24640 4.40881i 0.179282 0.351861i −0.783824 0.620983i \(-0.786733\pi\)
0.963106 + 0.269122i \(0.0867335\pi\)
\(158\) −0.462698 0.908095i −0.0368103 0.0722442i
\(159\) −4.23158 + 5.82427i −0.335586 + 0.461895i
\(160\) 0 0
\(161\) −0.295863 0.0961317i −0.0233173 0.00757624i
\(162\) 4.98933 + 2.54219i 0.391999 + 0.199733i
\(163\) 1.56695 9.89335i 0.122733 0.774907i −0.847153 0.531349i \(-0.821685\pi\)
0.969886 0.243558i \(-0.0783147\pi\)
\(164\) −2.07970 −0.162398
\(165\) 0 0
\(166\) 25.3592 1.96826
\(167\) 1.88695 11.9137i 0.146017 0.921913i −0.800517 0.599310i \(-0.795442\pi\)
0.946534 0.322604i \(-0.104558\pi\)
\(168\) 0.349270 + 0.177962i 0.0269468 + 0.0137301i
\(169\) −3.24999 1.05599i −0.250000 0.0812298i
\(170\) 0 0
\(171\) 1.03371 1.42277i 0.0790494 0.108802i
\(172\) −0.743222 1.45866i −0.0566702 0.111221i
\(173\) 5.65903 11.1065i 0.430248 0.844410i −0.569501 0.821991i \(-0.692863\pi\)
0.999749 0.0224186i \(-0.00713665\pi\)
\(174\) −6.80045 9.36001i −0.515540 0.709581i
\(175\) 0 0
\(176\) −13.9526 + 5.52533i −1.05171 + 0.416488i
\(177\) −5.42645 5.42645i −0.407877 0.407877i
\(178\) −11.8935 1.88375i −0.891458 0.141193i
\(179\) 19.1909 6.23551i 1.43440 0.466064i 0.514252 0.857639i \(-0.328070\pi\)
0.920146 + 0.391575i \(0.128070\pi\)
\(180\) 0 0
\(181\) −3.72935 2.70953i −0.277200 0.201398i 0.440495 0.897755i \(-0.354803\pi\)
−0.717695 + 0.696357i \(0.754803\pi\)
\(182\) 0.889877 0.140943i 0.0659620 0.0104474i
\(183\) 4.18601 2.13288i 0.309439 0.157667i
\(184\) −1.28932 3.96811i −0.0950497 0.292533i
\(185\) 0 0
\(186\) 0.425256i 0.0311813i
\(187\) 4.88140 11.2824i 0.356963 0.825051i
\(188\) 2.71541 2.71541i 0.198042 0.198042i
\(189\) 0.662469 0.481312i 0.0481875 0.0350103i
\(190\) 0 0
\(191\) 1.95493 6.01667i 0.141454 0.435351i −0.855084 0.518490i \(-0.826495\pi\)
0.996538 + 0.0831389i \(0.0264945\pi\)
\(192\) 0.798383 + 5.04079i 0.0576183 + 0.363788i
\(193\) 0.927951 + 5.85885i 0.0667954 + 0.421729i 0.998314 + 0.0580368i \(0.0184841\pi\)
−0.931519 + 0.363692i \(0.881516\pi\)
\(194\) 0.647745 1.99355i 0.0465054 0.143129i
\(195\) 0 0
\(196\) −1.74970 + 1.27123i −0.124979 + 0.0908022i
\(197\) −9.90515 + 9.90515i −0.705713 + 0.705713i −0.965631 0.259918i \(-0.916304\pi\)
0.259918 + 0.965631i \(0.416304\pi\)
\(198\) −1.12097 + 11.8674i −0.0796637 + 0.843380i
\(199\) 13.3828i 0.948680i −0.880342 0.474340i \(-0.842687\pi\)
0.880342 0.474340i \(-0.157313\pi\)
\(200\) 0 0
\(201\) 1.44038 + 4.43303i 0.101596 + 0.312682i
\(202\) −6.53551 + 3.33001i −0.459837 + 0.234299i
\(203\) 1.80551 0.285964i 0.126722 0.0200708i
\(204\) 0.742493 + 0.539453i 0.0519849 + 0.0377693i
\(205\) 0 0
\(206\) 4.68010 1.52066i 0.326078 0.105949i
\(207\) −3.79427 0.600953i −0.263720 0.0417691i
\(208\) 9.90424 + 9.90424i 0.686736 + 0.686736i
\(209\) 2.38942 + 0.613321i 0.165280 + 0.0424243i
\(210\) 0 0
\(211\) 3.48696 + 4.79939i 0.240052 + 0.330404i 0.911996 0.410198i \(-0.134540\pi\)
−0.671944 + 0.740602i \(0.734540\pi\)
\(212\) −1.27332 + 2.49903i −0.0874521 + 0.171634i
\(213\) −4.14837 8.14163i −0.284241 0.557855i
\(214\) 9.87779 13.5956i 0.675232 0.929377i
\(215\) 0 0
\(216\) 10.4450 + 3.39378i 0.710691 + 0.230917i
\(217\) 0.0598677 + 0.0305041i 0.00406408 + 0.00207075i
\(218\) −2.26902 + 14.3260i −0.153678 + 0.970282i
\(219\) 1.91483 0.129392
\(220\) 0 0
\(221\) −11.4739 −0.771818
\(222\) −1.02471 + 6.46974i −0.0687738 + 0.434220i
\(223\) 18.9389 + 9.64984i 1.26824 + 0.646201i 0.953046 0.302826i \(-0.0979300\pi\)
0.315195 + 0.949027i \(0.397930\pi\)
\(224\) 0.317188 + 0.103060i 0.0211930 + 0.00688602i
\(225\) 0 0
\(226\) −3.70584 + 5.10065i −0.246509 + 0.339290i
\(227\) −5.93372 11.6456i −0.393835 0.772944i 0.605910 0.795533i \(-0.292809\pi\)
−0.999745 + 0.0225888i \(0.992809\pi\)
\(228\) −0.0836117 + 0.164097i −0.00553732 + 0.0108676i
\(229\) 9.65796 + 13.2930i 0.638216 + 0.878429i 0.998519 0.0544066i \(-0.0173267\pi\)
−0.360303 + 0.932835i \(0.617327\pi\)
\(230\) 0 0
\(231\) 0.427475 + 0.271242i 0.0281258 + 0.0178464i
\(232\) 17.3363 + 17.3363i 1.13819 + 1.13819i
\(233\) 15.4510 + 2.44720i 1.01223 + 0.160321i 0.640450 0.768000i \(-0.278748\pi\)
0.371779 + 0.928321i \(0.378748\pi\)
\(234\) 10.5813 3.43808i 0.691722 0.224754i
\(235\) 0 0
\(236\) −2.41878 1.75734i −0.157449 0.114393i
\(237\) −0.527947 + 0.0836185i −0.0342938 + 0.00543161i
\(238\) −0.961194 + 0.489753i −0.0623050 + 0.0317460i
\(239\) −1.63214 5.02322i −0.105575 0.324925i 0.884290 0.466938i \(-0.154643\pi\)
−0.989865 + 0.142012i \(0.954643\pi\)
\(240\) 0 0
\(241\) 16.1676i 1.04144i −0.853726 0.520722i \(-0.825663\pi\)
0.853726 0.520722i \(-0.174337\pi\)
\(242\) −16.0561 + 4.66716i −1.03213 + 0.300016i
\(243\) 11.1488 11.1488i 0.715198 0.715198i
\(244\) 1.48076 1.07583i 0.0947959 0.0688732i
\(245\) 0 0
\(246\) −2.50748 + 7.71724i −0.159871 + 0.492033i
\(247\) −0.360188 2.27413i −0.0229182 0.144700i
\(248\) 0.140973 + 0.890071i 0.00895182 + 0.0565196i
\(249\) 4.10997 12.6492i 0.260458 0.801609i
\(250\) 0 0
\(251\) −15.6486 + 11.3694i −0.987729 + 0.717627i −0.959423 0.281972i \(-0.909011\pi\)
−0.0283063 + 0.999599i \(0.509011\pi\)
\(252\) 0.0994268 0.0994268i 0.00626330 0.00626330i
\(253\) −1.17586 5.25876i −0.0739254 0.330615i
\(254\) 22.1431i 1.38938i
\(255\) 0 0
\(256\) 2.25079 + 6.92722i 0.140674 + 0.432951i
\(257\) 4.19318 2.13653i 0.261563 0.133273i −0.318292 0.947993i \(-0.603109\pi\)
0.579855 + 0.814720i \(0.303109\pi\)
\(258\) −6.30879 + 0.999214i −0.392768 + 0.0622083i
\(259\) −0.837308 0.608340i −0.0520278 0.0378004i
\(260\) 0 0
\(261\) 21.4689 6.97566i 1.32889 0.431783i
\(262\) 14.6671 + 2.32303i 0.906134 + 0.143517i
\(263\) −11.2218 11.2218i −0.691964 0.691964i 0.270700 0.962664i \(-0.412745\pi\)
