Properties

Label 650.2.e.b.451.1
Level $650$
Weight $2$
Character 650.451
Analytic conductor $5.190$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 650.451
Dual form 650.2.e.b.601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.50000 - 2.59808i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(1.50000 - 2.59808i) q^{11} +(3.50000 - 0.866025i) q^{13} -3.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-2.00000 - 3.46410i) q^{17} +3.00000 q^{18} +(-3.50000 - 6.06218i) q^{19} +(-1.50000 - 2.59808i) q^{22} +(-2.00000 + 3.46410i) q^{23} +(1.00000 - 3.46410i) q^{26} +(-1.50000 + 2.59808i) q^{28} +(4.00000 - 6.92820i) q^{29} -10.0000 q^{31} +(0.500000 + 0.866025i) q^{32} -4.00000 q^{34} +(1.50000 - 2.59808i) q^{36} +(1.50000 - 2.59808i) q^{37} -7.00000 q^{38} +(1.00000 - 1.73205i) q^{41} +(3.00000 + 5.19615i) q^{43} -3.00000 q^{44} +(2.00000 + 3.46410i) q^{46} +1.00000 q^{47} +(-1.00000 + 1.73205i) q^{49} +(-2.50000 - 2.59808i) q^{52} +9.00000 q^{53} +(1.50000 + 2.59808i) q^{56} +(-4.00000 - 6.92820i) q^{58} +(2.00000 + 3.46410i) q^{59} +(7.00000 + 12.1244i) q^{61} +(-5.00000 + 8.66025i) q^{62} +(4.50000 - 7.79423i) q^{63} +1.00000 q^{64} +(2.00000 - 3.46410i) q^{67} +(-2.00000 + 3.46410i) q^{68} +(-3.00000 - 5.19615i) q^{71} +(-1.50000 - 2.59808i) q^{72} -4.00000 q^{73} +(-1.50000 - 2.59808i) q^{74} +(-3.50000 + 6.06218i) q^{76} -9.00000 q^{77} +10.0000 q^{79} +(-4.50000 + 7.79423i) q^{81} +(-1.00000 - 1.73205i) q^{82} +6.00000 q^{86} +(-1.50000 + 2.59808i) q^{88} +(-0.500000 + 0.866025i) q^{89} +(-7.50000 - 7.79423i) q^{91} +4.00000 q^{92} +(0.500000 - 0.866025i) q^{94} +(8.00000 + 13.8564i) q^{97} +(1.00000 + 1.73205i) q^{98} +9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 3 q^{7} - 2 q^{8} + 3 q^{9} + 3 q^{11} + 7 q^{13} - 6 q^{14} - q^{16} - 4 q^{17} + 6 q^{18} - 7 q^{19} - 3 q^{22} - 4 q^{23} + 2 q^{26} - 3 q^{28} + 8 q^{29} - 20 q^{31} + q^{32}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −1.50000 2.59808i −0.566947 0.981981i −0.996866 0.0791130i \(-0.974791\pi\)
0.429919 0.902867i \(-0.358542\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i \(-0.327873\pi\)
−0.999853 + 0.0171533i \(0.994540\pi\)
\(18\) 3.00000 0.707107
\(19\) −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i \(-0.869927\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.50000 2.59808i −0.319801 0.553912i
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.00000 3.46410i 0.196116 0.679366i
\(27\) 0 0
\(28\) −1.50000 + 2.59808i −0.283473 + 0.490990i
\(29\) 4.00000 6.92820i 0.742781 1.28654i −0.208443 0.978035i \(-0.566840\pi\)
0.951224 0.308500i \(-0.0998271\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 1.50000 2.59808i 0.246598 0.427121i −0.715981 0.698119i \(-0.754020\pi\)
0.962580 + 0.270998i \(0.0873538\pi\)
\(38\) −7.00000 −1.13555
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 1.73205i 0.156174 0.270501i −0.777312 0.629115i \(-0.783417\pi\)
0.933486 + 0.358614i \(0.116751\pi\)
\(42\) 0 0
\(43\) 3.00000 + 5.19615i 0.457496 + 0.792406i 0.998828 0.0484030i \(-0.0154132\pi\)
−0.541332 + 0.840809i \(0.682080\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 2.00000 + 3.46410i 0.294884 + 0.510754i
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) 0 0
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) −2.50000 2.59808i −0.346688 0.360288i
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 0 0
\(58\) −4.00000 6.92820i −0.525226 0.909718i
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) 7.00000 + 12.1244i 0.896258 + 1.55236i 0.832240 + 0.554416i \(0.187058\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) −5.00000 + 8.66025i −0.635001 + 1.09985i
\(63\) 4.50000 7.79423i 0.566947 0.981981i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) −2.00000 + 3.46410i −0.242536 + 0.420084i
\(69\) 0 0
\(70\) 0 0
\(71\) −3.00000 5.19615i −0.356034 0.616670i 0.631260 0.775571i \(-0.282538\pi\)
−0.987294 + 0.158901i \(0.949205\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −1.50000 2.59808i −0.174371 0.302020i
\(75\) 0 0
\(76\) −3.50000 + 6.06218i −0.401478 + 0.695379i
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −1.00000 1.73205i −0.110432 0.191273i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.00000 0.646997
\(87\) 0 0
\(88\) −1.50000 + 2.59808i −0.159901 + 0.276956i
\(89\) −0.500000 + 0.866025i −0.0529999 + 0.0917985i −0.891308 0.453398i \(-0.850212\pi\)
0.838308 + 0.545197i \(0.183545\pi\)
\(90\) 0 0
\(91\) −7.50000 7.79423i −0.786214 0.817057i
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 0.500000 0.866025i 0.0515711 0.0893237i
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000 + 13.8564i 0.812277 + 1.40690i 0.911267 + 0.411816i \(0.135106\pi\)
−0.0989899 + 0.995088i \(0.531561\pi\)
\(98\) 1.00000 + 1.73205i 0.101015 + 0.174964i
\(99\) 9.00000 0.904534
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) −3.50000 + 0.866025i −0.343203 + 0.0849208i
