Properties

Label 8450.2.a.q.1.1
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,1,0,0,-3,1,-3,0,3,0,0,-3,0,1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{7} +1.00000 q^{8} -3.00000 q^{9} +3.00000 q^{11} -3.00000 q^{14} +1.00000 q^{16} +4.00000 q^{17} -3.00000 q^{18} -7.00000 q^{19} +3.00000 q^{22} +4.00000 q^{23} -3.00000 q^{28} -8.00000 q^{29} +10.0000 q^{31} +1.00000 q^{32} +4.00000 q^{34} -3.00000 q^{36} +3.00000 q^{37} -7.00000 q^{38} +2.00000 q^{41} -6.00000 q^{43} +3.00000 q^{44} +4.00000 q^{46} -1.00000 q^{47} +2.00000 q^{49} +9.00000 q^{53} -3.00000 q^{56} -8.00000 q^{58} +4.00000 q^{59} -14.0000 q^{61} +10.0000 q^{62} +9.00000 q^{63} +1.00000 q^{64} +4.00000 q^{67} +4.00000 q^{68} -6.00000 q^{71} -3.00000 q^{72} +4.00000 q^{73} +3.00000 q^{74} -7.00000 q^{76} -9.00000 q^{77} +10.0000 q^{79} +9.00000 q^{81} +2.00000 q^{82} -6.00000 q^{86} +3.00000 q^{88} -1.00000 q^{89} +4.00000 q^{92} -1.00000 q^{94} +16.0000 q^{97} +2.00000 q^{98} -9.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 1.00000 0.353553
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) −3.00000 −0.707107
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.00000 0.639602
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) −3.00000 −0.566947
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −7.00000 −1.13555
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) −1.00000 −0.145865 −0.0729325 0.997337i \(-0.523236\pi\)
−0.0729325 + 0.997337i \(0.523236\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.00000 −0.400892
\(57\) 0 0
\(58\) −8.00000 −1.05045
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 10.0000 1.27000
\(63\) 9.00000 1.13389
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −3.00000 −0.353553
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 2.00000 0.220863
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6.00000 −0.646997
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) −1.00000 −0.103142
\(95\) 0 0
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 2.00000 0.202031
\(99\) −9.00000 −0.904534
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 9.00000 0.874157
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.00000 −0.283473
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −14.0000 −1.26750
\(123\) 0 0
\(124\) 10.0000 0.898027
\(125\) 0 0
\(126\) 9.00000 0.801784
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 13.0000 1.13582 0.567908 0.823092i \(-0.307753\pi\)
0.567908 + 0.823092i \(0.307753\pi\)
\(132\) 0 0
\(133\) 21.0000 1.82093
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) 0 0
\(146\) 4.00000 0.331042
\(147\) 0 0
\(148\) 3.00000 0.246598
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) −7.00000 −0.567775
\(153\) −12.0000 −0.970143
\(154\) −9.00000 −0.725241
\(155\) 0 0
\(156\) 0 0
\(157\) 3.00000 0.239426 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(158\) 10.0000 0.795557
\(159\) 0 0
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 9.00000 0.707107
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 0 0
\(167\) 19.0000 1.47026 0.735132 0.677924i \(-0.237120\pi\)
0.735132 + 0.677924i \(0.237120\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 21.0000 1.60591
\(172\) −6.00000 −0.457496
\(173\) 21.0000 1.59660 0.798300 0.602260i \(-0.205733\pi\)
0.798300 + 0.602260i \(0.205733\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) −1.00000 −0.0749532
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) −1.00000 −0.0729325
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 0 0
\(193\) −24.0000 −1.72756 −0.863779 0.503871i \(-0.831909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 16.0000 1.14873
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 13.0000 0.926212 0.463106 0.886303i \(-0.346735\pi\)
0.463106 + 0.886303i \(0.346735\pi\)
\(198\) −9.00000 −0.639602
