Properties

Label 34.2
Level 34
Weight 2
Dimension 11
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 144
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 34 = 2 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(144\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(34))\).

Total New Old
Modular forms 52 11 41
Cusp forms 21 11 10
Eisenstein series 31 0 31

Trace form

\( 11 q - q^{2} - 4 q^{3} - q^{4} - 6 q^{5} - 4 q^{6} - 8 q^{7} - q^{8} - 13 q^{9} - 2 q^{10} + 4 q^{11} + 4 q^{12} + 2 q^{13} + 8 q^{14} + 24 q^{15} + 3 q^{16} - q^{17} + 19 q^{18} - 4 q^{19} - 2 q^{20}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
34.2.a \(\chi_{34}(1, \cdot)\) 34.2.a.a 1 1
34.2.b \(\chi_{34}(33, \cdot)\) 34.2.b.a 2 1
34.2.c \(\chi_{34}(13, \cdot)\) 34.2.c.a 2 2
34.2.c.b 2
34.2.d \(\chi_{34}(9, \cdot)\) 34.2.d.a 4 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(34))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(34)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)