\(105\) 0 0
\(106\) 4.50000 7.79423i 0.437079 0.757042i
\(107\) −9.00000 + 15.5885i −0.870063 + 1.50699i −0.00813215 + 0.999967i \(0.502589\pi\)
−0.861931 + 0.507026i \(0.830745\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 3.00000 0.283473
\(113\) −4.00000 6.92820i −0.376288 0.651751i 0.614231 0.789127i \(-0.289466\pi\)
−0.990519 + 0.137376i \(0.956133\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) 7.50000 + 7.79423i 0.693375 + 0.720577i
\(118\) 4.00000 0.368230
\(119\) −6.00000 + 10.3923i −0.550019 + 0.952661i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 14.0000 1.26750
\(123\) 0 0
\(124\) 5.00000 + 8.66025i 0.449013 + 0.777714i
\(125\) 0 0
\(126\) −4.50000 7.79423i −0.400892 0.694365i
\(127\) 6.50000 11.2583i 0.576782 0.999015i −0.419064 0.907957i \(-0.637642\pi\)
0.995846 0.0910585i \(-0.0290250\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.0000 1.13582 0.567908 0.823092i \(-0.307753\pi\)
0.567908 + 0.823092i \(0.307753\pi\)
\(132\) 0 0
\(133\) −10.5000 + 18.1865i −0.910465 + 1.57697i
\(134\) −2.00000 3.46410i −0.172774 0.299253i
\(135\) 0 0
\(136\) 2.00000 + 3.46410i 0.171499 + 0.297044i
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 0 0
\(139\) 2.50000 + 4.33013i 0.212047 + 0.367277i 0.952355 0.304991i \(-0.0986536\pi\)
−0.740308 + 0.672268i \(0.765320\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 3.00000 10.3923i 0.250873 0.869048i
\(144\) −3.00000 −0.250000
\(145\) 0 0
\(146\) −2.00000 + 3.46410i −0.165521 + 0.286691i
\(147\) 0 0
\(148\) −3.00000 −0.246598
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 3.50000 + 6.06218i 0.283887 + 0.491708i
\(153\) 6.00000 10.3923i 0.485071 0.840168i
\(154\) −4.50000 + 7.79423i −0.362620 + 0.628077i
\(155\) 0 0
\(156\) 0 0
\(157\) 3.00000 0.239426 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(158\) 5.00000 8.66025i 0.397779 0.688973i
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) 4.00000 + 6.92820i 0.313304 + 0.542659i 0.979076 0.203497i \(-0.0652307\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) 0 0
\(167\) 9.50000 16.4545i 0.735132 1.27329i −0.219533 0.975605i \(-0.570453\pi\)
0.954665 0.297681i \(-0.0962132\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) 10.5000 18.1865i 0.802955 1.39076i
\(172\) 3.00000 5.19615i 0.228748 0.396203i
\(173\) −10.5000 18.1865i −0.798300 1.38270i −0.920722 0.390218i \(-0.872399\pi\)
0.122422 0.992478i \(-0.460934\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) 0 0
\(178\) 0.500000 + 0.866025i 0.0374766 + 0.0649113i
\(179\) −2.00000 + 3.46410i −0.149487 + 0.258919i −0.931038 0.364922i \(-0.881096\pi\)
0.781551 + 0.623841i \(0.214429\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) −10.5000 + 2.59808i −0.778312 + 0.192582i
\(183\) 0 0
\(184\) 2.00000 3.46410i 0.147442 0.255377i
\(185\) 0 0
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) −0.500000 0.866025i −0.0364662 0.0631614i
\(189\) 0 0
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 0 0
\(193\) −12.0000 + 20.7846i −0.863779 + 1.49611i 0.00447566 + 0.999990i \(0.498575\pi\)
−0.868255 + 0.496119i \(0.834758\pi\)
\(194\) 16.0000 1.14873
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 6.50000 11.2583i 0.463106 0.802123i −0.536008 0.844213i \(-0.680068\pi\)
0.999114 + 0.0420901i \(0.0134016\pi\)
\(198\) 4.50000 7.79423i 0.319801 0.553912i
\(199\) 9.00000 + 15.5885i 0.637993 + 1.10504i 0.985873 + 0.167497i \(0.0535685\pi\)
−0.347879 + 0.937539i \(0.613098\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −24.0000 −1.68447
\(204\) 0 0
\(205\) 0 0
\(206\) 0.500000 0.866025i 0.0348367 0.0603388i
\(207\) −12.0000 −0.834058
\(208\) −1.00000 + 3.46410i −0.0693375 + 0.240192i
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) −6.50000 + 11.2583i −0.447478 + 0.775055i −0.998221 0.0596196i \(-0.981011\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) −4.50000 7.79423i −0.309061 0.535310i
\(213\) 0 0
\(214\) 9.00000 + 15.5885i 0.615227 + 1.06561i
\(215\) 0 0
\(216\) 0 0
\(217\) 15.0000 + 25.9808i 1.01827 + 1.76369i
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 0 0
\(220\) 0 0
\(221\) −10.0000 10.3923i −0.672673 0.699062i
\(222\) 0 0
\(223\) 9.50000 16.4545i 0.636167 1.10187i −0.350100 0.936713i \(-0.613852\pi\)
0.986267 0.165161i \(-0.0528144\pi\)
\(224\) 1.50000 2.59808i 0.100223 0.173591i
\(225\) 0 0
\(226\) −8.00000 −0.532152
\(227\) −2.00000 3.46410i −0.132745 0.229920i 0.791989 0.610535i \(-0.209046\pi\)
−0.924734 + 0.380615i \(0.875712\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.00000 + 6.92820i −0.262613 + 0.454859i
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 10.5000 2.59808i 0.686406 0.169842i
\(235\) 0 0
\(236\) 2.00000 3.46410i 0.130189 0.225494i
\(237\) 0 0
\(238\) 6.00000 + 10.3923i 0.388922 + 0.673633i
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 12.5000 + 21.6506i 0.805196 + 1.39464i 0.916159 + 0.400815i \(0.131273\pi\)
