Properties

Label 3060.2
Level 3060
Weight 2
Dimension 103798
Nonzero newspaces 72
Sturm bound 995328
Trace bound 70

Downloads

Learn more

Defining parameters

Level: N N = 3060=2232517 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17
Weight: k k = 2 2
Nonzero newspaces: 72 72
Sturm bound: 995328995328
Trace bound: 7070

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(3060))M_{2}(\Gamma_1(3060)).

Total New Old
Modular forms 253952 105414 148538
Cusp forms 243713 103798 139915
Eisenstein series 10239 1616 8623

Trace form

103798q48q260q4136q5172q616q748q8152q9204q1028q1124q12124q13+24q146q15100q1672q1724q188q19++100q99+O(q100) 103798 q - 48 q^{2} - 60 q^{4} - 136 q^{5} - 172 q^{6} - 16 q^{7} - 48 q^{8} - 152 q^{9} - 204 q^{10} - 28 q^{11} - 24 q^{12} - 124 q^{13} + 24 q^{14} - 6 q^{15} - 100 q^{16} - 72 q^{17} - 24 q^{18} - 8 q^{19}+ \cdots + 100 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(3060))S_{2}^{\mathrm{new}}(\Gamma_1(3060))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
3060.2.a χ3060(1,)\chi_{3060}(1, \cdot) 3060.2.a.a 1 1
3060.2.a.b 1
3060.2.a.c 1
3060.2.a.d 1
3060.2.a.e 1
3060.2.a.f 1
3060.2.a.g 1
3060.2.a.h 1
3060.2.a.i 1
3060.2.a.j 1
3060.2.a.k 1
3060.2.a.l 1
3060.2.a.m 1
3060.2.a.n 1
3060.2.a.o 1
3060.2.a.p 2
3060.2.a.q 2
3060.2.a.r 3
3060.2.a.s 3
3060.2.a.t 3
3060.2.b χ3060(3059,)\chi_{3060}(3059, \cdot) n/a 216 1
3060.2.e χ3060(1801,)\chi_{3060}(1801, \cdot) 3060.2.e.a 2 1
3060.2.e.b 2
3060.2.e.c 2
3060.2.e.d 2
3060.2.e.e 2
3060.2.e.f 2
3060.2.e.g 4
3060.2.e.h 4
3060.2.e.i 4
3060.2.e.j 6
3060.2.g χ3060(2449,)\chi_{3060}(2449, \cdot) 3060.2.g.a 2 1
3060.2.g.b 2
3060.2.g.c 2
3060.2.g.d 2
3060.2.g.e 2
3060.2.g.f 8
3060.2.g.g 10
3060.2.g.h 12
3060.2.h χ3060(1871,)\chi_{3060}(1871, \cdot) n/a 128 1
3060.2.k χ3060(1189,)\chi_{3060}(1189, \cdot) 3060.2.k.a 2 1
3060.2.k.b 2
3060.2.k.c 4
3060.2.k.d 4
3060.2.k.e 4
3060.2.k.f 4
3060.2.k.g 8
3060.2.k.h 8
3060.2.k.i 8
3060.2.l χ3060(611,)\chi_{3060}(611, \cdot) n/a 144 1
3060.2.n χ3060(1259,)\chi_{3060}(1259, \cdot) n/a 192 1
3060.2.q χ3060(1021,)\chi_{3060}(1021, \cdot) n/a 128 2
3060.2.s χ3060(1747,)\chi_{3060}(1747, \cdot) n/a 532 2
3060.2.t χ3060(2393,)\chi_{3060}(2393, \cdot) 3060.2.t.a 72 2
3060.2.w χ3060(953,)\chi_{3060}(953, \cdot) 3060.2.w.a 4 2
3060.2.w.b 4
3060.2.w.c 8
3060.2.w.d 8
3060.2.w.e 12
3060.2.w.f 28
3060.2.x χ3060(307,)\chi_{3060}(307, \cdot) n/a 480 2
3060.2.z χ3060(829,)\chi_{3060}(829, \cdot) 3060.2.z.a 2 2
3060.2.z.b 2
3060.2.z.c 4
3060.2.z.d 4
3060.2.z.e 12
3060.2.z.f 24
3060.2.z.g 40
3060.2.bb χ3060(1619,)\chi_{3060}(1619, \cdot) n/a 432 2
3060.2.be χ3060(361,)\chi_{3060}(361, \cdot) 3060.2.be.a 12 2
3060.2.be.b 12
3060.2.be.c 12
3060.2.be.d 24
3060.2.bg χ3060(251,)\chi_{3060}(251, \cdot) n/a 288 2
3060.2.bh χ3060(917,)\chi_{3060}(917, \cdot) 3060.2.bh.a 24 2
3060.2.bh.b 48
3060.2.bk χ3060(883,)\chi_{3060}(883, \cdot) n/a 532 2
3060.2.bl χ3060(523,)\chi_{3060}(523, \cdot) n/a 532 2