−0.962664 + 0.270700i \(0.912745\pi\)
\(264\) 0.426823 + 6.77663i 0.0262691 + 0.417073i
\(265\) 0 0
\(266\) −0.127243 0.175135i −0.00780178 0.0107382i
\(267\) −2.86720 + 5.62719i −0.175470 + 0.344378i
\(268\) 0.824419 + 1.61801i 0.0503594 + 0.0988359i
\(269\) −6.64926 + 9.15192i −0.405412 + 0.558002i −0.962092 0.272725i \(-0.912075\pi\)
0.556680 + 0.830727i \(0.312075\pi\)
\(270\) 0 0
\(271\) 16.9556 + 5.50921i 1.02998 + 0.334661i 0.774782 0.632228i \(-0.217859\pi\)
0.255198 + 0.966889i \(0.417859\pi\)
\(272\) −14.9430 7.61384i −0.906052 0.461657i
\(273\) 0.0739200 0.466712i 0.00447384 0.0282467i
\(274\) −6.58205 −0.397636
\(275\) 0 0
\(276\) 0.402300 0.0242156
\(277\) −0.732361 + 4.62395i −0.0440033 + 0.277826i −0.999873 0.0159666i \(-0.994917\pi\)
0.955869 + 0.293793i \(0.0949175\pi\)
\(278\) 14.2353 + 7.25327i 0.853779 + 0.435022i
\(279\) 0.789117 + 0.256400i 0.0472432 + 0.0153502i
\(280\) 0 0
\(281\) −7.75247 + 10.6704i −0.462474 + 0.636541i −0.975019 0.222119i \(-0.928703\pi\)
0.512546 + 0.858660i \(0.328703\pi\)
\(282\) −6.80223 13.3501i −0.405067 0.794989i
\(283\) −10.3449 + 20.3029i −0.614938 + 1.20688i 0.348084 + 0.937463i \(0.386832\pi\)
−0.963022 + 0.269421i \(0.913168\pi\)
\(284\) −2.09246 2.88002i −0.124164 0.170898i
\(285\) 0 0
\(286\) 9.94874 + 12.0243i 0.588281 + 0.711009i
\(287\) −0.906570 0.906570i −0.0535131 0.0535131i
\(288\) 4.06774 + 0.644267i 0.239694 + 0.0379638i
\(289\) −3.10211 + 1.00794i −0.182477 + 0.0592904i
\(290\) 0 0
\(291\) −0.889404 0.646190i −0.0521378 0.0378803i
\(292\) 0.736812 0.116700i 0.0431187 0.00682933i
\(293\) 6.43996 3.28132i 0.376226 0.191697i −0.255644 0.966771i \(-0.582287\pi\)
0.631870 + 0.775074i \(0.282287\pi\)
\(294\) 2.60761 + 8.02539i 0.152079 + 0.468051i
\(295\) 0 0
\(296\) 13.8810i 0.806817i
\(297\) 13.0179 + 5.63227i 0.755375 + 0.326818i
\(298\) −6.19371 + 6.19371i −0.358792 + 0.358792i
\(299\) −4.06896 + 2.95628i −0.235314 + 0.170966i
\(300\) 0 0
\(301\) 0.311867 0.959827i 0.0179757 0.0553235i
\(302\) 3.55834 + 22.4665i 0.204759 + 1.29280i
\(303\) 0.601798 + 3.79960i 0.0345724 + 0.218282i
\(304\) 1.03998 3.20073i 0.0596469 0.183574i
\(305\) 0 0
\(306\) −10.7773 + 7.83020i −0.616100 + 0.447623i
\(307\) −20.1272 + 20.1272i −1.14872 + 1.14872i −0.161918 + 0.986804i \(0.551768\pi\)
−0.986804 + 0.161918i \(0.948232\pi\)
\(308\) 0.181020 + 0.0783196i 0.0103146 + 0.00446267i
\(309\) 2.58088i 0.146821i
\(310\) 0 0
\(311\) −2.32254 7.14803i −0.131699 0.405328i 0.863363 0.504583i \(-0.168354\pi\)
−0.995062 + 0.0992557i \(0.968354\pi\)
\(312\) 5.64681 2.87720i 0.319688 0.162889i
\(313\) 1.32951 0.210574i 0.0751483 0.0119023i −0.118747 0.992925i \(-0.537888\pi\)
0.193895 + 0.981022i \(0.437888\pi\)
\(314\) −6.08499 4.42100i −0.343396 0.249492i
\(315\) 0 0
\(316\) −0.198054 + 0.0643517i −0.0111414 + 0.00362006i
\(317\) 11.1924 + 1.77271i 0.628630 + 0.0995652i 0.462617 0.886558i \(-0.346911\pi\)
0.166013 + 0.986124i \(0.446911\pi\)
\(318\) 7.73803 + 7.73803i 0.433927 + 0.433927i
\(319\) 20.1854 + 24.3965i 1.13017 + 1.36594i
\(320\) 0 0
\(321\) −5.18059 7.13047i −0.289152 0.397984i
\(322\) −0.214680 + 0.421334i −0.0119637 + 0.0234800i
\(323\) 1.25159 + 2.45639i 0.0696406 + 0.136677i
\(324\) 0.672523 0.925648i 0.0373624 0.0514249i
\(325\) 0 0
\(326\) −14.4808 4.70509i −0.802015 0.260591i
\(327\) 6.77808 + 3.45360i 0.374829 + 0.190985i
\(328\) 2.68994 16.9836i 0.148527 0.937762i
\(329\) 2.36737 0.130517
\(330\) 0 0
\(331\) −17.7048 −0.973145 −0.486572 0.873640i \(-0.661753\pi\)
−0.486572 + 0.873640i \(0.661753\pi\)
\(332\) 0.810579 5.11780i 0.0444863 0.280876i
\(333\) −11.3876 5.80227i −0.624036 0.317962i
\(334\) −17.4380 5.66594i −0.954164 0.310027i
\(335\) 0 0
\(336\) 0.405970 0.558770i 0.0221475 0.0304834i
\(337\) −3.45945 6.78954i −0.188448 0.369850i 0.777381 0.629030i \(-0.216548\pi\)
−0.965829 + 0.259180i \(0.916548\pi\)
\(338\) −2.35822 + 4.62827i −0.128270 + 0.251745i
\(339\) 1.94359 + 2.67513i 0.105562 + 0.145293i
\(340\) 0 0
\(341\) 0.0731608 + 1.16157i 0.00396188 + 0.0629025i
\(342\) −1.89027 1.89027i −0.102214 0.102214i
\(343\) −2.64066 0.418239i −0.142582 0.0225828i
\(344\) 12.8732 4.18275i 0.694076 0.225519i
\(345\) 0 0
\(346\) −15.3290 11.1372i −0.824093 0.598739i
\(347\) 9.21879 1.46011i 0.494891 0.0783830i 0.0959998 0.995381i \(-0.469395\pi\)
0.398891 + 0.916998i \(0.369395\pi\)
\(348\) −2.10633 + 1.07323i −0.112911 + 0.0575311i
\(349\) 0.464073 + 1.42827i 0.0248413 + 0.0764536i 0.962709 0.270540i \(-0.0872024\pi\)
−0.937867 + 0.346994i \(0.887202\pi\)
\(350\) 0 0
\(351\) 13.2388i 0.706637i
\(352\) 1.26061 + 5.63779i 0.0671906 + 0.300495i
\(353\) −4.40229 + 4.40229i −0.234310 + 0.234310i −0.814489 0.580179i \(-0.802983\pi\)
0.580179 + 0.814489i \(0.302983\pi\)
\(354\) −9.43735 + 6.85664i −0.501589 + 0.364426i
\(355\) 0 0
\(356\) −0.760327 + 2.34004i −0.0402972 + 0.124022i
\(357\) 0.0885080 + 0.558817i 0.00468434 + 0.0295757i
\(358\) −4.79826 30.2950i −0.253596 1.60114i
\(359\) 8.12845 25.0168i 0.429003 1.32034i −0.470105 0.882611i \(-0.655784\pi\)
0.899108 0.437726i \(-0.144216\pi\)
\(360\) 0 0
\(361\) 14.9238 10.8427i 0.785461 0.570671i
\(362\) −4.95475 + 4.95475i −0.260416 + 0.260416i
\(363\) −0.274237 + 8.76519i −0.0143937 + 0.460053i
\(364\) 0.184093i 0.00964908i
\(365\) 0 0
\(366\) −2.20680 6.79184i −0.115351 0.355015i
\(367\) −7.27872 + 3.70869i −0.379946 + 0.193592i −0.633524 0.773723i \(-0.718392\pi\)
0.253579 + 0.967315i \(0.418392\pi\)
\(368\) −7.26093 + 1.15002i −0.378502 + 0.0599488i
\(369\) −12.8085 9.30591i −0.666783 0.484446i
\(370\) 0 0
\(371\) −1.64442 + 0.534304i −0.0853740 + 0.0277397i
\(372\) −0.0858218 0.0135928i −0.00444965 0.000704756i