−0.110963 + 0.993825i \(0.535394\pi\)
\(242\) 2.00000 0.128565
\(243\) 0 0
\(244\) 7.00000 12.1244i 0.448129 0.776182i
\(245\) 0 0
\(246\) 0 0
\(247\) −17.5000 18.1865i −1.11350 1.15718i
\(248\) 10.0000 0.635001
\(249\) 0 0
\(250\) 0 0
\(251\) −11.5000 19.9186i −0.725874 1.25725i −0.958613 0.284711i \(-0.908102\pi\)
0.232740 0.972539i \(-0.425231\pi\)
\(252\) −9.00000 −0.566947
\(253\) 6.00000 + 10.3923i 0.377217 + 0.653359i
\(254\) −6.50000 11.2583i −0.407846 0.706410i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 4.00000 6.92820i 0.249513 0.432169i −0.713878 0.700270i \(-0.753063\pi\)
0.963391 + 0.268101i \(0.0863961\pi\)
\(258\) 0 0
\(259\) −9.00000 −0.559233
\(260\) 0 0
\(261\) 24.0000 1.48556
\(262\) 6.50000 11.2583i 0.401571 0.695542i
\(263\) 5.50000 9.52628i 0.339145 0.587416i −0.645128 0.764075i \(-0.723196\pi\)
0.984272 + 0.176659i \(0.0565291\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 10.5000 + 18.1865i 0.643796 + 1.11509i
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −12.0000 20.7846i −0.731653 1.26726i −0.956176 0.292791i \(-0.905416\pi\)
0.224523 0.974469i \(-0.427917\pi\)
\(270\) 0 0
\(271\) −4.00000 + 6.92820i −0.242983 + 0.420858i −0.961563 0.274586i \(-0.911459\pi\)
0.718580 + 0.695444i \(0.244792\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 0 0
\(277\) 9.50000 + 16.4545i 0.570800 + 0.988654i 0.996484 + 0.0837823i \(0.0267000\pi\)
−0.425684 + 0.904872i \(0.639967\pi\)
\(278\) 5.00000 0.299880
\(279\) −15.0000 25.9808i −0.898027 1.55543i
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) −7.00000 + 12.1244i −0.416107 + 0.720718i −0.995544 0.0942988i \(-0.969939\pi\)
0.579437 + 0.815017i \(0.303272\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) −7.50000 7.79423i −0.443484 0.460882i
\(287\) −6.00000 −0.354169
\(288\) −1.50000 + 2.59808i −0.0883883 + 0.153093i
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) 2.00000 + 3.46410i 0.117041 + 0.202721i
\(293\) 4.50000 + 7.79423i 0.262893 + 0.455344i 0.967009 0.254741i \(-0.0819901\pi\)
−0.704117 + 0.710084i \(0.748657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.50000 + 2.59808i −0.0871857 + 0.151010i
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) −4.00000 + 13.8564i −0.231326 + 0.801337i
\(300\) 0 0
\(301\) 9.00000 15.5885i 0.518751 0.898504i
\(302\) −1.00000 + 1.73205i −0.0575435 + 0.0996683i
\(303\) 0 0
\(304\) 7.00000 0.401478
\(305\) 0 0
\(306\) −6.00000 10.3923i −0.342997 0.594089i
\(307\) 14.0000 0.799022 0.399511 0.916728i \(-0.369180\pi\)
0.399511 + 0.916728i \(0.369180\pi\)
\(308\) 4.50000 + 7.79423i 0.256411 + 0.444117i
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 1.50000 2.59808i 0.0846499 0.146618i
\(315\) 0 0
\(316\) −5.00000 8.66025i −0.281272 0.487177i
\(317\) −31.0000 −1.74113 −0.870567 0.492050i \(-0.836248\pi\)
−0.870567 + 0.492050i \(0.836248\pi\)
\(318\) 0 0
\(319\) −12.0000 20.7846i −0.671871 1.16371i
\(320\) 0 0
\(321\) 0 0
\(322\) 6.00000 10.3923i 0.334367 0.579141i
\(323\) −14.0000 + 24.2487i −0.778981 + 1.34923i
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) −1.00000 + 1.73205i −0.0552158 + 0.0956365i
\(329\) −1.50000 2.59808i −0.0826977 0.143237i
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 0 0
\(333\) 9.00000 0.493197
\(334\) −9.50000 16.4545i −0.519817 0.900349i
\(335\) 0 0
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 0.500000 12.9904i 0.0271964 0.706584i
\(339\) 0 0
\(340\) 0 0
\(341\) −15.0000 + 25.9808i −0.812296 + 1.40694i
\(342\) −10.5000 18.1865i −0.567775 0.983415i
\(343\) −15.0000 −0.809924
\(344\) −3.00000 5.19615i −0.161749 0.280158i
\(345\) 0 0
\(346\) −21.0000 −1.12897
\(347\) −8.00000 13.8564i −0.429463 0.743851i 0.567363 0.823468i \(-0.307964\pi\)
−0.996826 + 0.0796169i \(0.974630\pi\)
\(348\) 0 0
\(349\) 8.00000 13.8564i 0.428230 0.741716i −0.568486 0.822693i \(-0.692471\pi\)
0.996716 + 0.0809766i \(0.0258039\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.00000 0.159901
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) 2.00000 + 3.46410i 0.105703 + 0.183083i
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) −7.00000 + 12.1244i −0.367912 + 0.637242i
\(363\) 0 0
\(364\) −3.00000 + 10.3923i −0.157243 + 0.544705i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) −2.00000 3.46410i −0.104257 0.180579i
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −13.5000 23.3827i −0.700885 1.21397i
\(372\) 0 0
\(373\) −3.00000 5.19615i −0.155334 0.269047i 0.777847 0.628454i \(-0.216312\pi\)
−0.933181 + 0.359408i \(0.882979\pi\)
\(374\) −6.00000 + 10.3923i −0.310253 + 0.537373i
\(375\) 0 0
\(376\) −1.00000 −0.0515711
\(377\) 8.00000 27.7128i 0.412021 1.42728i
\(378\) 0 0
\(379\) −13.5000 + 23.3827i −0.693448 + 1.20109i 0.277253 + 0.960797i \(0.410576\pi\)
−0.970701 + 0.240291i \(0.922757\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.00000 0.306987
\(383\) −14.0000 24.2487i −0.715367 1.23905i −0.962818 0.270151i \(-0.912926\pi\)
