Defining parameters
Level: | \( N \) | \(=\) | \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8450.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 79 \) | ||
Sturm bound: | \(2730\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\), \(17\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8450))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1448 | 245 | 1203 |
Cusp forms | 1281 | 245 | 1036 |
Eisenstein series | 167 | 0 | 167 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(173\) | \(24\) | \(149\) | \(153\) | \(24\) | \(129\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(188\) | \(33\) | \(155\) | \(167\) | \(33\) | \(134\) | \(21\) | \(0\) | \(21\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(187\) | \(34\) | \(153\) | \(166\) | \(34\) | \(132\) | \(21\) | \(0\) | \(21\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(175\) | \(31\) | \(144\) | \(154\) | \(31\) | \(123\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(184\) | \(35\) | \(149\) | \(163\) | \(35\) | \(128\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(178\) | \(24\) | \(154\) | \(157\) | \(24\) | \(133\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(177\) | \(27\) | \(150\) | \(156\) | \(27\) | \(129\) | \(21\) | \(0\) | \(21\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(186\) | \(37\) | \(149\) | \(165\) | \(37\) | \(128\) | \(21\) | \(0\) | \(21\) | |||
Plus space | \(+\) | \(703\) | \(106\) | \(597\) | \(620\) | \(106\) | \(514\) | \(83\) | \(0\) | \(83\) | |||||
Minus space | \(-\) | \(745\) | \(139\) | \(606\) | \(661\) | \(139\) | \(522\) | \(84\) | \(0\) | \(84\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8450))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8450))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8450)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(650))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(845))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1690))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4225))\)\(^{\oplus 2}\)