Properties

Label 510.2
Level 510
Weight 2
Dimension 1569
Nonzero newspaces 18
Newforms 60
Sturm bound 27648
Trace bound 10

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newforms: \( 60 \)
Sturm bound: \(27648\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(510))\).

Total New Old
Modular forms 7424 1569 5855
Cusp forms 6401 1569 4832
Eisenstein series 1023 0 1023

Trace form

\( 1569q + q^{2} + 5q^{3} + q^{4} + 9q^{5} + 5q^{6} + 8q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( 1569q + q^{2} + 5q^{3} + q^{4} + 9q^{5} + 5q^{6} + 8q^{7} + q^{8} + q^{9} + q^{10} + 44q^{11} + 5q^{12} + 46q^{13} + 40q^{14} + 29q^{15} + 17q^{16} + 41q^{17} + 49q^{18} + 52q^{19} + q^{20} + 88q^{21} + 60q^{22} + 40q^{23} + 21q^{24} + 89q^{25} + 30q^{26} + 5q^{27} + 8q^{28} + 62q^{29} + 29q^{30} + 128q^{31} + q^{32} + 60q^{33} - 15q^{34} + 40q^{35} + q^{36} + 38q^{37} - 28q^{38} - 42q^{39} - 23q^{40} + 42q^{41} - 120q^{42} + 12q^{43} - 4q^{44} - 47q^{45} - 72q^{46} - 48q^{47} - 11q^{48} - 87q^{49} - 15q^{50} - 139q^{51} - 18q^{52} - 26q^{53} - 107q^{54} + 12q^{55} - 8q^{56} - 124q^{57} - 2q^{58} + 44q^{59} - 19q^{60} + 62q^{61} - 16q^{62} + 8q^{63} + q^{64} + 22q^{65} - 52q^{66} + 36q^{67} - 39q^{68} - 8q^{69} - 184q^{70} - 184q^{71} + q^{72} - 342q^{73} - 186q^{74} - 187q^{75} - 44q^{76} - 288q^{77} - 138q^{78} - 288q^{79} - 87q^{80} - 47q^{81} - 294q^{82} - 236q^{83} - 72q^{84} - 591q^{85} - 196q^{86} - 346q^{87} - 132q^{88} - 358q^{89} - 47q^{90} - 528q^{91} - 88q^{92} - 320q^{93} - 272q^{94} - 412q^{95} - 11q^{96} - 382q^{97} - 183q^{98} - 148q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(510))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
510.2.a \(\chi_{510}(1, \cdot)\) 510.2.a.a 1 1
510.2.a.b 1
510.2.a.c 1
510.2.a.d 1
510.2.a.e 1
510.2.a.f 1
510.2.a.g 1
510.2.a.h 2
510.2.c \(\chi_{510}(271, \cdot)\) 510.2.c.a 2 1
510.2.c.b 2
510.2.c.c 4
510.2.c.d 4
510.2.d \(\chi_{510}(409, \cdot)\) 510.2.d.a 2 1
510.2.d.b 4
510.2.d.c 4
510.2.d.d 6
510.2.f \(\chi_{510}(169, \cdot)\) 510.2.f.a 4 1
510.2.f.b 4
510.2.f.c 6
510.2.f.d 6
510.2.i \(\chi_{510}(353, \cdot)\) 510.2.i.a 72 2
510.2.l \(\chi_{510}(137, \cdot)\) 510.2.l.a 4 2
510.2.l.b 4
510.2.l.c 4
510.2.l.d 8
510.2.l.e 8
510.2.l.f 8
510.2.l.g 28
510.2.m \(\chi_{510}(259, \cdot)\) 510.2.m.a 8 2
510.2.m.b 8
510.2.m.c 12
510.2.m.d 12
510.2.p \(\chi_{510}(361, \cdot)\) 510.2.p.a 4 2
510.2.p.b 4
510.2.p.c 8
510.2.p.d 8
510.2.q \(\chi_{510}(203, \cdot)\) 510.2.q.a 72 2
510.2.t \(\chi_{510}(47, \cdot)\) 510.2.t.a 72 2
510.2.u \(\chi_{510}(121, \cdot)\) 510.2.u.a 8 4
510.2.u.b 8
510.2.u.c 16
510.2.u.d 16
510.2.w \(\chi_{510}(257, \cdot)\) 510.2.w.a 4 4
510.2.w.b 4
510.2.w.c 68
510.2.w.d 68
510.2.z \(\chi_{510}(53, \cdot)\) 510.2.z.a 4 4
510.2.z.b 4
510.2.z.c 68
510.2.z.d 68
510.2.bb \(\chi_{510}(19, \cdot)\) 510.2.bb.a 32 4
510.2.bb.b 32
510.2.bd \(\chi_{510}(7, \cdot)\) 510.2.bd.a 64 8
510.2.bd.b 80
510.2.bf \(\chi_{510}(11, \cdot)\) 510.2.bf.a 96 8
510.2.bf.b 96
510.2.bh \(\chi_{510}(29, \cdot)\) 510.2.bh.a 144 8
510.2.bh.b 144
510.2.bi \(\chi_{510}(37, \cdot)\) 510.2.bi.a 64 8
510.2.bi.b 80

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(510))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(510)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(255))\)\(^{\oplus 2}\)