Properties

Label 3060.eo
Modulus $3060$
Conductor $765$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,20,6,3])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(77,3060)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3060\)
Conductor: \(765\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 765.ck
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.39559664240407604804664397295418839271073368072509765625.1

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{3060}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{3060}(977,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{3060}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{3060}(1613,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{3060}(2093,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{3060}(2117,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{3060}(2633,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{3060}(3017,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{2}{3}\right)\)