Properties

Label 85.2
Level 85
Weight 2
Dimension 215
Nonzero newspaces 10
Newform subspaces 14
Sturm bound 1152
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 85 = 5 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 14 \)
Sturm bound: \(1152\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(85))\).

Total New Old
Modular forms 352 307 45
Cusp forms 225 215 10
Eisenstein series 127 92 35

Trace form

\( 215 q - 19 q^{2} - 20 q^{3} - 23 q^{4} - 25 q^{5} - 60 q^{6} - 24 q^{7} - 31 q^{8} - 29 q^{9} - 23 q^{10} - 44 q^{11} + 4 q^{12} - 14 q^{13} - 8 q^{14} - 4 q^{15} - 7 q^{16} - 17 q^{17} - 7 q^{18} - 20 q^{19}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
85.2.a \(\chi_{85}(1, \cdot)\) 85.2.a.a 1 1
85.2.a.b 2
85.2.a.c 2
85.2.b \(\chi_{85}(69, \cdot)\) 85.2.b.a 8 1
85.2.c \(\chi_{85}(84, \cdot)\) 85.2.c.a 8 1
85.2.d \(\chi_{85}(16, \cdot)\) 85.2.d.a 6 1
85.2.e \(\chi_{85}(21, \cdot)\) 85.2.e.a 12 2
85.2.j \(\chi_{85}(4, \cdot)\) 85.2.j.a 2 2
85.2.j.b 2
85.2.j.c 12
85.2.l \(\chi_{85}(26, \cdot)\) 85.2.l.a 24 4
85.2.m \(\chi_{85}(9, \cdot)\) 85.2.m.a 24 4
85.2.o \(\chi_{85}(3, \cdot)\) 85.2.o.a 56 8
85.2.r \(\chi_{85}(12, \cdot)\) 85.2.r.a 56 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(85))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(85)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 1}\)