Properties

Label 17.2
Level 17
Weight 2
Dimension 5
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 48
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(17))\).

Total New Old
Modular forms 20 20 0
Cusp forms 5 5 0
Eisenstein series 15 15 0

Trace form

\( 5 q - 5 q^{2} - 4 q^{3} - q^{4} - 2 q^{5} + 4 q^{6} + 7 q^{8} + 5 q^{9} + 6 q^{10} - 4 q^{11} - 4 q^{12} - 2 q^{13} - 8 q^{15} - 13 q^{16} + q^{17} - 9 q^{18} + 4 q^{19} + 6 q^{20} + 12 q^{22} + 8 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
17.2.a \(\chi_{17}(1, \cdot)\) 17.2.a.a 1 1
17.2.b \(\chi_{17}(16, \cdot)\) None 0 1
17.2.c \(\chi_{17}(4, \cdot)\) None 0 2
17.2.d \(\chi_{17}(2, \cdot)\) 17.2.d.a 4 4