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 24.0000 1.68447
\(204\) 0 0
\(205\) 0 0
\(206\) 1.00000 0.0696733
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) 9.00000 0.618123
\(213\) 0 0
\(214\) 18.0000 1.23045
\(215\) 0 0
\(216\) 0 0
\(217\) −30.0000 −2.03653
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) −3.00000 −0.200446
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −8.00000 −0.525226
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) −12.0000 −0.777844
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 25.0000 1.61039 0.805196 0.593009i \(-0.202060\pi\)
0.805196 + 0.593009i \(0.202060\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 10.0000 0.635001
\(249\) 0 0
\(250\) 0 0
\(251\) 23.0000 1.45175 0.725874 0.687828i \(-0.241436\pi\)
0.725874 + 0.687828i \(0.241436\pi\)
\(252\) 9.00000 0.566947
\(253\) 12.0000 0.754434
\(254\) −13.0000 −0.815693
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −8.00000 −0.499026 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(258\) 0 0
\(259\) −9.00000 −0.559233
\(260\) 0 0
\(261\) 24.0000 1.48556
\(262\) 13.0000 0.803143
\(263\) −11.0000 −0.678289 −0.339145 0.940734i \(-0.610138\pi\)
−0.339145 + 0.940734i \(0.610138\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 21.0000 1.28759
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) −5.00000 −0.299880
\(279\) −30.0000 −1.79605
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) −3.00000 −0.176777
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 4.00000 0.234082
\(293\) 9.00000 0.525786 0.262893 0.964825i \(-0.415323\pi\)
0.262893 + 0.964825i \(0.415323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 3.00000 0.174371
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 18.0000 1.03750
\(302\) 2.00000 0.115087
\(303\) 0 0
\(304\) −7.00000 −0.401478
\(305\) 0 0
\(306\) −12.0000 −0.685994
\(307\) −14.0000 −0.799022 −0.399511 0.916728i \(-0.630820\pi\)
−0.399511 + 0.916728i \(0.630820\pi\)
\(308\) −9.00000 −0.512823
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 3.00000 0.169300
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 31.0000 1.74113 0.870567 0.492050i \(-0.163752\pi\)
0.870567 + 0.492050i \(0.163752\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) −12.0000 −0.668734
\(323\) −28.0000 −1.55796
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) 2.00000 0.110432
\(329\) 3.00000 0.165395
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) −9.00000 −0.493197
\(334\) 19.0000 1.03963
\(335\) 0 0
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.0000 1.62459
\(342\) 21.0000 1.13555
\(343\) 15.0000 0.809924
\(344\) −6.00000 −0.323498
\(345\) 0 0
\(346\) 21.0000 1.12897
\(347\) 16.0000 0.858925 0.429463 0.903085i \(-0.358703\pi\)
0.429463 + 0.903085i \(0.358703\pi\)
\(348\) 0 0
\(349\) 16.0000 0.856460 0.428230 0.903670i \(-0.359137\pi\)
0.428230 + 0.903670i \(0.359137\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.00000 0.159901
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.00000 −0.0529999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) −14.0000 −0.735824
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 4.00000 0.208514
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −27.0000 −1.40177
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 12.0000 0.620505
\(375\) 0 0
\(376\) −1.00000 −0.0515711
\(377\) 0 0
\(378\) 0 0
\(379\) −27.0000 −1.38690 −0.693448 0.720506i \(-0.743909\pi\)
−0.693448 + 0.720506i \(0.743909\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.00000 −0.306987
\(383\) −28.0000 −1.43073 −0.715367 0.698749i \(-0.753740\pi\)
−0.715367 + 0.698749i \(0.753740\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −24.0000 −1.22157
\(387\) 18.0000 0.914991
\(388\) 16.0000 0.812277
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 2.00000 0.101015
\(393\) 0 0
\(394\) 13.0000 0.654931