\(373\) −6.12473 6.12473i −0.317126 0.317126i 0.530536 0.847662i \(-0.321991\pi\)
−0.847662 + 0.530536i \(0.821991\pi\)
\(374\) −15.7781 10.0115i −0.815864 0.517684i
\(375\) 0 0
\(376\) 18.6628 + 25.6872i 0.962461 + 1.32471i
\(377\) 13.4174 26.3331i 0.691031 1.35622i
\(378\) −0.565088 1.10905i −0.0290650 0.0570433i
\(379\) −0.363481 + 0.500288i −0.0186708 + 0.0256981i −0.818250 0.574862i \(-0.805056\pi\)
0.799580 + 0.600560i \(0.205056\pi\)
\(380\) 0 0
\(381\) 11.0449 + 3.58872i 0.565849 + 0.183856i
\(382\) −8.56825 4.36574i −0.438390 0.223371i
\(383\) −1.62362 + 10.2511i −0.0829629 + 0.523807i 0.910850 + 0.412738i \(0.135428\pi\)
−0.993813 + 0.111069i \(0.964572\pi\)
\(384\) 10.5351 0.537617
\(385\) 0 0
\(386\) 9.01683 0.458945
\(387\) 1.94959 12.3092i 0.0991031 0.625712i
\(388\) −0.381619 0.194444i −0.0193737 0.00987142i
\(389\) −21.0630 6.84378i −1.06794 0.346993i −0.278252 0.960508i \(-0.589755\pi\)
−0.789683 + 0.613515i \(0.789755\pi\)
\(390\) 0 0
\(391\) 3.53969 4.87197i 0.179010 0.246386i
\(392\) −8.11822 15.9329i −0.410032 0.804733i
\(393\) 3.53581 6.93942i 0.178358 0.350048i
\(394\) 12.5157 + 17.2264i 0.630534 + 0.867855i
\(395\) 0 0
\(396\) 2.35915 + 0.605553i 0.118552 + 0.0304302i
\(397\) −10.7769 10.7769i −0.540876 0.540876i 0.382910 0.923786i \(-0.374922\pi\)
−0.923786 + 0.382910i \(0.874922\pi\)
\(398\) −20.0922 3.18229i −1.00713 0.159514i
\(399\) −0.107980 + 0.0350847i −0.00540574 + 0.00175643i
\(400\) 0 0
\(401\) 3.46399 + 2.51673i 0.172983 + 0.125680i 0.670908 0.741540i \(-0.265904\pi\)
−0.497925 + 0.867220i \(0.665904\pi\)
\(402\) 6.99803 1.10838i 0.349030 0.0552809i
\(403\) 0.967909 0.493174i 0.0482150 0.0245668i
\(404\) 0.463135 + 1.42538i 0.0230418 + 0.0709155i
\(405\) 0 0
\(406\) 2.77869i 0.137904i
\(407\) 1.68589 17.8481i 0.0835664 0.884697i
\(408\) −5.36572 + 5.36572i −0.265643 + 0.265643i
\(409\) 3.47523 2.52490i 0.171839 0.124848i −0.498541 0.866866i \(-0.666131\pi\)
0.670381 + 0.742017i \(0.266131\pi\)
\(410\) 0 0
\(411\) −1.06675 + 3.28312i −0.0526190 + 0.161945i
\(412\) −0.157293 0.993106i −0.00774925 0.0489268i
\(413\) −0.288327 1.82043i −0.0141877 0.0895773i
\(414\) −1.80448 + 5.55361i −0.0886853 + 0.272945i
\(415\) 0 0
\(416\) 4.36224 3.16935i 0.213876 0.155390i
\(417\) 5.92504 5.92504i 0.290151 0.290151i
\(418\) 1.48899 3.44151i 0.0728288 0.168330i
\(419\) 1.20241i 0.0587414i 0.999569 + 0.0293707i \(0.00935032\pi\)
−0.999569 + 0.0293707i \(0.990650\pi\)
\(420\) 0 0
\(421\) 9.67493 + 29.7764i 0.471527 + 1.45121i 0.850584 + 0.525839i \(0.176248\pi\)
−0.379057 + 0.925373i \(0.623752\pi\)
\(422\) 8.03473 4.09390i 0.391124 0.199288i
\(423\) 28.8741 4.57321i 1.40391 0.222357i
\(424\) −18.7610 13.6307i −0.911117 0.661965i
\(425\) 0 0
\(426\) −13.2099 + 4.29214i −0.640020 + 0.207955i
\(427\) 1.11445 + 0.176512i 0.0539321 + 0.00854201i
\(428\) −2.42802 2.42802i −0.117363 0.117363i
\(429\) 7.61008 3.01366i 0.367418 0.145501i
\(430\) 0 0
\(431\) −5.81395 8.00222i −0.280048 0.385453i 0.645702 0.763590i \(-0.276565\pi\)
−0.925750 + 0.378137i \(0.876565\pi\)
\(432\) 8.78502 17.2416i 0.422669 0.829536i
\(433\) −12.2497 24.0414i −0.588683 1.15536i −0.972708 0.232033i \(-0.925462\pi\)
0.384025 0.923323i \(-0.374538\pi\)
\(434\) 0.0600332 0.0826286i 0.00288169 0.00396630i
\(435\) 0 0
\(436\) 2.81864 + 0.915831i 0.134988 + 0.0438604i
\(437\) 1.07675 + 0.548629i 0.0515077 + 0.0262445i
\(438\) 0.455327 2.87482i 0.0217564 0.137364i
\(439\) −24.5862 −1.17344 −0.586718 0.809791i \(-0.699580\pi\)
−0.586718 + 0.809791i \(0.699580\pi\)
\(440\) 0 0
\(441\) −16.4643 −0.784016
\(442\) −2.72838 + 17.2263i −0.129776 + 0.819372i
\(443\) −27.4404 13.9816i −1.30373 0.664286i −0.342370 0.939565i \(-0.611230\pi\)
−0.961364 + 0.275279i \(0.911230\pi\)
\(444\) 1.27292 + 0.413596i 0.0604099 + 0.0196284i
\(445\) 0 0
\(446\) 18.9912 26.1392i 0.899262 1.23773i
\(447\) 2.08561 + 4.09323i 0.0986458 + 0.193603i
\(448\) −0.556477 + 1.09215i −0.0262911 + 0.0515992i
\(449\) −4.30536 5.92582i −0.203182 0.279657i 0.695250 0.718768i \(-0.255293\pi\)
−0.898433 + 0.439111i \(0.855293\pi\)
\(450\) 0 0
\(451\) 5.52141 21.5107i 0.259993 1.01290i
\(452\) 0.910918 + 0.910918i 0.0428460 + 0.0428460i
\(453\) 11.7830 + 1.86624i 0.553612 + 0.0876835i
\(454\) −18.8951 + 6.13938i −0.886789 + 0.288135i
\(455\) 0 0
\(456\) −1.23193 0.895050i −0.0576904 0.0419146i
\(457\) 6.65265 1.05368i 0.311198 0.0492889i 0.00111791 0.999999i \(-0.499644\pi\)
0.310080 + 0.950710i \(0.399644\pi\)
\(458\) 22.2540 11.3390i 1.03986 0.529837i
\(459\) 4.89838 + 15.0757i 0.228637 + 0.703672i
\(460\) 0 0
\(461\) 29.0801i 1.35440i 0.735801 + 0.677198i \(0.236806\pi\)
−0.735801 + 0.677198i \(0.763194\pi\)
\(462\) 0.508879 0.577290i 0.0236752 0.0268580i
\(463\) −17.5146 + 17.5146i −0.813970 + 0.813970i −0.985227 0.171256i \(-0.945217\pi\)
0.171256 + 0.985227i \(0.445217\pi\)
\(464\) 34.9482 25.3914i 1.62243 1.17876i
\(465\) 0 0
\(466\) 7.34819 22.6154i 0.340398 1.04764i
\(467\) 4.13890 + 26.1320i 0.191525 + 1.20924i 0.876763 + 0.480923i \(0.159698\pi\)
−0.685237 + 0.728320i \(0.740302\pi\)
\(468\) −0.355625 2.24533i −0.0164388 0.103790i
\(469\) −0.345938 + 1.06469i −0.0159739 + 0.0491627i
\(470\) 0 0
\(471\) −3.19138 + 2.31868i −0.147051 + 0.106839i
\(472\) 17.4796 17.4796i 0.804563 0.804563i
\(473\) 17.0603 3.81467i 0.784432 0.175399i
\(474\) 0.812515i 0.0373201i
\(475\) 0 0
\(476\) 0.0681145 + 0.209635i 0.00312202 + 0.00960860i
\(477\) −19.0244 + 9.69341i −0.871067 + 0.443831i
\(478\) −7.92972 + 1.25594i −0.362697 + 0.0574455i
\(479\) 21.2408 + 15.4324i 0.970519 + 0.705123i 0.955570 0.294765i \(-0.0952413\pi\)
0.0149492 + 0.999888i \(0.495241\pi\)
\(480\) 0 0
\(481\) −15.9139 + 5.17073i −0.725610 + 0.235765i
