L(s) = 1 | + 2-s − 3·7-s − 8-s + 3·9-s + 3·11-s + 7·13-s − 3·14-s − 16-s − 4·17-s + 3·18-s − 7·19-s + 3·22-s − 4·23-s + 7·26-s + 8·29-s − 20·31-s − 4·34-s + 3·37-s − 7·38-s + 2·41-s + 6·43-s − 4·46-s + 2·47-s + 7·49-s + 18·53-s + 3·56-s + 8·58-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.13·7-s − 0.353·8-s + 9-s + 0.904·11-s + 1.94·13-s − 0.801·14-s − 1/4·16-s − 0.970·17-s + 0.707·18-s − 1.60·19-s + 0.639·22-s − 0.834·23-s + 1.37·26-s + 1.48·29-s − 3.59·31-s − 0.685·34-s + 0.493·37-s − 1.13·38-s + 0.312·41-s + 0.914·43-s − 0.589·46-s + 0.291·47-s + 49-s + 2.47·53-s + 0.400·56-s + 1.05·58-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.389548102\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.389548102\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79017168823907123621988358100, −10.56137925077447357653295631519, −9.812177129001117452654268639964, −9.518812864310649863309719700539, −8.913744528232178928071515871359, −8.721345803051156553388781856967, −8.401474518658479747614416471365, −7.52647273559935246481970762978, −6.99717128473903798836486865976, −6.65890804551353969216972077966, −6.36433241489654664088541713359, −5.68084442415512962177400840998, −5.62798750014615608750309659937, −4.39678740192933966420872304385, −4.23378446391115973481511762787, −3.69638476857268843424200575725, −3.55952613992839848789754558056, −2.39196469143154050840628260786, −1.88264824026137694226345291465, −0.77054046507760470462636308043,
0.77054046507760470462636308043, 1.88264824026137694226345291465, 2.39196469143154050840628260786, 3.55952613992839848789754558056, 3.69638476857268843424200575725, 4.23378446391115973481511762787, 4.39678740192933966420872304385, 5.62798750014615608750309659937, 5.68084442415512962177400840998, 6.36433241489654664088541713359, 6.65890804551353969216972077966, 6.99717128473903798836486865976, 7.52647273559935246481970762978, 8.401474518658479747614416471365, 8.721345803051156553388781856967, 8.913744528232178928071515871359, 9.518812864310649863309719700539, 9.812177129001117452654268639964, 10.56137925077447357653295631519, 10.79017168823907123621988358100