\(395\) 0 0
\(396\) −9.00000 −0.452267
\(397\) −21.0000 −1.05396 −0.526980 0.849878i \(-0.676676\pi\)
−0.526980 + 0.849878i \(0.676676\pi\)
\(398\) −18.0000 −0.902258
\(399\) 0 0
\(400\) 0 0
\(401\) 39.0000 1.94757 0.973784 0.227477i \(-0.0730475\pi\)
0.973784 + 0.227477i \(0.0730475\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) 9.00000 0.446113
\(408\) 0 0
\(409\) −17.0000 −0.840596 −0.420298 0.907386i \(-0.638074\pi\)
−0.420298 + 0.907386i \(0.638074\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.00000 0.0492665
\(413\) −12.0000 −0.590481
\(414\) −12.0000 −0.589768
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −21.0000 −1.02714
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −16.0000 −0.779792 −0.389896 0.920859i \(-0.627489\pi\)
−0.389896 + 0.920859i \(0.627489\pi\)
\(422\) 13.0000 0.632830
\(423\) 3.00000 0.145865
\(424\) 9.00000 0.437079
\(425\) 0 0
\(426\) 0 0
\(427\) 42.0000 2.03252
\(428\) 18.0000 0.870063
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) −30.0000 −1.44005
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) −28.0000 −1.33942
\(438\) 0 0
\(439\) −6.00000 −0.286364 −0.143182 0.989696i \(-0.545733\pi\)
−0.143182 + 0.989696i \(0.545733\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 19.0000 0.899676
\(447\) 0 0
\(448\) −3.00000 −0.141737
\(449\) 15.0000 0.707894 0.353947 0.935266i \(-0.384839\pi\)
0.353947 + 0.935266i \(0.384839\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 8.00000 0.376288
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) 0 0
\(461\) 40.0000 1.86299 0.931493 0.363760i \(-0.118507\pi\)
0.931493 + 0.363760i \(0.118507\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) −18.0000 −0.827641
\(474\) 0 0
\(475\) 0 0
\(476\) −12.0000 −0.550019
\(477\) −27.0000 −1.23625
\(478\) −2.00000 −0.0914779
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 25.0000 1.13872
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) 19.0000 0.860972 0.430486 0.902597i \(-0.358342\pi\)
0.430486 + 0.902597i \(0.358342\pi\)
\(488\) −14.0000 −0.633750
\(489\) 0 0
\(490\) 0 0
\(491\) −43.0000 −1.94056 −0.970281 0.241979i \(-0.922203\pi\)
−0.970281 + 0.241979i \(0.922203\pi\)
\(492\) 0 0
\(493\) −32.0000 −1.44121
\(494\) 0 0
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 18.0000 0.807410
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 23.0000 1.02654
\(503\) −23.0000 −1.02552 −0.512760 0.858532i \(-0.671377\pi\)
−0.512760 + 0.858532i \(0.671377\pi\)
\(504\) 9.00000 0.400892
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) −13.0000 −0.576782
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −8.00000 −0.352865
\(515\) 0 0
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) −9.00000 −0.395437
\(519\) 0 0
\(520\) 0 0
\(521\) −31.0000 −1.35813 −0.679067 0.734076i \(-0.737616\pi\)
−0.679067 + 0.734076i \(0.737616\pi\)
\(522\) 24.0000 1.05045
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 13.0000 0.567908
\(525\) 0 0
\(526\) −11.0000 −0.479623
\(527\) 40.0000 1.74243
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 21.0000 0.910465
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) 24.0000 1.03471
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) −8.00000 −0.343629
\(543\) 0 0
\(544\) 4.00000 0.171499
\(545\) 0 0
\(546\) 0 0
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) 12.0000 0.512615
\(549\) 42.0000 1.79252
\(550\) 0 0
\(551\) 56.0000 2.38568
\(552\) 0 0
\(553\) −30.0000 −1.27573
\(554\) −19.0000 −0.807233
\(555\) 0 0
\(556\) −5.00000 −0.212047
\(557\) −31.0000 −1.31351 −0.656756 0.754103i \(-0.728072\pi\)
−0.656756 + 0.754103i \(0.728072\pi\)
\(558\) −30.0000 −1.27000
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −2.00000 −0.0843649
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14.0000 0.588464
\(567\) −27.0000 −1.13389
\(568\) −6.00000 −0.251754