0.247451 0.968900i \(-0.420407\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.0000 + 20.7846i 0.610784 + 1.05791i
\(387\) −9.00000 + 15.5885i −0.457496 + 0.792406i
\(388\) 8.00000 13.8564i 0.406138 0.703452i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 1.00000 1.73205i 0.0505076 0.0874818i
\(393\) 0 0
\(394\) −6.50000 11.2583i −0.327465 0.567186i
\(395\) 0 0
\(396\) −4.50000 7.79423i −0.226134 0.391675i
\(397\) −10.5000 18.1865i −0.526980 0.912756i −0.999506 0.0314391i \(-0.989991\pi\)
0.472526 0.881317i \(-0.343342\pi\)
\(398\) 18.0000 0.902258
\(399\) 0 0
\(400\) 0 0
\(401\) 19.5000 33.7750i 0.973784 1.68664i 0.289891 0.957060i \(-0.406381\pi\)
0.683892 0.729583i \(-0.260286\pi\)
\(402\) 0 0
\(403\) −35.0000 + 8.66025i −1.74347 + 0.431398i
\(404\) 0 0
\(405\) 0 0
\(406\) −12.0000 + 20.7846i −0.595550 + 1.03152i
\(407\) −4.50000 7.79423i −0.223057 0.386346i
\(408\) 0 0
\(409\) −8.50000 14.7224i −0.420298 0.727977i 0.575670 0.817682i \(-0.304741\pi\)
−0.995968 + 0.0897044i \(0.971408\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.500000 0.866025i −0.0246332 0.0426660i
\(413\) 6.00000 10.3923i 0.295241 0.511372i
\(414\) −6.00000 + 10.3923i −0.294884 + 0.510754i
\(415\) 0 0
\(416\) 2.50000 + 2.59808i 0.122573 + 0.127381i
\(417\) 0 0
\(418\) −10.5000 + 18.1865i −0.513572 + 0.889532i
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) 6.50000 + 11.2583i 0.316415 + 0.548047i
\(423\) 1.50000 + 2.59808i 0.0729325 + 0.126323i
\(424\) −9.00000 −0.437079
\(425\) 0 0
\(426\) 0 0
\(427\) 21.0000 36.3731i 1.01626 1.76022i
\(428\) 18.0000 0.870063
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 20.7846i 0.578020 1.00116i −0.417687 0.908591i \(-0.637159\pi\)
0.995706 0.0925683i \(-0.0295076\pi\)
\(432\) 0 0
\(433\) 8.00000 + 13.8564i 0.384455 + 0.665896i 0.991693 0.128624i \(-0.0410559\pi\)
−0.607238 + 0.794520i \(0.707723\pi\)
\(434\) 30.0000 1.44005
\(435\) 0 0
\(436\) 1.00000 + 1.73205i 0.0478913 + 0.0829502i
\(437\) 28.0000 1.33942
\(438\) 0 0
\(439\) 3.00000 5.19615i 0.143182 0.247999i −0.785511 0.618848i \(-0.787600\pi\)
0.928693 + 0.370849i \(0.120933\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −14.0000 + 3.46410i −0.665912 + 0.164771i
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.50000 16.4545i −0.449838 0.779142i
\(447\) 0 0
\(448\) −1.50000 2.59808i −0.0708683 0.122748i
\(449\) 7.50000 + 12.9904i 0.353947 + 0.613054i 0.986937 0.161106i \(-0.0515060\pi\)
−0.632990 + 0.774160i \(0.718173\pi\)
\(450\) 0 0
\(451\) −3.00000 5.19615i −0.141264 0.244677i
\(452\) −4.00000 + 6.92820i −0.188144 + 0.325875i
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 8.66025i 0.233890 0.405110i −0.725059 0.688686i \(-0.758188\pi\)
0.958950 + 0.283577i \(0.0915211\pi\)
\(458\) −11.0000 + 19.0526i −0.513996 + 0.890268i
\(459\) 0 0
\(460\) 0 0
\(461\) 20.0000 + 34.6410i 0.931493 + 1.61339i 0.780771 + 0.624817i \(0.214826\pi\)
0.150721 + 0.988576i \(0.451840\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 4.00000 + 6.92820i 0.185695 + 0.321634i
\(465\) 0 0
\(466\) 9.00000 15.5885i 0.416917 0.722121i
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 3.00000 10.3923i 0.138675 0.480384i
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) −2.00000 3.46410i −0.0920575 0.159448i
\(473\) 18.0000 0.827641
\(474\) 0 0
\(475\) 0 0
\(476\) 12.0000 0.550019
\(477\) 13.5000 + 23.3827i 0.618123 + 1.07062i
\(478\) 1.00000 1.73205i 0.0457389 0.0792222i
\(479\) 14.0000 24.2487i 0.639676 1.10795i −0.345827 0.938298i \(-0.612402\pi\)
0.985504 0.169654i \(-0.0542649\pi\)
\(480\) 0 0
\(481\) 3.00000 10.3923i 0.136788 0.473848i
\(482\) 25.0000 1.13872
\(483\) 0 0
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) 9.50000 + 16.4545i 0.430486 + 0.745624i 0.996915 0.0784867i \(-0.0250088\pi\)
−0.566429 + 0.824110i \(0.691675\pi\)
\(488\) −7.00000 12.1244i −0.316875 0.548844i
\(489\) 0 0
\(490\) 0 0
\(491\) 21.5000 37.2391i 0.970281 1.68058i 0.275581 0.961278i \(-0.411130\pi\)
0.694701 0.719299i \(-0.255537\pi\)
\(492\) 0 0
\(493\) −32.0000 −1.44121
\(494\) −24.5000 + 6.06218i −1.10231 + 0.272750i
\(495\) 0 0
\(496\) 5.00000 8.66025i 0.224507 0.388857i
\(497\) −9.00000 + 15.5885i −0.403705 + 0.699238i
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −23.0000 −1.02654
\(503\) 11.5000 + 19.9186i 0.512760 + 0.888126i 0.999891 + 0.0147968i \(0.00471014\pi\)
−0.487131 + 0.873329i \(0.661957\pi\)
\(504\) −4.50000 + 7.79423i −0.200446 + 0.347183i
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) −13.0000 −0.576782
\(509\) 3.00000 5.19615i 0.132973 0.230315i −0.791849 0.610718i \(-0.790881\pi\)
0.924821 + 0.380402i \(0.124214\pi\)
\(510\) 0 0
\(511\) 6.00000 + 10.3923i 0.265424 + 0.459728i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −4.00000 6.92820i −0.176432 0.305590i
\(515\) 0 0
\(516\) 0 0
\(517\) 1.50000 2.59808i 0.0659699 0.114263i
\(518\) −4.50000 + 7.79423i −0.197719 + 0.342459i