3060.2.bo χ3060(557,)\chi_{3060}(557, \cdot) 3060.2.bo.a 72 2
3060.2.bq χ3060(239,)\chi_{3060}(239, \cdot) n/a 1152 2
3060.2.bs χ3060(1631,)\chi_{3060}(1631, \cdot) n/a 864 2
3060.2.bv χ3060(169,)\chi_{3060}(169, \cdot) n/a 216 2
3060.2.bw χ3060(851,)\chi_{3060}(851, \cdot) n/a 768 2
3060.2.bz χ3060(409,)\chi_{3060}(409, \cdot) n/a 192 2
3060.2.cb χ3060(781,)\chi_{3060}(781, \cdot) n/a 144 2
3060.2.cc χ3060(1019,)\chi_{3060}(1019, \cdot) n/a 1280 2
3060.2.ce χ3060(791,)\chi_{3060}(791, \cdot) n/a 576 4
3060.2.cf χ3060(1981,)\chi_{3060}(1981, \cdot) n/a 120 4
3060.2.ci χ3060(773,)\chi_{3060}(773, \cdot) n/a 144 4
3060.2.cj χ3060(127,)\chi_{3060}(127, \cdot) n/a 1064 4
3060.2.co χ3060(1063,)\chi_{3060}(1063, \cdot) n/a 1064 4
3060.2.cp χ3060(53,)\chi_{3060}(53, \cdot) n/a 144 4
3060.2.cs χ3060(1369,)\chi_{3060}(1369, \cdot) n/a 184 4
3060.2.ct χ3060(179,)\chi_{3060}(179, \cdot) n/a 864 4
3060.2.cv χ3060(1543,)\chi_{3060}(1543, \cdot) n/a 2560 4
3060.2.cw χ3060(293,)\chi_{3060}(293, \cdot) n/a 432 4
3060.2.cz χ3060(713,)\chi_{3060}(713, \cdot) n/a 432 4
3060.2.da χ3060(67,)\chi_{3060}(67, \cdot) n/a 2560 4
3060.2.dc χ3060(421,)\chi_{3060}(421, \cdot) n/a 288 4
3060.2.de χ3060(191,)\chi_{3060}(191, \cdot) n/a 1728 4
3060.2.dh χ3060(769,)\chi_{3060}(769, \cdot) n/a 432 4
3060.2.dj χ3060(599,)\chi_{3060}(599, \cdot) n/a 2560 4
3060.2.dk χ3060(137,)\chi_{3060}(137, \cdot) n/a 384 4
3060.2.dn χ3060(103,)\chi_{3060}(103, \cdot) n/a 2304 4
3060.2.do χ3060(463,)\chi_{3060}(463, \cdot) n/a 2560 4
3060.2.dr χ3060(353,)\chi_{3060}(353, \cdot) n/a 432 4
3060.2.du χ3060(73,)\chi_{3060}(73, \cdot) n/a 360 8
3060.2.dv χ3060(683,)\chi_{3060}(683, \cdot) n/a 1728 8
3060.2.dw χ3060(199,)\chi_{3060}(199, \cdot) n/a 2128 8
3060.2.dy χ3060(521,)\chi_{3060}(521, \cdot) n/a 192 8
3060.2.eb χ3060(91,)\chi_{3060}(91, \cdot) n/a 1440 8
3060.2.ed χ3060(269,)\chi_{3060}(269, \cdot) n/a 288 8
3060.2.ee χ3060(37,)\chi_{3060}(37, \cdot) n/a 360 8
3060.2.ef χ3060(107,)\chi_{3060}(107, \cdot) n/a 1728 8
3060.2.ei χ3060(59,)\chi_{3060}(59, \cdot) n/a 5120 8
3060.2.ej χ3060(49,)\chi_{3060}(49, \cdot) n/a 864 8
3060.2.eo χ3060(77,)\chi_{3060}(77, \cdot) n/a 864 8
3060.2.ep χ3060(43,)\chi_{3060}(43, \cdot) n/a 5120 8
3060.2.eq χ3060(223,)\chi_{3060}(223, \cdot) n/a 5120 8
3060.2.er χ3060(257,)\chi_{3060}(257, \cdot) n/a 864 8
3060.2.ew χ3060(121,)\chi_{3060}(121, \cdot) n/a 576 8
3060.2.ex χ3060(491,)\chi_{3060}(491, \cdot) n/a 3456 8
3060.2.fa χ3060(23,)\chi_{3060}(23, \cdot) n/a 10240 16
3060.2.fb χ3060(97,)\chi_{3060}(97, \cdot) n/a 1728 16
3060.2.fc χ3060(29,)\chi_{3060}(29, \cdot) n/a 1728 16
3060.2.fe χ3060(31,)\chi_{3060}(31, \cdot) n/a 6912 16
3060.2.fh χ3060(41,)\chi_{3060}(41, \cdot) n/a 1152 16
3060.2.fj χ3060(79,)\chi_{3060}(79, \cdot) n/a 10240 16
3060.2.fk χ3060(227,)\chi_{3060}(227, \cdot) n/a 10240 16
3060.2.fl χ3060(133,)\chi_{3060}(133, \cdot) n/a 1728 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(3060))S_{2}^{\mathrm{old}}(\Gamma_1(3060)) into lower level spaces

