Properties

Label 306.2
Level 306
Weight 2
Dimension 680
Nonzero newspaces 10
Newform subspaces 47
Sturm bound 10368
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 47 \)
Sturm bound: \(10368\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(306))\).

Total New Old
Modular forms 2848 680 2168
Cusp forms 2337 680 1657
Eisenstein series 511 0 511

Trace form

\( 680 q + 2 q^{2} + 6 q^{3} + 2 q^{4} - 6 q^{6} + 4 q^{7} - 4 q^{8} - 6 q^{9} + 4 q^{10} + 10 q^{11} + 20 q^{13} + 20 q^{14} + 6 q^{16} + 22 q^{17} + 12 q^{18} + 20 q^{19} + 4 q^{20} - 12 q^{21} + 10 q^{22}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(306))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
306.2.a \(\chi_{306}(1, \cdot)\) 306.2.a.a 1 1
306.2.a.b 1
306.2.a.c 1
306.2.a.d 1
306.2.a.e 2
306.2.a.f 2
306.2.b \(\chi_{306}(271, \cdot)\) 306.2.b.a 2 1
306.2.b.b 2
306.2.b.c 2
306.2.b.d 2
306.2.e \(\chi_{306}(103, \cdot)\) 306.2.e.a 2 2
306.2.e.b 4
306.2.e.c 6
306.2.e.d 6
306.2.e.e 6
306.2.e.f 8
306.2.g \(\chi_{306}(55, \cdot)\) 306.2.g.a 2 2
306.2.g.b 2
306.2.g.c 2
306.2.g.d 2
306.2.g.e 2
306.2.g.f 2
306.2.g.g 4
306.2.j \(\chi_{306}(67, \cdot)\) 306.2.j.a 4 2
306.2.j.b 16
306.2.j.c 16
306.2.l \(\chi_{306}(19, \cdot)\) 306.2.l.a 4 4
306.2.l.b 4
306.2.l.c 4
306.2.l.d 8
306.2.l.e 8
306.2.n \(\chi_{306}(13, \cdot)\) 306.2.n.a 4 4
306.2.n.b 4
306.2.n.c 4
306.2.n.d 4
306.2.n.e 24
306.2.n.f 32
306.2.o \(\chi_{306}(71, \cdot)\) 306.2.o.a 8 8
306.2.o.b 8
306.2.o.c 8
306.2.o.d 8
306.2.o.e 8
306.2.o.f 8
306.2.r \(\chi_{306}(25, \cdot)\) 306.2.r.a 64 8
306.2.r.b 80
306.2.s \(\chi_{306}(5, \cdot)\) 306.2.s.a 144 16
306.2.s.b 144

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(306))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(306)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(153))\)\(^{\oplus 2}\)