\(519\) 0 0
\(520\) 0 0
\(521\) −31.0000 −1.35813 −0.679067 0.734076i \(-0.737616\pi\)
−0.679067 + 0.734076i \(0.737616\pi\)
\(522\) 12.0000 20.7846i 0.525226 0.909718i
\(523\) 11.0000 19.0526i 0.480996 0.833110i −0.518766 0.854916i \(-0.673608\pi\)
0.999762 + 0.0218062i \(0.00694167\pi\)
\(524\) −6.50000 11.2583i −0.283954 0.491822i
\(525\) 0 0
\(526\) −5.50000 9.52628i −0.239811 0.415366i
\(527\) 20.0000 + 34.6410i 0.871214 + 1.50899i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) −6.00000 + 10.3923i −0.260378 + 0.450988i
\(532\) 21.0000 0.910465
\(533\) 2.00000 6.92820i 0.0866296 0.300094i
\(534\) 0 0
\(535\) 0 0
\(536\) −2.00000 + 3.46410i −0.0863868 + 0.149626i
\(537\) 0 0
\(538\) −24.0000 −1.03471
\(539\) 3.00000 + 5.19615i 0.129219 + 0.223814i
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 4.00000 + 6.92820i 0.171815 + 0.297592i
\(543\) 0 0
\(544\) 2.00000 3.46410i 0.0857493 0.148522i
\(545\) 0 0
\(546\) 0 0
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) 6.00000 10.3923i 0.256307 0.443937i
\(549\) −21.0000 + 36.3731i −0.896258 + 1.55236i
\(550\) 0 0
\(551\) −56.0000 −2.38568
\(552\) 0 0
\(553\) −15.0000 25.9808i −0.637865 1.10481i
\(554\) 19.0000 0.807233
\(555\) 0 0
\(556\) 2.50000 4.33013i 0.106024 0.183638i
\(557\) −15.5000 + 26.8468i −0.656756 + 1.13753i 0.324694 + 0.945819i \(0.394739\pi\)
−0.981450 + 0.191716i \(0.938595\pi\)
\(558\) −30.0000 −1.27000
\(559\) 15.0000 + 15.5885i 0.634432 + 0.659321i
\(560\) 0 0
\(561\) 0 0
\(562\) 1.00000 1.73205i 0.0421825 0.0730622i
\(563\) 12.0000 + 20.7846i 0.505740 + 0.875967i 0.999978 + 0.00664037i \(0.00211371\pi\)
−0.494238 + 0.869326i \(0.664553\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 7.00000 + 12.1244i 0.294232 + 0.509625i
\(567\) 27.0000 1.13389
\(568\) 3.00000 + 5.19615i 0.125877 + 0.218026i
\(569\) 5.50000 9.52628i 0.230572 0.399362i −0.727405 0.686209i \(-0.759274\pi\)
0.957977 + 0.286846i \(0.0926069\pi\)
\(570\) 0 0
\(571\) −37.0000 −1.54840 −0.774201 0.632940i \(-0.781848\pi\)
−0.774201 + 0.632940i \(0.781848\pi\)
\(572\) −10.5000 + 2.59808i −0.439027 + 0.108631i
\(573\) 0 0
\(574\) −3.00000 + 5.19615i −0.125218 + 0.216883i
\(575\) 0 0
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) −0.500000 0.866025i −0.0207973 0.0360219i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 13.5000 23.3827i 0.559113 0.968412i
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) −1.00000 + 1.73205i −0.0412744 + 0.0714894i −0.885925 0.463829i \(-0.846475\pi\)
0.844650 + 0.535319i \(0.179808\pi\)
\(588\) 0 0
\(589\) 35.0000 + 60.6218i 1.44215 + 2.49788i
\(590\) 0 0
\(591\) 0 0
\(592\) 1.50000 + 2.59808i 0.0616496 + 0.106780i
\(593\) −20.0000 −0.821302 −0.410651 0.911793i \(-0.634698\pi\)
−0.410651 + 0.911793i \(0.634698\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.00000 5.19615i 0.122885 0.212843i
\(597\) 0 0
\(598\) 10.0000 + 10.3923i 0.408930 + 0.424973i
\(599\) 26.0000 1.06233 0.531166 0.847268i \(-0.321754\pi\)
0.531166 + 0.847268i \(0.321754\pi\)
\(600\) 0 0
\(601\) −2.50000 + 4.33013i −0.101977 + 0.176630i −0.912499 0.409079i \(-0.865850\pi\)
0.810522 + 0.585708i \(0.199184\pi\)
\(602\) −9.00000 15.5885i −0.366813 0.635338i
\(603\) 12.0000 0.488678
\(604\) 1.00000 + 1.73205i 0.0406894 + 0.0704761i
\(605\) 0 0
\(606\) 0 0
\(607\) 10.5000 + 18.1865i 0.426182 + 0.738169i 0.996530 0.0832344i \(-0.0265250\pi\)
−0.570348 + 0.821403i \(0.693192\pi\)
\(608\) 3.50000 6.06218i 0.141944 0.245854i
\(609\) 0 0
\(610\) 0 0
\(611\) 3.50000 0.866025i 0.141595 0.0350356i
\(612\) −12.0000 −0.485071
\(613\) 5.50000 9.52628i 0.222143 0.384763i −0.733316 0.679888i \(-0.762028\pi\)
0.955458 + 0.295126i \(0.0953615\pi\)
\(614\) 7.00000 12.1244i 0.282497 0.489299i
\(615\) 0 0
\(616\) 9.00000 0.362620
\(617\) −11.0000 19.0526i −0.442843 0.767027i 0.555056 0.831813i \(-0.312697\pi\)
−0.997899 + 0.0647859i \(0.979364\pi\)
\(618\) 0 0
\(619\) −3.00000 −0.120580 −0.0602901 0.998181i \(-0.519203\pi\)
−0.0602901 + 0.998181i \(0.519203\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −12.0000 + 20.7846i −0.481156 + 0.833387i
\(623\) 3.00000 0.120192
\(624\) 0 0
\(625\) 0 0
\(626\) −3.00000 + 5.19615i −0.119904 + 0.207680i
\(627\) 0 0
\(628\) −1.50000 2.59808i −0.0598565 0.103675i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 18.0000 + 31.1769i 0.716569 + 1.24113i 0.962351 + 0.271808i \(0.0876217\pi\)
−0.245783 + 0.969325i \(0.579045\pi\)
\(632\) −10.0000 −0.397779
\(633\) 0 0
\(634\) −15.5000 + 26.8468i −0.615584 + 1.06622i
\(635\) 0 0
\(636\) 0 0
\(637\) −2.00000 + 6.92820i −0.0792429 + 0.274505i
\(638\) −24.0000 −0.950169
\(639\) 9.00000 15.5885i 0.356034 0.616670i
\(640\) 0 0
\(641\) 4.50000 + 7.79423i 0.177739 + 0.307854i 0.941106 0.338112i \(-0.109788\pi\)
−0.763367 + 0.645966i \(0.776455\pi\)
\(642\) 0 0
\(643\) 8.00000 + 13.8564i 0.315489 + 0.546443i 0.979541 0.201243i \(-0.0644981\pi\)
−0.664052 + 0.747686i \(0.731165\pi\)
