Properties

 Label 170.2 Level 170 Weight 2 Dimension 265 Nonzero newspaces 10 Newform subspaces 30 Sturm bound 3456 Trace bound 10

Defining parameters

 Level: $$N$$ = $$170 = 2 \cdot 5 \cdot 17$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$10$$ Newform subspaces: $$30$$ Sturm bound: $$3456$$ Trace bound: $$10$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(170))$$.

Total New Old
Modular forms 992 265 727
Cusp forms 737 265 472
Eisenstein series 255 0 255

Trace form

 $$265q + q^{2} + 4q^{3} + q^{4} + q^{5} + 4q^{6} + 8q^{7} + q^{8} + 13q^{9} + O(q^{10})$$ $$265q + q^{2} + 4q^{3} + q^{4} + q^{5} + 4q^{6} + 8q^{7} + q^{8} + 13q^{9} - 3q^{10} - 20q^{11} - 12q^{12} - 18q^{13} - 24q^{14} - 44q^{15} - 7q^{16} - 15q^{17} - 51q^{18} - 12q^{19} - 3q^{20} - 64q^{21} - 20q^{22} - 8q^{23} - 12q^{24} - 35q^{25} + 6q^{26} - 8q^{27} + 8q^{28} - 10q^{29} + 4q^{30} - 32q^{31} + q^{32} - 16q^{33} + 17q^{34} - 24q^{35} + 13q^{36} - 26q^{37} + 4q^{38} - 72q^{39} + q^{40} - 94q^{41} - 64q^{42} - 68q^{43} - 52q^{44} - 71q^{45} - 40q^{46} - 112q^{47} + 4q^{48} - 71q^{49} - 15q^{50} - 60q^{51} - 50q^{52} - 82q^{53} - 72q^{54} - 68q^{55} + 8q^{56} - 96q^{57} - 34q^{58} - 100q^{59} - 28q^{60} - 34q^{61} - 64q^{62} - 88q^{63} + q^{64} - 22q^{65} + 32q^{66} + 36q^{67} + 25q^{68} + 96q^{69} + 104q^{70} + 104q^{71} + 53q^{72} + 226q^{73} + 110q^{74} + 148q^{75} + 20q^{76} + 192q^{77} + 184q^{78} + 176q^{79} + 49q^{80} + 297q^{81} + 178q^{82} + 132q^{83} + 96q^{84} + 269q^{85} + 108q^{86} + 216q^{87} + 76q^{88} + 90q^{89} + 217q^{90} + 176q^{91} + 56q^{92} + 128q^{93} + 176q^{94} + 132q^{95} + 4q^{96} + 162q^{97} + 129q^{98} + 108q^{99} + O(q^{100})$$

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(170))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
170.2.a $$\chi_{170}(1, \cdot)$$ 170.2.a.a 1 1
170.2.a.b 1
170.2.a.c 1
170.2.a.d 1
170.2.a.e 1
170.2.a.f 2
170.2.b $$\chi_{170}(101, \cdot)$$ 170.2.b.a 2 1
170.2.b.b 2
170.2.b.c 2
170.2.c $$\chi_{170}(69, \cdot)$$ 170.2.c.a 2 1
170.2.c.b 6
170.2.d $$\chi_{170}(169, \cdot)$$ 170.2.d.a 2 1
170.2.d.b 2
170.2.d.c 4
170.2.g $$\chi_{170}(89, \cdot)$$ 170.2.g.a 2 2
170.2.g.b 2
170.2.g.c 2
170.2.g.d 2
170.2.g.e 4
170.2.g.f 4
170.2.h $$\chi_{170}(21, \cdot)$$ 170.2.h.a 4 2
170.2.h.b 8
170.2.k $$\chi_{170}(111, \cdot)$$ 170.2.k.a 8 4
170.2.k.b 16
170.2.n $$\chi_{170}(9, \cdot)$$ 170.2.n.a 20 4
170.2.n.b 20
170.2.o $$\chi_{170}(3, \cdot)$$ 170.2.o.a 32 8
170.2.o.b 40
170.2.r $$\chi_{170}(23, \cdot)$$ 170.2.r.a 32 8
170.2.r.b 40

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(170))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(170)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(17))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(34))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(85))$$$$^{\oplus 2}$$