\(569\) −11.0000 −0.461144 −0.230572 0.973055i \(-0.574060\pi\)
−0.230572 + 0.973055i \(0.574060\pi\)
\(570\) 0 0
\(571\) −37.0000 −1.54840 −0.774201 0.632940i \(-0.781848\pi\)
−0.774201 + 0.632940i \(0.781848\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) 0 0
\(576\) −3.00000 −0.125000
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 27.0000 1.11823
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) −70.0000 −2.88430
\(590\) 0 0
\(591\) 0 0
\(592\) 3.00000 0.123299
\(593\) 20.0000 0.821302 0.410651 0.911793i \(-0.365302\pi\)
0.410651 + 0.911793i \(0.365302\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 0 0
\(599\) 26.0000 1.06233 0.531166 0.847268i \(-0.321754\pi\)
0.531166 + 0.847268i \(0.321754\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 18.0000 0.733625
\(603\) −12.0000 −0.488678
\(604\) 2.00000 0.0813788
\(605\) 0 0
\(606\) 0 0
\(607\) −21.0000 −0.852364 −0.426182 0.904638i \(-0.640142\pi\)
−0.426182 + 0.904638i \(0.640142\pi\)
\(608\) −7.00000 −0.283887
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −12.0000 −0.485071
\(613\) 11.0000 0.444286 0.222143 0.975014i \(-0.428695\pi\)
0.222143 + 0.975014i \(0.428695\pi\)
\(614\) −14.0000 −0.564994
\(615\) 0 0
\(616\) −9.00000 −0.362620
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 3.00000 0.120580 0.0602901 0.998181i \(-0.480797\pi\)
0.0602901 + 0.998181i \(0.480797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 3.00000 0.120192
\(624\) 0 0
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) 3.00000 0.119713
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 36.0000 1.43314 0.716569 0.697517i \(-0.245712\pi\)
0.716569 + 0.697517i \(0.245712\pi\)
\(632\) 10.0000 0.397779
\(633\) 0 0
\(634\) 31.0000 1.23117
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −24.0000 −0.950169
\(639\) 18.0000 0.712069
\(640\) 0 0
\(641\) −9.00000 −0.355479 −0.177739 0.984078i \(-0.556878\pi\)
−0.177739 + 0.984078i \(0.556878\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) −28.0000 −1.10165
\(647\) 7.00000 0.275198 0.137599 0.990488i \(-0.456061\pi\)
0.137599 + 0.990488i \(0.456061\pi\)
\(648\) 9.00000 0.353553
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) 11.0000 0.430463 0.215232 0.976563i \(-0.430949\pi\)
0.215232 + 0.976563i \(0.430949\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) −12.0000 −0.468165
\(658\) 3.00000 0.116952
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −9.00000 −0.348743
\(667\) −32.0000 −1.23904
\(668\) 19.0000 0.735132
\(669\) 0 0
\(670\) 0 0
\(671\) −42.0000 −1.62139
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) −30.0000 −1.15556
\(675\) 0 0
\(676\) 0 0
\(677\) 50.0000 1.92166 0.960828 0.277145i \(-0.0893883\pi\)
0.960828 + 0.277145i \(0.0893883\pi\)
\(678\) 0 0
\(679\) −48.0000 −1.84207
\(680\) 0 0
\(681\) 0 0
\(682\) 30.0000 1.14876
\(683\) −2.00000 −0.0765279 −0.0382639 0.999268i \(-0.512183\pi\)
−0.0382639 + 0.999268i \(0.512183\pi\)
\(684\) 21.0000 0.802955
\(685\) 0 0
\(686\) 15.0000 0.572703
\(687\) 0 0
\(688\) −6.00000 −0.228748
\(689\) 0 0
\(690\) 0 0
\(691\) −29.0000 −1.10321 −0.551606 0.834105i \(-0.685985\pi\)
−0.551606 + 0.834105i \(0.685985\pi\)
\(692\) 21.0000 0.798300
\(693\) 27.0000 1.02565
\(694\) 16.0000 0.607352
\(695\) 0 0
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 16.0000 0.605609
\(699\) 0 0
\(700\) 0 0
\(701\) −40.0000 −1.51078 −0.755390 0.655276i \(-0.772552\pi\)
−0.755390 + 0.655276i \(0.772552\pi\)
\(702\) 0 0
\(703\) −21.0000 −0.792030
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.00000 −0.300446 −0.150223 0.988652i \(-0.547999\pi\)
−0.150223 + 0.988652i \(0.547999\pi\)
\(710\) 0 0
\(711\) −30.0000 −1.12509
\(712\) −1.00000 −0.0374766
\(713\) 40.0000 1.49801
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) −10.0000 −0.373197
\(719\) 28.0000 1.04422 0.522112 0.852877i \(-0.325144\pi\)