\(644\) −6.00000 10.3923i −0.236433 0.409514i
\(645\) 0 0
\(646\) 14.0000 + 24.2487i 0.550823 + 0.954053i
\(647\) −3.50000 + 6.06218i −0.137599 + 0.238329i −0.926587 0.376080i \(-0.877272\pi\)
0.788988 + 0.614408i \(0.210605\pi\)
\(648\) 4.50000 7.79423i 0.176777 0.306186i
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000 6.92820i 0.156652 0.271329i
\(653\) −5.50000 + 9.52628i −0.215232 + 0.372792i −0.953344 0.301885i \(-0.902384\pi\)
0.738113 + 0.674678i \(0.235717\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000 + 1.73205i 0.0390434 + 0.0676252i
\(657\) −6.00000 10.3923i −0.234082 0.405442i
\(658\) −3.00000 −0.116952
\(659\) 18.0000 + 31.1769i 0.701180 + 1.21448i 0.968052 + 0.250748i \(0.0806766\pi\)
−0.266872 + 0.963732i \(0.585990\pi\)
\(660\) 0 0
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 4.50000 7.79423i 0.174371 0.302020i
\(667\) 16.0000 + 27.7128i 0.619522 + 1.07304i
\(668\) −19.0000 −0.735132
\(669\) 0 0
\(670\) 0 0
\(671\) 42.0000 1.62139
\(672\) 0 0
\(673\) −4.00000 + 6.92820i −0.154189 + 0.267063i −0.932763 0.360489i \(-0.882610\pi\)
0.778575 + 0.627552i \(0.215943\pi\)
\(674\) −15.0000 + 25.9808i −0.577778 + 1.00074i
\(675\) 0 0
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) 50.0000 1.92166 0.960828 0.277145i \(-0.0893883\pi\)
0.960828 + 0.277145i \(0.0893883\pi\)
\(678\) 0 0
\(679\) 24.0000 41.5692i 0.921035 1.59528i
\(680\) 0 0
\(681\) 0 0
\(682\) 15.0000 + 25.9808i 0.574380 + 0.994855i
\(683\) −1.00000 1.73205i −0.0382639 0.0662751i 0.846259 0.532771i \(-0.178849\pi\)
−0.884523 + 0.466496i \(0.845516\pi\)
\(684\) −21.0000 −0.802955
\(685\) 0 0
\(686\) −7.50000 + 12.9904i −0.286351 + 0.495975i
\(687\) 0 0
\(688\) −6.00000 −0.228748
\(689\) 31.5000 7.79423i 1.20005 0.296936i
\(690\) 0 0
\(691\) −14.5000 + 25.1147i −0.551606 + 0.955410i 0.446553 + 0.894757i \(0.352651\pi\)
−0.998159 + 0.0606524i \(0.980682\pi\)
\(692\) −10.5000 + 18.1865i −0.399150 + 0.691348i
\(693\) −13.5000 23.3827i −0.512823 0.888235i
\(694\) −16.0000 −0.607352
\(695\) 0 0
\(696\) 0 0
\(697\) −8.00000 −0.303022
\(698\) −8.00000 13.8564i −0.302804 0.524473i
\(699\) 0 0
\(700\) 0 0
\(701\) −40.0000 −1.51078 −0.755390 0.655276i \(-0.772552\pi\)
−0.755390 + 0.655276i \(0.772552\pi\)
\(702\) 0 0
\(703\) −21.0000 −0.792030
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.00000 6.92820i −0.150223 0.260194i 0.781086 0.624423i \(-0.214666\pi\)
−0.931309 + 0.364229i \(0.881333\pi\)
\(710\) 0 0
\(711\) 15.0000 + 25.9808i 0.562544 + 0.974355i
\(712\) 0.500000 0.866025i 0.0187383 0.0324557i
\(713\) 20.0000 34.6410i 0.749006 1.29732i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) 5.00000 8.66025i 0.186598 0.323198i
\(719\) −14.0000 24.2487i −0.522112 0.904324i −0.999669 0.0257237i \(-0.991811\pi\)
0.477557 0.878601i \(-0.341522\pi\)
\(720\) 0 0
\(721\) −1.50000 2.59808i −0.0558629 0.0967574i
\(722\) 15.0000 + 25.9808i 0.558242 + 0.966904i
\(723\) 0 0
\(724\) 7.00000 + 12.1244i 0.260153 + 0.450598i
\(725\) 0 0
\(726\) 0 0
\(727\) −35.0000 −1.29808 −0.649039 0.760755i \(-0.724829\pi\)
−0.649039 + 0.760755i \(0.724829\pi\)
\(728\) 7.50000 + 7.79423i 0.277968 + 0.288873i
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 12.0000 20.7846i 0.443836 0.768747i
\(732\) 0 0
\(733\) 1.00000 0.0369358 0.0184679 0.999829i \(-0.494121\pi\)
0.0184679 + 0.999829i \(0.494121\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) −6.00000 10.3923i −0.221013 0.382805i
\(738\) 3.00000 5.19615i 0.110432 0.191273i
\(739\) −19.5000 + 33.7750i −0.717319 + 1.24243i 0.244739 + 0.969589i \(0.421298\pi\)
−0.962058 + 0.272844i \(0.912036\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −27.0000 −0.991201
\(743\) −4.00000 + 6.92820i −0.146746 + 0.254171i −0.930023 0.367502i \(-0.880213\pi\)
0.783277 + 0.621673i \(0.213547\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −6.00000 −0.219676
\(747\) 0 0
\(748\) 6.00000 + 10.3923i 0.219382 + 0.379980i
\(749\) 54.0000 1.97312
\(750\) 0 0
\(751\) 2.00000 3.46410i 0.0729810 0.126407i −0.827225 0.561870i \(-0.810082\pi\)
0.900207 + 0.435463i \(0.143415\pi\)
\(752\) −0.500000 + 0.866025i −0.0182331 + 0.0315807i
\(753\) 0 0
\(754\) −20.0000 20.7846i −0.728357 0.756931i
\(755\) 0 0
\(756\) 0 0
\(757\) −14.5000 + 25.1147i −0.527011 + 0.912811i 0.472493 + 0.881334i \(0.343354\pi\)
−0.999505 + 0.0314762i \(0.989979\pi\)
\(758\) 13.5000 + 23.3827i 0.490342 + 0.849297i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5000 18.1865i −0.380625 0.659261i 0.610527 0.791995i \(-0.290958\pi\)
−0.991152 + 0.132734i \(0.957624\pi\)
\(762\) 0 0
\(763\) 3.00000 + 5.19615i 0.108607 + 0.188113i
\(764\) 3.00000 5.19615i 0.108536 0.187990i
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 10.0000 + 10.3923i 0.361079 + 0.375244i
\(768\) 0 0
\(769\) 1.00000 1.73205i 0.0360609 0.0624593i −0.847432 0.530904i \(-0.821852\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 24.0000 0.863779