\(482\) −24.2731 3.84449i −1.10561 0.175112i
\(483\) 0.175368 + 0.175368i 0.00797952 + 0.00797952i
\(484\) 0.428672 + 3.38950i 0.0194851 + 0.154068i
\(485\) 0 0
\(486\) −14.0872 19.3894i −0.639008 0.879519i
\(487\) −10.5939 + 20.7917i −0.480056 + 0.942163i 0.516262 + 0.856431i \(0.327323\pi\)
−0.996318 + 0.0857326i \(0.972677\pi\)
\(488\) 6.87039 + 13.4839i 0.311008 + 0.610388i
\(489\) −4.69379 + 6.46044i −0.212260 + 0.292151i
\(490\) 0 0
\(491\) 17.4497 + 5.66974i 0.787493 + 0.255872i 0.675036 0.737785i \(-0.264128\pi\)
0.112457 + 0.993657i \(0.464128\pi\)
\(492\) 1.47728 + 0.752713i 0.0666010 + 0.0339349i
\(493\) −5.53572 + 34.9512i −0.249316 + 1.57412i
\(494\) −3.49992 −0.157469
\(495\) 0 0
\(496\) 1.58781 0.0712949
\(497\) 0.343309 2.16757i 0.0153995 0.0972286i
\(498\) −18.0135 9.17834i −0.807204 0.411291i
\(499\) 11.1824 + 3.63339i 0.500595 + 0.162653i 0.548421 0.836203i \(-0.315229\pi\)
−0.0478260 + 0.998856i \(0.515229\pi\)
\(500\) 0 0
\(501\) −5.65234 + 7.77978i −0.252528 + 0.347575i
\(502\) 13.3483 + 26.1975i 0.595763 + 1.16925i
\(503\) 2.42460 4.75855i 0.108108 0.212173i −0.830615 0.556848i \(-0.812011\pi\)
0.938722 + 0.344674i \(0.112011\pi\)
\(504\) 0.683353 + 0.940555i 0.0304390 + 0.0418956i
\(505\) 0 0
\(506\) −8.17484 + 0.514888i −0.363416 + 0.0228896i
\(507\) 1.92638 + 1.92638i 0.0855536 + 0.0855536i
\(508\) 4.46873 + 0.707777i 0.198268 + 0.0314025i
\(509\) −18.6283 + 6.05272i −0.825687 + 0.268282i −0.691228 0.722637i \(-0.742930\pi\)
−0.134459 + 0.990919i \(0.542930\pi\)
\(510\) 0 0
\(511\) 0.372057 + 0.270315i 0.0164588 + 0.0119580i
\(512\) −15.1686 + 2.40248i −0.670365 + 0.106175i
\(513\) −2.83424 + 1.44412i −0.125135 + 0.0637594i
\(514\) −2.21058 6.80347i −0.0975046 0.300088i
\(515\) 0 0
\(516\) 1.30513i 0.0574550i
\(517\) 20.8767 + 35.2950i 0.918158 + 1.55227i
\(518\) −1.11243 + 1.11243i −0.0488775 + 0.0488775i
\(519\) −8.03959 + 5.84110i −0.352899 + 0.256396i
\(520\) 0 0
\(521\) 5.78913 17.8171i 0.253626 0.780582i −0.740471 0.672089i \(-0.765397\pi\)
0.994097 0.108493i \(-0.0346026\pi\)
\(522\) −5.36781 33.8910i −0.234943 1.48337i
\(523\) −0.403961 2.55051i −0.0176640 0.111526i 0.977281 0.211948i \(-0.0679807\pi\)
−0.994945 + 0.100422i \(0.967981\pi\)
\(524\) 0.937631 2.88573i 0.0409606 0.126064i
\(525\) 0 0
\(526\) −19.5162 + 14.1794i −0.850948 + 0.618250i
\(527\) −0.919727 + 0.919727i −0.0400639 + 0.0400639i
\(528\) 11.9108 + 1.12506i 0.518350 + 0.0489621i
\(529\) 20.3603i 0.885228i
\(530\) 0 0
\(531\) −7.03330 21.6463i −0.305219 0.939368i
\(532\) −0.0394115 + 0.0200812i −0.00170871 + 0.000870630i
\(533\) −20.4729 + 3.24258i −0.886778 + 0.140452i
\(534\) 7.76658 + 5.64275i 0.336093 + 0.244186i
\(535\) 0 0
\(536\) −14.2796 + 4.63972i −0.616784 + 0.200405i
\(537\) −15.8888 2.51654i −0.685652 0.108597i
\(538\) 12.1591 + 12.1591i 0.524216 + 0.524216i
\(539\) −8.50325 21.4724i −0.366261 0.924881i
\(540\) 0 0
\(541\) 5.42829 + 7.47139i 0.233380 + 0.321220i 0.909604 0.415476i \(-0.136385\pi\)
−0.676224 + 0.736696i \(0.736385\pi\)
\(542\) 12.3031 24.1462i 0.528464 1.03717i
\(543\) 1.66841 + 3.27444i 0.0715983 + 0.140520i
\(544\) −3.79482 + 5.22312i −0.162701 + 0.223939i
\(545\) 0 0
\(546\) −0.683120 0.221959i −0.0292348 0.00949898i
\(547\) −0.954295 0.486237i −0.0408027 0.0207900i 0.433470 0.901168i \(-0.357289\pi\)
−0.474273 + 0.880378i \(0.657289\pi\)
\(548\) −0.210388 + 1.32834i −0.00898732 + 0.0567437i
\(549\) 13.9337 0.594674
\(550\) 0 0
\(551\) −7.10113 −0.302518
\(552\) −0.520344 + 3.28533i −0.0221473 + 0.139833i
\(553\) −0.114386 0.0582826i −0.00486419 0.00247843i
\(554\) 6.76800 + 2.19906i 0.287545 + 0.0934290i
\(555\) 0 0
\(556\) 1.91881 2.64102i 0.0813758 0.112004i
\(557\) 19.5384 + 38.3462i 0.827868 + 1.62478i 0.779876 + 0.625934i \(0.215282\pi\)
0.0479915 + 0.998848i \(0.484718\pi\)
\(558\) 0.572590 1.12377i 0.0242396 0.0475730i
\(559\) −9.59064 13.2004i −0.405641 0.558316i
\(560\) 0 0
\(561\) −7.55089 + 6.24752i −0.318799 + 0.263771i
\(562\) 14.1765 + 14.1765i 0.597998 + 0.597998i
\(563\) 25.5439 + 4.04575i 1.07655 + 0.170508i 0.669435 0.742871i \(-0.266536\pi\)
0.407111 + 0.913379i \(0.366536\pi\)
\(564\) −2.91164 + 0.946049i −0.122602 + 0.0398359i
\(565\) 0 0
\(566\) 28.0219 + 20.3591i 1.17785 + 0.855756i
\(567\) 0.696664 0.110341i 0.0292571 0.00463387i
\(568\) 26.2257 13.3626i 1.10040 0.560684i
\(569\) 8.39651 + 25.8418i 0.352000 + 1.08334i 0.957729 + 0.287673i \(0.0928816\pi\)
−0.605729 + 0.795671i \(0.707118\pi\)
\(570\) 0 0
\(571\) 40.5475i 1.69686i 0.529308 + 0.848430i \(0.322451\pi\)
−0.529308 + 0.848430i \(0.677549\pi\)
\(572\) 2.74464 1.62343i 0.114759 0.0678791i
\(573\) −3.56628 + 3.56628i −0.148984 + 0.148984i
\(574\) −1.57665 + 1.14550i −0.0658081 + 0.0478124i
\(575\) 0 0
\(576\) −4.67742 + 14.3956i −0.194893 + 0.599818i
\(577\) −5.28872 33.3917i −0.220172 1.39011i −0.811815 0.583914i \(-0.801521\pi\)
0.591643 0.806200i \(-0.298479\pi\)
\(578\) 0.775613 + 4.89703i 0.0322612 + 0.203689i
\(579\) 1.46136 4.49759i 0.0607319 0.186913i
\(580\) 0 0
\(581\) 2.58426 1.87757i 0.107213 0.0778948i
\(582\) −1.18165 + 1.18165i −0.0489808 + 0.0489808i
\(583\) −22.4673 19.8048i −0.930502 0.820233i
\(584\) 6.16801i 0.255234i
\(585\) 0 0
\(586\) −3.39505 10.4489i −0.140248 0.431640i
\(587\) −8.62859 + 4.39649i −0.356140 + 0.181462i −0.622902 0.782300i \(-0.714046\pi\)
0.266762 + 0.963763i \(0.414046\pi\)
\(588\) 1.70297 0.269724i 0.0702293 0.0111232i
\(589\) −0.211163 0.153419i −0.00870081 0.00632151i
\(590\) 0 0
\(591\) 10.6210 3.45096i 0.436888 0.141953i
\(592\) −24.1566 3.82603i −0.992829 0.157249i
\(593\) 14.0452 + 14.0452i 0.576769 + 0.576769i 0.934012 0.357243i \(-0.116283\pi\)
−0.357243 + 0.934012i \(0.616283\pi\)
