Properties

Label 153.2
Level 153
Weight 2
Dimension 612
Nonzero newspaces 10
Newform subspaces 25
Sturm bound 3456
Trace bound 4

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 25 \)
Sturm bound: \(3456\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(153))\).

Total New Old
Modular forms 992 746 246
Cusp forms 737 612 125
Eisenstein series 255 134 121

Trace form

\( 612q - 24q^{2} - 32q^{3} - 24q^{4} - 24q^{5} - 32q^{6} - 24q^{7} - 24q^{8} - 32q^{9} + O(q^{10}) \) \( 612q - 24q^{2} - 32q^{3} - 24q^{4} - 24q^{5} - 32q^{6} - 24q^{7} - 24q^{8} - 32q^{9} - 76q^{10} - 32q^{11} - 32q^{12} - 32q^{13} - 40q^{14} - 32q^{15} - 60q^{16} - 32q^{17} - 64q^{18} - 80q^{19} - 52q^{20} - 32q^{21} - 40q^{22} - 32q^{23} - 32q^{24} - 52q^{25} - 60q^{26} - 32q^{27} - 120q^{28} - 44q^{29} - 32q^{30} - 56q^{31} - 16q^{32} - 32q^{33} - 88q^{34} - 80q^{35} - 32q^{36} - 104q^{37} - 40q^{38} + 8q^{40} + 28q^{41} + 64q^{42} + 136q^{44} + 32q^{45} + 8q^{46} + 96q^{47} + 128q^{48} + 72q^{49} + 168q^{50} + 32q^{51} + 144q^{52} + 60q^{53} + 80q^{54} - 8q^{55} + 176q^{56} + 48q^{57} + 16q^{58} + 40q^{59} + 96q^{60} - 24q^{61} + 64q^{62} + 16q^{63} - 56q^{64} - 36q^{65} + 16q^{66} - 64q^{67} - 124q^{68} - 64q^{69} - 160q^{70} - 72q^{71} + 32q^{72} - 172q^{73} - 108q^{74} - 32q^{75} - 144q^{76} - 104q^{77} - 32q^{78} - 88q^{79} - 40q^{80} - 32q^{81} - 180q^{82} - 56q^{83} + 48q^{84} + 12q^{85} + 160q^{86} + 64q^{87} + 72q^{88} + 96q^{89} + 208q^{90} + 72q^{91} + 232q^{92} + 96q^{93} + 200q^{94} + 184q^{95} + 272q^{96} + 40q^{97} + 348q^{98} + 112q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(153))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
153.2.a \(\chi_{153}(1, \cdot)\) 153.2.a.a 1 1
153.2.a.b 1
153.2.a.c 1
153.2.a.d 1
153.2.a.e 2
153.2.d \(\chi_{153}(118, \cdot)\) 153.2.d.a 2 1
153.2.d.b 2
153.2.d.c 2
153.2.e \(\chi_{153}(52, \cdot)\) 153.2.e.a 4 2
153.2.e.b 8
153.2.e.c 20
153.2.f \(\chi_{153}(55, \cdot)\) 153.2.f.a 4 2
153.2.f.b 8
153.2.h \(\chi_{153}(16, \cdot)\) 153.2.h.a 8 2
153.2.h.b 24
153.2.l \(\chi_{153}(19, \cdot)\) 153.2.l.a 4 4
153.2.l.b 4
153.2.l.c 4
153.2.l.d 8
153.2.l.e 8
153.2.n \(\chi_{153}(4, \cdot)\) 153.2.n.a 64 4
153.2.o \(\chi_{153}(44, \cdot)\) 153.2.o.a 24 8
153.2.o.b 24
153.2.r \(\chi_{153}(25, \cdot)\) 153.2.r.a 128 8
153.2.s \(\chi_{153}(5, \cdot)\) 153.2.s.a 256 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(153))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(153)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 2}\)