\(773\) 15.5000 + 26.8468i 0.557496 + 0.965612i 0.997705 + 0.0677162i \(0.0215712\pi\)
−0.440208 + 0.897896i \(0.645095\pi\)
\(774\) 9.00000 + 15.5885i 0.323498 + 0.560316i
\(775\) 0 0
\(776\) −8.00000 13.8564i −0.287183 0.497416i
\(777\) 0 0
\(778\) 6.00000 10.3923i 0.215110 0.372582i
\(779\) −14.0000 −0.501602
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 8.00000 13.8564i 0.286079 0.495504i
\(783\) 0 0
\(784\) −1.00000 1.73205i −0.0357143 0.0618590i
\(785\) 0 0
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) −13.0000 −0.463106
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 + 20.7846i −0.426671 + 0.739016i
\(792\) −9.00000 −0.319801
\(793\) 35.0000 + 36.3731i 1.24289 + 1.29165i
\(794\) −21.0000 −0.745262
\(795\) 0 0
\(796\) 9.00000 15.5885i 0.318997 0.552518i
\(797\) 1.00000 + 1.73205i 0.0354218 + 0.0613524i 0.883193 0.469010i \(-0.155389\pi\)
−0.847771 + 0.530362i \(0.822056\pi\)
\(798\) 0 0
\(799\) −2.00000 3.46410i −0.0707549 0.122551i
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) −19.5000 33.7750i −0.688569 1.19264i
\(803\) −6.00000 + 10.3923i −0.211735 + 0.366736i
\(804\) 0 0
\(805\) 0 0
\(806\) −10.0000 + 34.6410i −0.352235 + 1.22018i
\(807\) 0 0
\(808\) 0 0
\(809\) 5.00000 8.66025i 0.175791 0.304478i −0.764644 0.644453i \(-0.777085\pi\)
0.940435 + 0.339975i \(0.110418\pi\)
\(810\) 0 0
\(811\) 21.0000 0.737410 0.368705 0.929547i \(-0.379801\pi\)
0.368705 + 0.929547i \(0.379801\pi\)
\(812\) 12.0000 + 20.7846i 0.421117 + 0.729397i
\(813\) 0 0
\(814\) −9.00000 −0.315450
\(815\) 0 0
\(816\) 0 0
\(817\) 21.0000 36.3731i 0.734697 1.27253i
\(818\) −17.0000 −0.594391
\(819\) 9.00000 31.1769i 0.314485 1.08941i
\(820\) 0 0
\(821\) 9.00000 15.5885i 0.314102 0.544041i −0.665144 0.746715i \(-0.731630\pi\)
0.979246 + 0.202674i \(0.0649632\pi\)
\(822\) 0 0
\(823\) −18.5000 32.0429i −0.644869 1.11695i −0.984332 0.176327i \(-0.943578\pi\)
0.339462 0.940620i \(-0.389755\pi\)
\(824\) −1.00000 −0.0348367
\(825\) 0 0
\(826\) −6.00000 10.3923i −0.208767 0.361595i
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 6.00000 + 10.3923i 0.208514 + 0.361158i
\(829\) 14.0000 24.2487i 0.486240 0.842193i −0.513635 0.858009i \(-0.671701\pi\)
0.999875 + 0.0158163i \(0.00503471\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.50000 0.866025i 0.121341 0.0300240i
\(833\) 8.00000 0.277184
\(834\) 0 0
\(835\) 0 0
\(836\) 10.5000 + 18.1865i 0.363150 + 0.628994i
\(837\) 0 0
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) 13.0000 + 22.5167i 0.448810 + 0.777361i 0.998309 0.0581329i \(-0.0185147\pi\)
−0.549499 + 0.835494i \(0.685181\pi\)
\(840\) 0 0
\(841\) −17.5000 30.3109i −0.603448 1.04520i
\(842\) 8.00000 13.8564i 0.275698 0.477523i
\(843\) 0 0
\(844\) 13.0000 0.447478
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 3.00000 5.19615i 0.103081 0.178542i
\(848\) −4.50000 + 7.79423i −0.154531 + 0.267655i
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 + 10.3923i 0.205677 + 0.356244i
\(852\) 0 0
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) −21.0000 36.3731i −0.718605 1.24466i
\(855\) 0 0
\(856\) 9.00000 15.5885i 0.307614 0.532803i
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −12.0000 20.7846i −0.408722 0.707927i
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 16.0000 0.543702
\(867\) 0 0
\(868\) 15.0000 25.9808i 0.509133 0.881845i
\(869\) 15.0000 25.9808i 0.508840 0.881337i
\(870\) 0 0
\(871\) 4.00000 13.8564i 0.135535 0.469506i
\(872\) 2.00000 0.0677285
\(873\) −24.0000 + 41.5692i −0.812277 + 1.40690i
\(874\) 14.0000 24.2487i 0.473557 0.820225i
\(875\) 0 0
\(876\) 0 0
\(877\) −17.0000 29.4449i −0.574049 0.994282i −0.996144 0.0877308i \(-0.972038\pi\)
0.422095 0.906552i \(-0.361295\pi\)
\(878\) −3.00000 5.19615i −0.101245 0.175362i
\(879\) 0 0
\(880\) 0 0
\(881\) −2.50000 + 4.33013i −0.0842271 + 0.145886i −0.905062 0.425280i \(-0.860175\pi\)
0.820834 + 0.571166i \(0.193509\pi\)
\(882\) −3.00000 + 5.19615i −0.101015 + 0.174964i
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) −4.00000 + 13.8564i −0.134535 + 0.466041i
\(885\) 0 0
\(886\) 9.00000 15.5885i 0.302361 0.523704i
\(887\) −6.50000 + 11.2583i −0.218249 + 0.378018i −0.954273 0.298938i \(-0.903368\pi\)
0.736024 + 0.676955i \(0.236701\pi\)
\(888\) 0 0
\(889\) −39.0000 −1.30802
\(890\) 0 0
\(891\) 13.5000 + 23.3827i 0.452267 + 0.783349i
\(892\) −19.0000 −0.636167
\(893\) −3.50000 6.06218i −0.117123 0.202863i
\(894\) 0 0
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) 0 0
\(898\) 15.0000 0.500556
\(899\) −40.0000 + 69.2820i −1.33407 + 2.31069i
\(900\) 0 0
\(901\) −18.0000 31.1769i −0.599667 1.03865i
\(902\) −6.00000 −0.199778
\(903\) 0 0
\(904\) 4.00000 + 6.92820i 0.133038 + 0.230429i
\(905\) 0 0
\(906\) 0 0
\(907\) −5.00000 + 8.66025i −0.166022 + 0.287559i −0.937018 0.349281i \(-0.886426\pi\)
0.770996 + 0.636841i \(0.219759\pi\)
\(908\) −2.00000 + 3.46410i −0.0663723 + 0.114960i