\(594\) 11.5515 18.2051i 0.473965 0.746964i
\(595\) 0 0
\(596\) 1.05199 + 1.44794i 0.0430912 + 0.0593099i
\(597\) −4.84367 + 9.50623i −0.198238 + 0.389064i
\(598\) 3.47084 + 6.81191i 0.141933 + 0.278560i
\(599\) 2.65433 3.65338i 0.108453 0.149273i −0.751340 0.659915i \(-0.770592\pi\)
0.859793 + 0.510642i \(0.170592\pi\)
\(600\) 0 0
\(601\) −7.96746 2.58878i −0.324999 0.105599i 0.141973 0.989871i \(-0.454655\pi\)
−0.466973 + 0.884272i \(0.654655\pi\)
\(602\) −1.36688 0.696458i −0.0557097 0.0283855i
\(603\) −2.16258 + 13.6540i −0.0880671 + 0.556034i
\(604\) 4.64774 0.189114
\(605\) 0 0
\(606\) 5.84763 0.237544
\(607\) −1.20123 + 7.58425i −0.0487563 + 0.307835i −1.00000 0.000605683i \(-0.999807\pi\)
0.951244 + 0.308441i \(0.0998072\pi\)
\(608\) −1.15435 0.588172i −0.0468152 0.0238535i
\(609\) −1.38601 0.450342i −0.0561640 0.0182488i
\(610\) 0 0
\(611\) 22.4971 30.9646i 0.910134 1.25269i
\(612\) 1.23574 + 2.42528i 0.0499519 + 0.0980361i
\(613\) −19.4882 + 38.2477i −0.787120 + 1.54481i 0.0506058 + 0.998719i \(0.483885\pi\)
−0.837726 + 0.546091i \(0.816115\pi\)
\(614\) 25.4319 + 35.0041i 1.02635 + 1.41265i
\(615\) 0 0
\(616\) −0.873721 + 1.37698i −0.0352032 + 0.0554799i
\(617\) −33.4407 33.4407i −1.34627 1.34627i −0.889671 0.456601i \(-0.849067\pi\)
−0.456601 0.889671i \(-0.650933\pi\)
\(618\) −3.87481 0.613709i −0.155868 0.0246870i
\(619\) −20.0674 + 6.52029i −0.806576 + 0.262073i −0.683147 0.730281i \(-0.739389\pi\)
−0.123429 + 0.992353i \(0.539389\pi\)
\(620\) 0 0
\(621\) 5.62139 + 4.08418i 0.225578 + 0.163892i
\(622\) −11.2840 + 1.78720i −0.452445 + 0.0716603i
\(623\) −1.35149 + 0.688620i −0.0541464 + 0.0275890i
\(624\) −3.45064 10.6200i −0.138136 0.425139i
\(625\) 0 0
\(626\) 2.04613i 0.0817798i
\(627\) −1.47530 1.30047i −0.0589179 0.0519358i
\(628\) −1.08671 + 1.08671i −0.0433645 + 0.0433645i
\(629\) 16.2087 11.7763i 0.646282 0.469552i
\(630\) 0 0
\(631\) −8.72043 + 26.8387i −0.347155 + 1.06843i 0.613265 + 0.789877i \(0.289856\pi\)
−0.960420 + 0.278555i \(0.910144\pi\)
\(632\) −0.269351 1.70061i −0.0107142 0.0676467i
\(633\) −0.739847 4.67121i −0.0294063 0.185664i
\(634\) 5.32290 16.3822i 0.211399 0.650621i
\(635\) 0 0
\(636\) 1.80896 1.31429i 0.0717301 0.0521150i
\(637\) −15.2422 + 15.2422i −0.603918 + 0.603918i
\(638\) 41.4275 24.5041i 1.64013 0.970125i
\(639\) 27.1004i 1.07208i
\(640\) 0 0
\(641\) −5.23436 16.1097i −0.206745 0.636295i −0.999637 0.0269333i \(-0.991426\pi\)
0.792893 0.609362i \(-0.208574\pi\)
\(642\) −11.9372 + 6.08232i −0.471124 + 0.240050i
\(643\) −6.19838 + 0.981726i −0.244440 + 0.0387155i −0.277452 0.960739i \(-0.589490\pi\)
0.0330121 + 0.999455i \(0.489490\pi\)
\(644\) 0.0781682 + 0.0567925i 0.00308026 + 0.00223794i
\(645\) 0 0
\(646\) 3.98552 1.29497i 0.156808 0.0509500i
\(647\) 42.9518 + 6.80289i 1.68861 + 0.267449i 0.925479 0.378798i \(-0.123662\pi\)
0.763128 + 0.646247i \(0.223662\pi\)
\(648\) 6.68931 + 6.68931i 0.262781 + 0.262781i
\(649\) 24.5981 20.3522i 0.965559 0.798893i
\(650\) 0 0
\(651\) −0.0314855 0.0433361i −0.00123402 0.00169848i
\(652\) −1.41240 + 2.77200i −0.0553140 + 0.108560i
\(653\) 4.41780 + 8.67042i 0.172882 + 0.339300i 0.961147 0.276035i \(-0.0890207\pi\)
−0.788266 + 0.615335i \(0.789021\pi\)
\(654\) 6.79682 9.35503i 0.265777 0.365810i
\(655\) 0 0
\(656\) −28.8145 9.36239i −1.12502 0.365540i
\(657\) 5.06007 + 2.57823i 0.197412 + 0.100586i
\(658\) 0.562936 3.55424i 0.0219455 0.138559i
\(659\) −3.37375 −0.131423 −0.0657113 0.997839i \(-0.520932\pi\)
−0.0657113 + 0.997839i \(0.520932\pi\)
\(660\) 0 0
\(661\) 9.93056 0.386254 0.193127 0.981174i \(-0.438137\pi\)
0.193127 + 0.981174i \(0.438137\pi\)
\(662\) −4.21003 + 26.5811i −0.163628 + 1.03310i
\(663\) 8.15028 + 4.15278i 0.316531 + 0.161280i
\(664\) 40.7453 + 13.2389i 1.58122 + 0.513771i
\(665\) 0 0
\(666\) −11.4191 + 15.7170i −0.442481 + 0.609022i
\(667\) 7.04213 + 13.8210i 0.272672 + 0.535150i
\(668\) −1.70084 + 3.33809i −0.0658075 + 0.129154i
\(669\) −9.96031 13.7092i −0.385088 0.530028i
\(670\) 0 0
\(671\) 7.19624 + 18.1719i 0.277808 + 0.701520i
\(672\) −0.188008 0.188008i −0.00725256 0.00725256i
\(673\) 37.7823 + 5.98412i 1.45640 + 0.230671i 0.833885 0.551938i \(-0.186111\pi\)
0.622514 + 0.782609i \(0.286111\pi\)
\(674\) −11.0161 + 3.57935i −0.424324 + 0.137871i
\(675\) 0 0
\(676\) 0.858662 + 0.623855i 0.0330255 + 0.0239944i
\(677\) 31.7956 5.03592i 1.22200 0.193546i 0.488092 0.872792i \(-0.337693\pi\)
0.733911 + 0.679246i \(0.237693\pi\)
\(678\) 4.47847 2.28189i 0.171994 0.0876356i
\(679\) −0.0815917 0.251113i −0.00313120 0.00963684i
\(680\) 0 0
\(681\) 10.4198i 0.399289i
\(682\) 1.76132 + 0.166370i 0.0674443 + 0.00637063i
\(683\) 28.7223 28.7223i 1.09903 1.09903i 0.104505 0.994524i \(-0.466674\pi\)
0.994524 0.104505i \(-0.0333260\pi\)
\(684\) −0.441900 + 0.321059i −0.0168965 + 0.0122760i
\(685\) 0 0
\(686\) −1.25585 + 3.86510i −0.0479484 + 0.147570i
\(687\) −2.04918 12.9380i −0.0781811 0.493616i
\(688\) −3.73084 23.5556i −0.142237 0.898050i
\(689\) −8.63834 + 26.5861i −0.329095 + 1.01285i
\(690\) 0 0
\(691\) 20.4397 14.8503i 0.777564 0.564933i −0.126683 0.991943i \(-0.540433\pi\)
0.904247 + 0.427010i \(0.140433\pi\)
\(692\) −2.73759 + 2.73759i −0.104068 + 0.104068i
\(693\) 0.764417 + 1.29235i 0.0290378 + 0.0490925i
\(694\) 14.1878i 0.538562i
\(695\) 0 0
\(696\) −6.03999 18.5892i −0.228945 0.704621i
\(697\) 22.1136 11.2675i 0.837613 0.426785i
\(698\) 2.25468 0.357107i 0.0853410 0.0135167i
\(699\) −10.0896 7.33055i −0.381625 0.277267i
\(700\) 0 0
\(701\) 26.8458 8.72273i 1.01395 0.329453i 0.245525 0.969390i \(-0.421040\pi\)
0.768427 + 0.639937i \(0.221040\pi\)
\(702\) −19.8761 3.14807i −0.750175 0.118816i
\(703\) 2.84289 + 2.84289i 0.107222 + 0.107222i