S2old(Γ1(3060)) S_{2}^{\mathrm{old}}(\Gamma_1(3060)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))36^{\oplus 36}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))24^{\oplus 24}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))24^{\oplus 24}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))18^{\oplus 18}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))16^{\oplus 16}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))12^{\oplus 12}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))12^{\oplus 12}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))8^{\oplus 8}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))12^{\oplus 12}\oplusS2new(Γ1(17))S_{2}^{\mathrm{new}}(\Gamma_1(17))18^{\oplus 18}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))8^{\oplus 8}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))6^{\oplus 6}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))8^{\oplus 8}\oplusS2new(Γ1(34))S_{2}^{\mathrm{new}}(\Gamma_1(34))12^{\oplus 12}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))4^{\oplus 4}\oplusS2new(Γ1(45))S_{2}^{\mathrm{new}}(\Gamma_1(45))6^{\oplus 6}\oplusS2new(Γ1(51))S_{2}^{\mathrm{new}}(\Gamma_1(51))12^{\oplus 12}\oplusS2new(Γ1(60))S_{2}^{\mathrm{new}}(\Gamma_1(60))4^{\oplus 4}\oplusS2new(Γ1(68))S_{2}^{\mathrm{new}}(\Gamma_1(68))6^{\oplus 6}\oplusS2new(Γ1(85))S_{2}^{\mathrm{new}}(\Gamma_1(85))9^{\oplus 9}\oplusS2new(Γ1(90))S_{2}^{\mathrm{new}}(\Gamma_1(90))4^{\oplus 4}\oplusS2new(Γ1(102))S_{2}^{\mathrm{new}}(\Gamma_1(102))8^{\oplus 8}\oplusS2new(Γ1(153))S_{2}^{\mathrm{new}}(\Gamma_1(153))6^{\oplus 6}\oplusS2new(Γ1(170))S_{2}^{\mathrm{new}}(\Gamma_1(170))6^{\oplus 6}\oplusS2new(Γ1(180))S_{2}^{\mathrm{new}}(\Gamma_1(180))2^{\oplus 2}\oplusS2new(Γ1(204))S_{2}^{\mathrm{new}}(\Gamma_1(204))4^{\oplus 4}\oplusS2new(Γ1(255))S_{2}^{\mathrm{new}}(\Gamma_1(255))6^{\oplus 6}\oplusS2new(Γ1(306))S_{2}^{\mathrm{new}}(\Gamma_1(306))4^{\oplus 4}\oplusS2new(Γ1(340))S_{2}^{\mathrm{new}}(\Gamma_1(340))3^{\oplus 3}\oplusS2new(Γ1(510))S_{2}^{\mathrm{new}}(\Gamma_1(510))4^{\oplus 4}\oplusS2new(Γ1(612))S_{2}^{\mathrm{new}}(\Gamma_1(612))2^{\oplus 2}\oplusS2new(Γ1(765))S_{2}^{\mathrm{new}}(\Gamma_1(765))3^{\oplus 3}\oplusS2new(Γ1(1020))S_{2}^{\mathrm{new}}(\Gamma_1(1020))2^{\oplus 2}\oplusS2new(Γ1(1530))S_{2}^{\mathrm{new}}(\Gamma_1(1530))2^{\oplus 2}