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −5.00000 8.66025i −0.165385 0.286456i
\(915\) 0 0
\(916\) 11.0000 + 19.0526i 0.363450 + 0.629514i
\(917\) −19.5000 33.7750i −0.643947 1.11535i
\(918\) 0 0
\(919\) −25.0000 43.3013i −0.824674 1.42838i −0.902168 0.431384i \(-0.858025\pi\)
0.0774944 0.996993i \(-0.475308\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 40.0000 1.31733
\(923\) −15.0000 15.5885i −0.493731 0.513100i
\(924\) 0 0
\(925\) 0 0
\(926\) 20.0000 34.6410i 0.657241 1.13837i
\(927\) 1.50000 + 2.59808i 0.0492665 + 0.0853320i
\(928\) 8.00000 0.262613
\(929\) 7.00000 + 12.1244i 0.229663 + 0.397787i 0.957708 0.287742i \(-0.0929044\pi\)
−0.728046 + 0.685529i \(0.759571\pi\)
\(930\) 0 0
\(931\) 14.0000 0.458831
\(932\) −9.00000 15.5885i −0.294805 0.510617i
\(933\) 0 0
\(934\) −10.0000 + 17.3205i −0.327210 + 0.566744i
\(935\) 0 0
\(936\) −7.50000 7.79423i −0.245145 0.254762i
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) −6.00000 + 10.3923i −0.195907 + 0.339321i
\(939\) 0 0
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 0 0
\(943\) 4.00000 + 6.92820i 0.130258 + 0.225613i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 9.00000 15.5885i 0.292615 0.506824i
\(947\) 19.0000 32.9090i 0.617417 1.06940i −0.372538 0.928017i \(-0.621512\pi\)
0.989955 0.141381i \(-0.0451542\pi\)
\(948\) 0 0
\(949\) −14.0000 + 3.46410i −0.454459 + 0.112449i
\(950\) 0 0
\(951\) 0 0
\(952\) 6.00000 10.3923i 0.194461 0.336817i
\(953\) −11.0000 19.0526i −0.356325 0.617173i 0.631019 0.775768i \(-0.282637\pi\)
−0.987344 + 0.158595i \(0.949304\pi\)
\(954\) 27.0000 0.874157
\(955\) 0 0
\(956\) −1.00000 1.73205i −0.0323423 0.0560185i
\(957\) 0 0
\(958\) −14.0000 24.2487i −0.452319 0.783440i
\(959\) 18.0000 31.1769i 0.581250 1.00676i
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) −7.50000 7.79423i −0.241810 0.251296i
\(963\) −54.0000 −1.74013
\(964\) 12.5000 21.6506i 0.402598 0.697320i
\(965\) 0 0
\(966\) 0 0
\(967\) 33.0000 1.06121 0.530604 0.847620i \(-0.321965\pi\)
0.530604 + 0.847620i \(0.321965\pi\)
\(968\) −1.00000 1.73205i −0.0321412 0.0556702i
\(969\) 0 0
\(970\) 0 0
\(971\) 24.5000 + 42.4352i 0.786242 + 1.36181i 0.928254 + 0.371947i \(0.121310\pi\)
−0.142012 + 0.989865i \(0.545357\pi\)
\(972\) 0 0
\(973\) 7.50000 12.9904i 0.240439 0.416452i
\(974\) 19.0000 0.608799
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) −12.0000 + 20.7846i −0.383914 + 0.664959i −0.991618 0.129205i \(-0.958757\pi\)
0.607704 + 0.794164i \(0.292091\pi\)
\(978\) 0 0
\(979\) 1.50000 + 2.59808i 0.0479402 + 0.0830349i
\(980\) 0 0
\(981\) −3.00000 5.19615i −0.0957826 0.165900i
\(982\) −21.5000 37.2391i −0.686093 1.18835i
\(983\) 3.00000 0.0956851 0.0478426 0.998855i \(-0.484765\pi\)
0.0478426 + 0.998855i \(0.484765\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −16.0000 + 27.7128i −0.509544 + 0.882556i
\(987\) 0 0
\(988\) −7.00000 + 24.2487i −0.222700 + 0.771454i
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 5.00000 8.66025i 0.158830 0.275102i −0.775617 0.631204i \(-0.782561\pi\)
0.934447 + 0.356102i \(0.115894\pi\)
\(992\) −5.00000 8.66025i −0.158750 0.274963i
\(993\) 0 0
\(994\) 9.00000 + 15.5885i 0.285463 + 0.494436i
\(995\) 0 0
\(996\) 0 0
\(997\) −5.50000 9.52628i −0.174187 0.301700i 0.765693 0.643206i \(-0.222396\pi\)
−0.939880 + 0.341506i \(0.889063\pi\)
\(998\) −2.00000 + 3.46410i −0.0633089 + 0.109654i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.e.b.451.1 2
5.2 odd 4 650.2.o.d.399.2 4
5.3 odd 4 650.2.o.d.399.1 4
5.4 even 2 130.2.e.a.61.1 2
13.3 even 3 inner 650.2.e.b.601.1 2
13.4 even 6 8450.2.a.q.1.1 1
13.9 even 3 8450.2.a.g.1.1 1
15.14 odd 2 1170.2.i.i.451.1 2
20.19 odd 2 1040.2.q.h.321.1 2
65.3 odd 12 650.2.o.d.549.2 4
65.4 even 6 1690.2.a.c.1.1 1
65.9 even 6 1690.2.a.h.1.1 1
65.19 odd 12 1690.2.d.c.1351.1 2
65.24 odd 12 1690.2.l.e.361.2 4
65.29 even 6 130.2.e.a.81.1 yes 2
65.34 odd 4 1690.2.l.e.1161.1 4
65.42 odd 12 650.2.o.d.549.1 4
65.44 odd 4 1690.2.l.e.1161.2 4
65.49 even 6 1690.2.e.h.991.1 2
65.54 odd 12 1690.2.l.e.361.1 4
65.59 odd 12 1690.2.d.c.1351.2 2
65.64 even 2 1690.2.e.h.191.1 2
195.29 odd 6 1170.2.i.i.991.1 2
260.159 odd 6 1040.2.q.h.81.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.a.61.1 2 5.4 even 2
130.2.e.a.81.1 yes 2 65.29 even 6
650.2.e.b.451.1 2 1.1 even 1 trivial
650.2.e.b.601.1 2 13.3 even 3 inner
650.2.o.d.399.1 4 5.3 odd 4
650.2.o.d.399.2 4 5.2 odd 4
650.2.o.d.549.1 4 65.42 odd 12
650.2.o.d.549.2 4 65.3 odd 12
1040.2.q.h.81.1 2 260.159 odd 6
1040.2.q.h.321.1 2 20.19 odd 2
1170.2.i.i.451.1 2 15.14 odd 2
1170.2.i.i.991.1 2 195.29 odd 6
1690.2.a.c.1.1 1 65.4 even 6
1690.2.a.h.1.1 1 65.9 even 6
1690.2.d.c.1351.1 2 65.19 odd 12
1690.2.d.c.1351.2 2 65.59 odd 12
1690.2.e.h.191.1 2 65.64 even 2
1690.2.e.h.991.1 2 65.49 even 6
1690.2.l.e.361.1 4 65.54 odd 12
1690.2.l.e.361.2 4 65.24 odd 12
1690.2.l.e.1161.1 4 65.34 odd 4
1690.2.l.e.1161.2 4 65.44 odd 4
8450.2.a.g.1.1 1 13.9 even 3
8450.2.a.q.1.1 1 13.4 even 6