\(704\) −21.1902 + 1.33465i −0.798634 + 0.0503015i
\(705\) 0 0
\(706\) 5.56255 + 7.65620i 0.209349 + 0.288145i
\(707\) −0.419457 + 0.823230i −0.0157753 + 0.0309608i
\(708\) 1.08210 + 2.12373i 0.0406677 + 0.0798148i
\(709\) 4.79615 6.60134i 0.180123 0.247918i −0.709402 0.704804i \(-0.751035\pi\)
0.889526 + 0.456885i \(0.151035\pi\)
\(710\) 0 0
\(711\) −1.50773 0.489890i −0.0565441 0.0183723i
\(712\) −18.1262 9.23576i −0.679308 0.346125i
\(713\) −0.0891912 + 0.563131i −0.00334024 + 0.0210894i
\(714\) 0.860026 0.0321856
\(715\) 0 0
\(716\) −6.26727 −0.234219
\(717\) −0.658703 + 4.15889i −0.0245997 + 0.155317i
\(718\) −35.6261 18.1524i −1.32955 0.677441i
\(719\) 0.986856 + 0.320649i 0.0368035 + 0.0119582i 0.327361 0.944899i \(-0.393841\pi\)
−0.290557 + 0.956858i \(0.593841\pi\)
\(720\) 0 0
\(721\) 0.364342 0.501474i 0.0135688 0.0186759i
\(722\) −12.7300 24.9840i −0.473762 0.929810i
\(723\) −5.85157 + 11.4843i −0.217622 + 0.427107i
\(724\) 0.841554 + 1.15830i 0.0312761 + 0.0430479i
\(725\) 0 0
\(726\) 13.0944 + 2.49600i 0.485978 + 0.0926353i
\(727\) 3.27903 + 3.27903i 0.121612 + 0.121612i 0.765294 0.643681i \(-0.222594\pi\)
−0.643681 + 0.765294i \(0.722594\pi\)
\(728\) 1.50337 + 0.238110i 0.0557184 + 0.00882493i
\(729\) −1.44390 + 0.469153i −0.0534779 + 0.0173760i
\(730\) 0 0
\(731\) 15.8055 + 11.4833i 0.584586 + 0.424726i
\(732\) −1.44121 + 0.228265i −0.0532687 + 0.00843693i
\(733\) −40.6968 + 20.7361i −1.50317 + 0.765904i −0.995420 0.0956003i \(-0.969523\pi\)
−0.507751 + 0.861504i \(0.669523\pi\)
\(734\) 3.83723 + 11.8098i 0.141635 + 0.435907i
\(735\) 0 0
\(736\) 2.83001i 0.104315i
\(737\) −18.9241 + 4.23142i −0.697079 + 0.155866i
\(738\) −17.0171 + 17.0171i −0.626410 + 0.626410i
\(739\) −3.07164 + 2.23167i −0.112992 + 0.0820934i −0.642846 0.765995i \(-0.722247\pi\)
0.529854 + 0.848089i \(0.322247\pi\)
\(740\) 0 0
\(741\) −0.567231 + 1.74576i −0.0208377 + 0.0641320i
\(742\) 0.411150 + 2.59590i 0.0150938 + 0.0952984i
\(743\) −6.63736 41.9067i −0.243501 1.53741i −0.741931 0.670476i \(-0.766090\pi\)
0.498430 0.866930i \(-0.333910\pi\)
\(744\) 0.222008 0.683270i 0.00813920 0.0250499i
\(745\) 0 0
\(746\) −10.6517 + 7.73895i −0.389988 + 0.283343i
\(747\) 27.8924 27.8924i 1.02053 1.02053i
\(748\) −2.52477 + 2.86419i −0.0923149 + 0.104725i
\(749\) 2.11681i 0.0773467i
\(750\) 0 0
\(751\) −3.08775 9.50312i −0.112674 0.346774i 0.878781 0.477225i \(-0.158357\pi\)
−0.991455 + 0.130451i \(0.958357\pi\)
\(752\) 49.8464 25.3980i 1.81771 0.926171i
\(753\) 15.2306 2.41230i 0.555035 0.0879089i
\(754\) −36.3446 26.4059i −1.32359 0.961647i
\(755\) 0 0
\(756\) −0.241881 + 0.0785920i −0.00879714 + 0.00285837i
\(757\) −29.0217 4.59658i −1.05481 0.167065i −0.395140 0.918621i \(-0.629304\pi\)
−0.659670 + 0.751555i \(0.729304\pi\)
\(758\) 0.664675 + 0.664675i 0.0241421 + 0.0241421i
\(759\) −1.06807 + 4.16105i −0.0387684 + 0.151037i
\(760\) 0 0
\(761\) −17.8404 24.5552i −0.646713 0.890124i 0.352238 0.935910i \(-0.385421\pi\)
−0.998951 + 0.0457864i \(0.985421\pi\)
\(762\) 8.01429 15.7289i 0.290327 0.569799i
\(763\) 0.829459 + 1.62790i 0.0300284 + 0.0589341i
\(764\) −1.15493 + 1.58963i −0.0417840 + 0.0575107i
\(765\) 0 0
\(766\) 15.0044 + 4.87523i 0.542131 + 0.176149i
\(767\) −26.5507 13.5283i −0.958690 0.488477i
\(768\) 0.908377 5.73527i 0.0327782 0.206954i
\(769\) 37.6421 1.35741 0.678705 0.734411i \(-0.262542\pi\)
0.678705 + 0.734411i \(0.262542\pi\)
\(770\) 0 0
\(771\) −3.75184 −0.135119
\(772\) 0.288213 1.81970i 0.0103730 0.0654926i
\(773\) −22.9995 11.7188i −0.827234 0.421497i −0.0115072 0.999934i \(-0.503663\pi\)
−0.815727 + 0.578437i \(0.803663\pi\)
\(774\) −18.0168 5.85402i −0.647601 0.210418i
\(775\) 0 0
\(776\) 2.08149 2.86493i 0.0747213 0.102845i
\(777\) 0.374589 + 0.735173i 0.0134383 + 0.0263742i
\(778\) −15.2835 + 29.9955i −0.547939 + 1.07539i
\(779\) 2.92741 + 4.02923i 0.104885 + 0.144362i
\(780\) 0 0
\(781\) 35.3437 13.9964i 1.26470 0.500831i
\(782\) −6.47282 6.47282i −0.231467 0.231467i
\(783\) −40.3275 6.38724i −1.44119 0.228261i
\(784\) −29.9651 + 9.73624i −1.07018 + 0.347723i
\(785\) 0 0
\(786\) −9.57771 6.95861i −0.341626 0.248206i
\(787\) 17.0625 2.70244i 0.608213 0.0963315i 0.155272 0.987872i \(-0.450375\pi\)
0.452942 + 0.891540i \(0.350375\pi\)
\(788\) 3.87655 1.97520i 0.138096 0.0703636i
\(789\) 3.90967 + 12.0327i 0.139188 + 0.428376i
\(790\) 0 0
\(791\) 0.794162i 0.0282372i
\(792\) −7.99654 + 18.4824i −0.284145 + 0.656745i
\(793\) 12.8994 12.8994i 0.458070 0.458070i
\(794\) −18.7425 + 13.6172i −0.665145 + 0.483256i
\(795\) 0 0
\(796\) −1.28445 + 3.95313i −0.0455261 + 0.140115i
\(797\) 6.97213 + 44.0203i 0.246965 + 1.55928i 0.729858 + 0.683599i \(0.239586\pi\)
−0.482892 + 0.875680i \(0.660414\pi\)
\(798\) 0.0269979 + 0.170458i 0.000955714 + 0.00603414i
\(799\) −14.1615 + 43.5847i −0.500999 + 1.54192i
\(800\) 0 0
\(801\) −15.1535 + 11.0097i −0.535424 + 0.389008i
\(802\) 4.60219 4.60219i 0.162509 0.162509i
\(803\) −0.749124 + 7.93078i −0.0264360 + 0.279871i
\(804\) 1.44771i 0.0510569i
\(805\) 0 0
\(806\) −0.510267 1.57044i −0.0179734 0.0553164i
\(807\) 8.03556 4.09432i 0.282865 0.144127i
\(808\) −12.2392 + 1.93850i −0.430574 + 0.0681962i
\(809\) 12.3255 + 8.95497i 0.433340 + 0.314840i 0.782983 0.622043i \(-0.213697\pi\)
−0.349643 + 0.936883i \(0.613697\pi\)
\(810\) 0 0
\(811\) −43.3276 + 14.0780i −1.52144 + 0.494345i −0.946183 0.323631i \(-0.895096\pi\)
−0.575253 + 0.817976i \(0.695096\pi\)
\(812\) −0.560774 0.0888178i −0.0196793 0.00311689i
\(813\) −10.0502 10.0502i −0.352475 0.352475i
\(814\) −26.3953 6.77521i −0.925155 0.237471i
\(815\) 0 0
\(816\) 7.85881 + 10.8167i 0.275113 + 0.378661i
\(817\) −1.77984 + 3.49314i −0.0622688 + 0.122209i
