Defining parameters
Level: | \( N \) | = | \( 85 = 5 \cdot 17 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 10 \) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(8\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(85))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 352 | 307 | 45 |
Cusp forms | 225 | 215 | 10 |
Eisenstein series | 127 | 92 | 35 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(85))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(85)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 1}\)