0.522112 + 0.852877i \(0.325144\pi\)
\(720\) 0 0
\(721\) −3.00000 −0.111726
\(722\) 30.0000 1.11648
\(723\) 0 0
\(724\) −14.0000 −0.520306
\(725\) 0 0
\(726\) 0 0
\(727\) −35.0000 −1.29808 −0.649039 0.760755i \(-0.724829\pi\)
−0.649039 + 0.760755i \(0.724829\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 12.0000 0.442026
\(738\) −6.00000 −0.220863
\(739\) −39.0000 −1.43464 −0.717319 0.696745i \(-0.754631\pi\)
−0.717319 + 0.696745i \(0.754631\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −27.0000 −0.991201
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) −54.0000 −1.97312
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) −1.00000 −0.0364662
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) −27.0000 −0.980684
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 −0.761249 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(762\) 0 0
\(763\) −6.00000 −0.217215
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 0 0
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −24.0000 −0.863779
\(773\) 31.0000 1.11499 0.557496 0.830179i \(-0.311762\pi\)
0.557496 + 0.830179i \(0.311762\pi\)
\(774\) 18.0000 0.646997
\(775\) 0 0
\(776\) 16.0000 0.574367
\(777\) 0 0
\(778\) 12.0000 0.430221
\(779\) −14.0000 −0.501602
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 16.0000 0.572159
\(783\) 0 0
\(784\) 2.00000 0.0714286
\(785\) 0 0
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 13.0000 0.463106
\(789\) 0 0
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) −9.00000 −0.319801
\(793\) 0 0
\(794\) −21.0000 −0.745262
\(795\) 0 0
\(796\) −18.0000 −0.637993
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) 3.00000 0.106000
\(802\) 39.0000 1.37714
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) −21.0000 −0.737410 −0.368705 0.929547i \(-0.620199\pi\)
−0.368705 + 0.929547i \(0.620199\pi\)
\(812\) 24.0000 0.842235
\(813\) 0 0
\(814\) 9.00000 0.315450
\(815\) 0 0
\(816\) 0 0
\(817\) 42.0000 1.46939
\(818\) −17.0000 −0.594391
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 37.0000 1.28974 0.644869 0.764293i \(-0.276912\pi\)
0.644869 + 0.764293i \(0.276912\pi\)
\(824\) 1.00000 0.0348367
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) −12.0000 −0.417029
\(829\) −28.0000 −0.972480 −0.486240 0.873825i \(-0.661632\pi\)
−0.486240 + 0.873825i \(0.661632\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.00000 0.277184
\(834\) 0 0
\(835\) 0 0
\(836\) −21.0000 −0.726300
\(837\) 0 0
\(838\) 12.0000 0.414533
\(839\) 26.0000 0.897620 0.448810 0.893627i \(-0.351848\pi\)
0.448810 + 0.893627i \(0.351848\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) −16.0000 −0.551396
\(843\) 0 0
\(844\) 13.0000 0.447478
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 6.00000 0.206162
\(848\) 9.00000 0.309061
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 42.0000 1.43721
\(855\) 0 0
\(856\) 18.0000 0.615227
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) −30.0000 −1.01827
\(869\) 30.0000 1.01768
\(870\) 0 0
\(871\) 0 0
\(872\) 2.00000 0.0677285
\(873\) −48.0000 −1.62455
\(874\) −28.0000 −0.947114
\(875\) 0 0
\(876\) 0 0
\(877\) −34.0000 −1.14810 −0.574049 0.818821i \(-0.694628\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(878\) −6.00000 −0.202490
\(879\) 0 0
\(880\) 0 0
\(881\) 5.00000 0.168454 0.0842271 0.996447i \(-0.473158\pi\)
0.0842271 + 0.996447i \(0.473158\pi\)
\(882\) −6.00000 −0.202031
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 18.0000 0.604722
\(887\) 13.0000 0.436497 0.218249 0.975893i \(-0.429966\pi\)
0.218249 + 0.975893i \(0.429966\pi\)
\(888\) 0 0
\(889\) 39.0000 1.30802
\(890\) 0 0
\(891\) 27.0000 0.904534
\(892\) 19.0000 0.636167
\(893\) 7.00000 0.234246
\(894\) 0 0
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) 0 0
\(898\) 15.0000 0.500556
\(899\) −80.0000 −2.66815
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) 8.00000 0.266076