\(818\) −2.96438 5.81793i −0.103647 0.203419i
\(819\) 0.823747 1.13379i 0.0287840 0.0396178i
\(820\) 0 0
\(821\) −27.3071 8.87260i −0.953023 0.309656i −0.209079 0.977899i \(-0.567047\pi\)
−0.743943 + 0.668243i \(0.767047\pi\)
\(822\) 4.67545 + 2.38226i 0.163075 + 0.0830909i
\(823\) 4.21701 26.6252i 0.146996 0.928095i −0.798390 0.602141i \(-0.794314\pi\)
0.945386 0.325954i \(-0.105686\pi\)
\(824\) 8.31350 0.289614
\(825\) 0 0
\(826\) −2.80165 −0.0974820
\(827\) 6.20779 39.1944i 0.215866 1.36292i −0.607006 0.794697i \(-0.707630\pi\)
0.822872 0.568227i \(-0.192370\pi\)
\(828\) 1.06311 + 0.541680i 0.0369455 + 0.0188247i
\(829\) 10.3353 + 3.35814i 0.358959 + 0.116633i 0.482944 0.875651i \(-0.339567\pi\)
−0.123985 + 0.992284i \(0.539567\pi\)
\(830\) 0 0
\(831\) 2.19378 3.01948i 0.0761013 0.104744i
\(832\) 8.99683 + 17.6573i 0.311909 + 0.612156i
\(833\) 11.7174 22.9966i 0.405983 0.796786i
\(834\) −7.48663 10.3045i −0.259241 0.356815i
\(835\) 0 0
\(836\) −0.646943 0.410500i −0.0223750 0.0141974i
\(837\) −1.06120 1.06120i −0.0366805 0.0366805i
\(838\) 1.80523 + 0.285920i 0.0623606 + 0.00987695i
\(839\) −38.3426 + 12.4583i −1.32373 + 0.430107i −0.883775 0.467912i \(-0.845007\pi\)
−0.439958 + 0.898019i \(0.645007\pi\)
\(840\) 0 0
\(841\) −50.2797 36.5303i −1.73378 1.25967i
\(842\) 47.0053 7.44491i 1.61991 0.256569i
\(843\) 9.36879 4.77364i 0.322678 0.164413i
\(844\) −0.569376 1.75236i −0.0195987 0.0603187i
\(845\) 0 0
\(846\) 44.4376i 1.52780i
\(847\) −1.29066 + 1.66439i −0.0443477 + 0.0571891i
\(848\) −28.8921 + 28.8921i −0.992159 + 0.992159i
\(849\) 14.6966 10.6777i 0.504386 0.366458i
\(850\) 0 0
\(851\) 2.71386 8.35241i 0.0930300 0.286317i
\(852\) 0.443967 + 2.80310i 0.0152101 + 0.0960326i
\(853\) 2.18326 + 13.7845i 0.0747533 + 0.471974i 0.996459 + 0.0840831i \(0.0267961\pi\)
−0.921705 + 0.387890i \(0.873204\pi\)
\(854\) 0.530012 1.63121i 0.0181366 0.0558188i
\(855\) 0 0
\(856\) 22.9686 16.6876i 0.785049 0.570372i
\(857\) −26.9229 + 26.9229i −0.919668 + 0.919668i −0.997005 0.0773373i \(-0.975358\pi\)
0.0773373 + 0.997005i \(0.475358\pi\)
\(858\) −2.71494 12.1420i −0.0926867 0.414521i
\(859\) 18.3200i 0.625071i 0.949906 + 0.312535i \(0.101178\pi\)
−0.949906 + 0.312535i \(0.898822\pi\)
\(860\) 0 0
\(861\) 0.315849 + 0.972084i 0.0107641 + 0.0331285i
\(862\) −13.3966 + 6.82592i −0.456291 + 0.232492i
\(863\) 12.0033 1.90114i 0.408597 0.0647154i 0.0512472 0.998686i \(-0.483680\pi\)
0.357350 + 0.933971i \(0.383680\pi\)
\(864\) −6.02655 4.37855i −0.205028 0.148961i
\(865\) 0 0
\(866\) −39.0074 + 12.6743i −1.32552 + 0.430689i
\(867\) 2.56834 + 0.406785i 0.0872253 + 0.0138151i
\(868\) −0.0147565 0.0147565i −0.000500870 0.000500870i
\(869\) −0.139785 2.21935i −0.00474187 0.0752863i
\(870\) 0 0
\(871\) 10.6384 + 14.6425i 0.360469 + 0.496143i
\(872\) −11.1247 + 21.8334i −0.376730 + 0.739374i
\(873\) −1.48025 2.90515i −0.0500987 0.0983243i
\(874\) 1.07972 1.48611i 0.0365222 0.0502685i
\(875\) 0 0
\(876\) −0.565619 0.183781i −0.0191105 0.00620938i
\(877\) 11.4361 + 5.82698i 0.386169 + 0.196763i 0.636287 0.771452i \(-0.280469\pi\)
−0.250118 + 0.968215i \(0.580469\pi\)
\(878\) −5.84636 + 36.9125i −0.197305 + 1.24574i
\(879\) −5.76213 −0.194352
\(880\) 0 0
\(881\) 13.8380 0.466216 0.233108 0.972451i \(-0.425110\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(882\) −3.91506 + 24.7187i −0.131827 + 0.832322i
\(883\) −38.8377 19.7888i −1.30699 0.665947i −0.344893 0.938642i \(-0.612085\pi\)
−0.962100 + 0.272695i \(0.912085\pi\)
\(884\) 3.38926 + 1.10124i 0.113993 + 0.0370387i
\(885\) 0 0
\(886\) −27.5163 + 37.8730i −0.924429 + 1.27237i
\(887\) 4.72114 + 9.26576i 0.158520 + 0.311114i 0.956583 0.291461i \(-0.0941414\pi\)
−0.798062 + 0.602575i \(0.794141\pi\)
\(888\) −5.02399 + 9.86013i −0.168594 + 0.330884i
\(889\) 1.63945 + 2.25651i 0.0549853 + 0.0756808i
\(890\) 0 0
\(891\) 7.78863 + 9.41351i 0.260929 + 0.315364i
\(892\) −4.66817 4.66817i −0.156302 0.156302i
\(893\) −9.08308 1.43862i −0.303954 0.0481415i
\(894\) 6.64130 2.15789i 0.222118 0.0721706i
\(895\) 0 0
\(896\) 2.04700 + 1.48723i 0.0683855 + 0.0496850i
\(897\) 3.96029 0.627249i 0.132230 0.0209432i
\(898\) −9.92048 + 5.05474i −0.331051 + 0.168679i
\(899\) −1.03530 3.18633i −0.0345292 0.106270i
\(900\) 0 0
\(901\) 33.4710i 1.11508i
\(902\) −30.9821 13.4046i −1.03159 0.446324i
\(903\) −0.568922 + 0.568922i −0.0189325 + 0.0189325i
\(904\) −8.61708 + 6.26067i −0.286600 + 0.208227i
\(905\) 0 0
\(906\) 5.60375 17.2466i 0.186172 0.572979i
\(907\) −2.55097 16.1062i −0.0847036 0.534798i −0.993155 0.116806i \(-0.962734\pi\)
0.908451 0.417991i \(-0.137266\pi\)
\(908\) 0.635040 + 4.00948i 0.0210745 + 0.133059i
\(909\) −3.52571 + 10.8510i −0.116940 + 0.359906i
\(910\) 0 0
\(911\) 14.3281 10.4099i 0.474710 0.344897i −0.324564 0.945864i \(-0.605218\pi\)
0.799274 + 0.600967i \(0.205218\pi\)
\(912\) −1.89718 + 1.89718i −0.0628219 + 0.0628219i
\(913\) 50.7821 + 21.9712i 1.68064 + 0.727140i
\(914\) 10.2385i 0.338659i
\(915\) 0 0
\(916\) −1.57702 4.85357i −0.0521062 0.160366i
\(917\) 1.66665 0.849203i 0.0550378 0.0280431i
\(918\) 23.7986 3.76933i 0.785472 0.124406i
\(919\) −7.38632 5.36648i −0.243652 0.177024i 0.459257 0.888304i \(-0.348116\pi\)
−0.702909 + 0.711280i \(0.748116\pi\)
\(920\) 0 0
\(921\) 21.5818 7.01234i 0.711143 0.231064i
\(922\) 43.6594 + 6.91497i 1.43785 + 0.227732i
\(923\) −25.0888 25.0888i −0.825807 0.825807i
\(924\) −0.100238 0.121150i −0.00329760 0.00398555i
\(925\) 0 0
\(926\) 22.1307 + 30.4602i 0.727259 + 1.00099i
\(927\) 3.47505 6.82017i 0.114136 0.224004i
\(928\) −7.54970 14.8171i −0.247831 0.486396i
\(929\) 1.06529 1.46625i 0.0349511 0.0481061i −0.791184 0.611578i \(-0.790535\pi\)
0.826135 + 0.563472i \(0.190535\pi\)
\(930\) 0 0
\(931\) 4.92578 + 1.60048i 0.161436 + 0.0524537i
\(932\) −4.32918 2.20583i −0.141807 0.0722543i
\(933\) −0.937332 + 5.91808i −0.0306869 + 0.193749i
\(934\) 40.2174 1.31595
\(935\) 0 0
\(936\) 18.7961 0.614371
\(937\) 2.37143 14.9726i 0.0774711 0.489133i −0.918195 0.396130i \(-0.870353\pi\)
0.995666 0.0930039i \(-0.0296469\pi\)
\(938\) 1.51621 + 0.772546i 0.0495059 + 0.0252245i
\(939\) −1.02061 0.331616i −0.0333063 0.0108219i
\(940\) 0 0
\(941\) −12.8308 + 17.6600i −0.418271 + 0.575701i −0.965211 0.261471i \(-0.915792\pi\)
0.546940 + 0.837172i \(0.315792\pi\)
\(942\) 2.72226 + 5.34274i 0.0886961 + 0.174076i
\(943\) 4.93902 9.69338i 0.160837 0.315660i
\(944\) −25.6012 35.2370i −0.833247 1.14687i
\(945\) 0 0
\(946\) −1.67038 26.5205i −0.0543087 0.862256i
\(947\) −6.90662 6.90662i −0.224435 0.224435i 0.585928 0.810363i \(-0.300730\pi\)
−0.810363 + 0.585928i \(0.800730\pi\)
\(948\) 0.163975 + 0.0259711i 0.00532567 + 0.000843503i
\(949\) 7.07131 2.29761i 0.229545 0.0745835i
\(950\) 0 0
\(951\) −7.30875 5.31012i −0.237003 0.172192i
\(952\) −1.80005 + 0.285100i −0.0583400 + 0.00924015i
\(953\) 11.6216 5.92153i 0.376462 0.191817i −0.255513 0.966806i \(-0.582244\pi\)
0.631975 + 0.774989i \(0.282244\pi\)
\(954\) 10.0294 + 30.8672i 0.324713 + 0.999363i
\(955\) 0 0
\(956\) 1.64046i 0.0530561i
\(957\) −5.50846 24.6354i −0.178063 0.796349i
\(958\) 28.2202 28.2202i 0.911755 0.911755i
\(959\) −0.670750 + 0.487328i −0.0216596 + 0.0157367i
\(960\) 0 0
\(961\) −9.54147 + 29.3656i −0.307789 + 0.947279i
\(962\) 3.97890 + 25.1218i 0.128285 + 0.809960i
\(963\) −4.08921 25.8182i −0.131773 0.831981i
\(964\) −1.55173 + 4.77572i −0.0499777 + 0.153816i
\(965\) 0 0
\(966\) 0.304989 0.221588i 0.00981287 0.00712946i
\(967\) 13.6319 13.6319i 0.438372 0.438372i −0.453092 0.891464i \(-0.649679\pi\)
0.891464 + 0.453092i \(0.149679\pi\)
\(968\) −28.2343 0.883368i −0.907484 0.0283925i
\(969\) 2.19785i 0.0706051i
\(970\) 0 0
\(971\) 1.26967 + 3.90765i 0.0407457 + 0.125403i 0.969360 0.245643i \(-0.0789992\pi\)
−0.928615 + 0.371046i \(0.878999\pi\)
\(972\) −4.36328 + 2.22320i −0.139952 + 0.0713093i
\(973\) 1.98769 0.314819i 0.0637224 0.0100926i
\(974\) 28.6965 + 20.8492i 0.919495 + 0.668052i
\(975\) 0 0
\(976\) 25.3592 8.23971i 0.811729 0.263747i
\(977\) −30.3314 4.80402i −0.970386 0.153694i −0.348935 0.937147i \(-0.613457\pi\)
−0.621451 + 0.783453i \(0.713457\pi\)
\(978\) 8.58324 + 8.58324i 0.274462 + 0.274462i
\(979\) −22.1848 14.0768i −0.709030 0.449895i
\(980\) 0 0
\(981\) 13.2614 + 18.2528i 0.423405 + 0.582767i
\(982\) 12.6616 24.8498i 0.404048 0.792990i
\(983\) 12.5871 + 24.7035i 0.401465 + 0.787919i 0.999912 0.0132429i \(-0.00421546\pi\)
−0.598447 + 0.801162i \(0.704215\pi\)
\(984\) −8.05767 + 11.0904i −0.256869 + 0.353550i
\(985\) 0 0
\(986\) 51.1575 + 16.6221i 1.62919 + 0.529355i
\(987\) −1.68162 0.856827i −0.0535265 0.0272731i
\(988\) −0.111871 + 0.706325i −0.00355909 + 0.0224712i
\(989\) 8.56376 0.272312
\(990\) 0 0
\(991\) 9.10087 0.289099 0.144549 0.989498i \(-0.453827\pi\)
0.144549 + 0.989498i \(0.453827\pi\)
\(992\) 0.0956197 0.603719i 0.00303593 0.0191681i
\(993\) 12.5763 + 6.40795i 0.399097 + 0.203350i
\(994\) −3.17264 1.03085i −0.100630 0.0326966i
\(995\) 0 0
\(996\) −2.42808 + 3.34196i −0.0769366 + 0.105894i
\(997\) −13.1070 25.7239i −0.415103 0.814685i −0.999994 0.00357282i \(-0.998863\pi\)
0.584891 0.811112i \(-0.301137\pi\)
\(998\) 8.11406 15.9247i 0.256846 0.504089i
\(999\) 13.5878 + 18.7019i 0.429898 + 0.591703i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.107.4 32
5.2 odd 4 55.2.l.a.8.4 yes 32
5.3 odd 4 inner 275.2.bm.b.118.1 32
5.4 even 2 55.2.l.a.52.1 yes 32
11.7 odd 10 inner 275.2.bm.b.7.1 32
15.2 even 4 495.2.bj.a.118.1 32
15.14 odd 2 495.2.bj.a.217.4 32
20.7 even 4 880.2.cm.a.833.4 32
20.19 odd 2 880.2.cm.a.657.1 32
55.2 even 20 605.2.e.b.483.14 32
55.4 even 10 605.2.m.e.282.1 32
55.7 even 20 55.2.l.a.18.1 yes 32
55.9 even 10 605.2.e.b.362.14 32
55.14 even 10 605.2.m.c.457.4 32
55.17 even 20 605.2.m.c.233.4 32
55.18 even 20 inner 275.2.bm.b.18.4 32
55.19 odd 10 605.2.m.d.457.1 32
55.24 odd 10 605.2.e.b.362.3 32
55.27 odd 20 605.2.m.d.233.1 32
55.29 odd 10 55.2.l.a.7.4 32
55.32 even 4 605.2.m.e.118.1 32
55.37 odd 20 605.2.m.e.403.4 32
55.39 odd 10 605.2.m.c.112.4 32
55.42 odd 20 605.2.e.b.483.3 32
55.47 odd 20 605.2.m.c.578.4 32
55.49 even 10 605.2.m.d.112.1 32
55.52 even 20 605.2.m.d.578.1 32
55.54 odd 2 605.2.m.e.602.4 32
165.29 even 10 495.2.bj.a.172.1 32
165.62 odd 20 495.2.bj.a.73.4 32
220.7 odd 20 880.2.cm.a.513.1 32
220.139 even 10 880.2.cm.a.337.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.4 32 55.29 odd 10
55.2.l.a.8.4 yes 32 5.2 odd 4
55.2.l.a.18.1 yes 32 55.7 even 20
55.2.l.a.52.1 yes 32 5.4 even 2
275.2.bm.b.7.1 32 11.7 odd 10 inner
275.2.bm.b.18.4 32 55.18 even 20 inner
275.2.bm.b.107.4 32 1.1 even 1 trivial
275.2.bm.b.118.1 32 5.3 odd 4 inner
495.2.bj.a.73.4 32 165.62 odd 20
495.2.bj.a.118.1 32 15.2 even 4
495.2.bj.a.172.1 32 165.29 even 10
495.2.bj.a.217.4 32 15.14 odd 2
605.2.e.b.362.3 32 55.24 odd 10
605.2.e.b.362.14 32 55.9 even 10
605.2.e.b.483.3 32 55.42 odd 20
605.2.e.b.483.14 32 55.2 even 20
605.2.m.c.112.4 32 55.39 odd 10
605.2.m.c.233.4 32 55.17 even 20
605.2.m.c.457.4 32 55.14 even 10
605.2.m.c.578.4 32 55.47 odd 20
605.2.m.d.112.1 32 55.49 even 10
605.2.m.d.233.1 32 55.27 odd 20
605.2.m.d.457.1 32 55.19 odd 10
605.2.m.d.578.1 32 55.52 even 20
605.2.m.e.118.1 32 55.32 even 4
605.2.m.e.282.1 32 55.4 even 10
605.2.m.e.403.4 32 55.37 odd 20
605.2.m.e.602.4 32 55.54 odd 2
880.2.cm.a.337.4 32 220.139 even 10
880.2.cm.a.513.1 32 220.7 odd 20
880.2.cm.a.657.1 32 20.19 odd 2
880.2.cm.a.833.4 32 20.7 even 4