\(905\) 0 0
\(906\) 0 0
\(907\) 10.0000 0.332045 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) −39.0000 −1.28789
\(918\) 0 0
\(919\) 50.0000 1.64935 0.824674 0.565608i \(-0.191359\pi\)
0.824674 + 0.565608i \(0.191359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 40.0000 1.31733
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −40.0000 −1.31448
\(927\) −3.00000 −0.0985329
\(928\) −8.00000 −0.262613
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) −14.0000 −0.458831
\(932\) 18.0000 0.589610
\(933\) 0 0
\(934\) −20.0000 −0.654420
\(935\) 0 0
\(936\) 0 0
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) −12.0000 −0.391814
\(939\) 0 0
\(940\) 0 0
\(941\) 24.0000 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −18.0000 −0.585230
\(947\) 38.0000 1.23483 0.617417 0.786636i \(-0.288179\pi\)
0.617417 + 0.786636i \(0.288179\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −12.0000 −0.388922
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) −27.0000 −0.874157
\(955\) 0 0
\(956\) −2.00000 −0.0646846
\(957\) 0 0
\(958\) 28.0000 0.904639
\(959\) −36.0000 −1.16250
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) −54.0000 −1.74013
\(964\) 25.0000 0.805196
\(965\) 0 0
\(966\) 0 0
\(967\) −33.0000 −1.06121 −0.530604 0.847620i \(-0.678035\pi\)
−0.530604 + 0.847620i \(0.678035\pi\)
\(968\) −2.00000 −0.0642824
\(969\) 0 0
\(970\) 0 0
\(971\) −49.0000 −1.57248 −0.786242 0.617918i \(-0.787976\pi\)
−0.786242 + 0.617918i \(0.787976\pi\)
\(972\) 0 0
\(973\) 15.0000 0.480878
\(974\) 19.0000 0.608799
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) −24.0000 −0.767828 −0.383914 0.923369i \(-0.625424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(978\) 0 0
\(979\) −3.00000 −0.0958804
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) −43.0000 −1.37219
\(983\) −3.00000 −0.0956851 −0.0478426 0.998855i \(-0.515235\pi\)
−0.0478426 + 0.998855i \(0.515235\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −32.0000 −1.01909
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) 10.0000 0.317500
\(993\) 0 0
\(994\) 18.0000 0.570925
\(995\) 0 0
\(996\) 0 0
\(997\) 11.0000 0.348373 0.174187 0.984713i \(-0.444270\pi\)
0.174187 + 0.984713i \(0.444270\pi\)
\(998\) 4.00000 0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.q.1.1 1
5.4 even 2 1690.2.a.c.1.1 1
13.4 even 6 650.2.e.b.601.1 2
13.10 even 6 650.2.e.b.451.1 2
13.12 even 2 8450.2.a.g.1.1 1
65.4 even 6 130.2.e.a.81.1 yes 2
65.9 even 6 1690.2.e.h.991.1 2
65.17 odd 12 650.2.o.d.549.1 4
65.19 odd 12 1690.2.l.e.361.2 4
65.23 odd 12 650.2.o.d.399.1 4
65.24 odd 12 1690.2.l.e.1161.2 4
65.29 even 6 1690.2.e.h.191.1 2
65.34 odd 4 1690.2.d.c.1351.1 2
65.43 odd 12 650.2.o.d.549.2 4
65.44 odd 4 1690.2.d.c.1351.2 2
65.49 even 6 130.2.e.a.61.1 2
65.54 odd 12 1690.2.l.e.1161.1 4
65.59 odd 12 1690.2.l.e.361.1 4
65.62 odd 12 650.2.o.d.399.2 4
65.64 even 2 1690.2.a.h.1.1 1
195.134 odd 6 1170.2.i.i.991.1 2
195.179 odd 6 1170.2.i.i.451.1 2
260.179 odd 6 1040.2.q.h.321.1 2
260.199 odd 6 1040.2.q.h.81.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.a.61.1 2 65.49 even 6
130.2.e.a.81.1 yes 2 65.4 even 6
650.2.e.b.451.1 2 13.10 even 6
650.2.e.b.601.1 2 13.4 even 6
650.2.o.d.399.1 4 65.23 odd 12
650.2.o.d.399.2 4 65.62 odd 12
650.2.o.d.549.1 4 65.17 odd 12
650.2.o.d.549.2 4 65.43 odd 12
1040.2.q.h.81.1 2 260.199 odd 6
1040.2.q.h.321.1 2 260.179 odd 6
1170.2.i.i.451.1 2 195.179 odd 6
1170.2.i.i.991.1 2 195.134 odd 6
1690.2.a.c.1.1 1 5.4 even 2
1690.2.a.h.1.1 1 65.64 even 2
1690.2.d.c.1351.1 2 65.34 odd 4
1690.2.d.c.1351.2 2 65.44 odd 4
1690.2.e.h.191.1 2 65.29 even 6
1690.2.e.h.991.1 2 65.9 even 6
1690.2.l.e.361.1 4 65.59 odd 12
1690.2.l.e.361.2 4 65.19 odd 12
1690.2.l.e.1161.1 4 65.54 odd 12
1690.2.l.e.1161.2 4 65.24 odd 12
8450.2.a.g.1.1 1 13.12 even 2
8450.2.a.q.1.1 1 1.1 even 1 trivial