Properties

Label 1040.2.q.h.81.1
Level $1040$
Weight $2$
Character 1040.81
Analytic conductor $8.304$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(81,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,2,0,-3,0,3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1040.81
Dual form 1040.2.q.h.321.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +(-1.50000 + 2.59808i) q^{7} +(1.50000 - 2.59808i) q^{9} +(-1.50000 - 2.59808i) q^{11} +(-3.50000 - 0.866025i) q^{13} +(2.00000 - 3.46410i) q^{17} +(3.50000 - 6.06218i) q^{19} +(-2.00000 - 3.46410i) q^{23} +1.00000 q^{25} +(4.00000 + 6.92820i) q^{29} +10.0000 q^{31} +(-1.50000 + 2.59808i) q^{35} +(-1.50000 - 2.59808i) q^{37} +(1.00000 + 1.73205i) q^{41} +(3.00000 - 5.19615i) q^{43} +(1.50000 - 2.59808i) q^{45} +1.00000 q^{47} +(-1.00000 - 1.73205i) q^{49} -9.00000 q^{53} +(-1.50000 - 2.59808i) q^{55} +(-2.00000 + 3.46410i) q^{59} +(7.00000 - 12.1244i) q^{61} +(4.50000 + 7.79423i) q^{63} +(-3.50000 - 0.866025i) q^{65} +(2.00000 + 3.46410i) q^{67} +(3.00000 - 5.19615i) q^{71} +4.00000 q^{73} +9.00000 q^{77} -10.0000 q^{79} +(-4.50000 - 7.79423i) q^{81} +(2.00000 - 3.46410i) q^{85} +(-0.500000 - 0.866025i) q^{89} +(7.50000 - 7.79423i) q^{91} +(3.50000 - 6.06218i) q^{95} +(-8.00000 + 13.8564i) q^{97} -9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 3 q^{7} + 3 q^{9} - 3 q^{11} - 7 q^{13} + 4 q^{17} + 7 q^{19} - 4 q^{23} + 2 q^{25} + 8 q^{29} + 20 q^{31} - 3 q^{35} - 3 q^{37} + 2 q^{41} + 6 q^{43} + 3 q^{45} + 2 q^{47} - 2 q^{49} - 18 q^{53}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.50000 + 2.59808i −0.566947 + 0.981981i 0.429919 + 0.902867i \(0.358542\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) −3.50000 0.866025i −0.970725 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 3.46410i 0.485071 0.840168i −0.514782 0.857321i \(-0.672127\pi\)
0.999853 + 0.0171533i \(0.00546033\pi\)
\(18\) 0 0
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 + 6.92820i 0.742781 + 1.28654i 0.951224 + 0.308500i \(0.0998271\pi\)
−0.208443 + 0.978035i \(0.566840\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50000 + 2.59808i −0.253546 + 0.439155i
\(36\) 0 0
\(37\) −1.50000 2.59808i −0.246598 0.427121i 0.715981 0.698119i \(-0.245980\pi\)
−0.962580 + 0.270998i \(0.912646\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 + 1.73205i 0.156174 + 0.270501i 0.933486 0.358614i \(-0.116751\pi\)
−0.777312 + 0.629115i \(0.783417\pi\)
\(42\) 0 0
\(43\) 3.00000 5.19615i 0.457496 0.792406i −0.541332 0.840809i \(-0.682080\pi\)
0.998828 + 0.0484030i \(0.0154132\pi\)
\(44\) 0 0
\(45\) 1.50000 2.59808i 0.223607 0.387298i
\(46\) 0 0
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) 0 0
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) −1.50000 2.59808i −0.202260 0.350325i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) 0 0
\(63\) 4.50000 + 7.79423i 0.566947 + 0.981981i
\(64\) 0 0
\(65\) −3.50000 0.866025i −0.434122 0.107417i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.00000 1.02565
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 2.00000 3.46410i 0.216930 0.375735i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.500000 0.866025i −0.0529999 0.0917985i 0.838308 0.545197i \(-0.183545\pi\)
−0.891308 + 0.453398i \(0.850212\pi\)
\(90\) 0 0
\(91\) 7.50000 7.79423i 0.786214 0.817057i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.50000 6.06218i 0.359092 0.621966i
\(96\) 0 0
\(97\) −8.00000 + 13.8564i −0.812277 + 1.40690i 0.0989899 + 0.995088i \(0.468439\pi\)
−0.911267 + 0.411816i \(0.864894\pi\)
\(98\) 0 0
\(99\) −9.00000 −0.904534
\(100\) 0 0
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.00000 15.5885i −0.870063 1.50699i −0.861931 0.507026i \(-0.830745\pi\)
−0.00813215 0.999967i \(-0.502589\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.00000 6.92820i 0.376288 0.651751i −0.614231 0.789127i \(-0.710534\pi\)
0.990519 + 0.137376i \(0.0438669\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) 0 0
\(117\) −7.50000 + 7.79423i −0.693375 + 0.720577i
\(118\) 0 0
\(119\) 6.00000 + 10.3923i 0.550019 + 0.952661i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 6.50000 + 11.2583i 0.576782 + 0.999015i 0.995846 + 0.0910585i \(0.0290250\pi\)
−0.419064 + 0.907957i \(0.637642\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.0000 −1.13582 −0.567908 0.823092i \(-0.692247\pi\)
−0.567908 + 0.823092i \(0.692247\pi\)
\(132\) 0 0
\(133\) 10.5000 + 18.1865i 0.910465 + 1.57697i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.00000 + 10.3923i 0.250873 + 0.869048i
\(144\) 0 0
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) −6.00000 10.3923i −0.485071 0.840168i
\(154\) 0 0
\(155\) 10.0000 0.803219
\(156\) 0 0
\(157\) −3.00000 −0.239426 −0.119713 0.992809i \(-0.538197\pi\)
−0.119713 + 0.992809i \(0.538197\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 4.00000 6.92820i 0.313304 0.542659i −0.665771 0.746156i \(-0.731897\pi\)
0.979076 + 0.203497i \(0.0652307\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.50000 + 16.4545i 0.735132 + 1.27329i 0.954665 + 0.297681i \(0.0962132\pi\)
−0.219533 + 0.975605i \(0.570453\pi\)
\(168\) 0 0
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 0 0
\(171\) −10.5000 18.1865i −0.802955 1.39076i
\(172\) 0 0
\(173\) 10.5000 18.1865i 0.798300 1.38270i −0.122422 0.992478i \(-0.539066\pi\)
0.920722 0.390218i \(-0.127601\pi\)
\(174\) 0 0
\(175\) −1.50000 + 2.59808i −0.113389 + 0.196396i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.00000 + 3.46410i 0.149487 + 0.258919i 0.931038 0.364922i \(-0.118904\pi\)
−0.781551 + 0.623841i \(0.785571\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.50000 2.59808i −0.110282 0.191014i
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) 12.0000 + 20.7846i 0.863779 + 1.49611i 0.868255 + 0.496119i \(0.165242\pi\)
−0.00447566 + 0.999990i \(0.501425\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.50000 11.2583i −0.463106 0.802123i 0.536008 0.844213i \(-0.319932\pi\)
−0.999114 + 0.0420901i \(0.986598\pi\)
\(198\) 0 0
\(199\) −9.00000 + 15.5885i −0.637993 + 1.10504i 0.347879 + 0.937539i \(0.386902\pi\)
−0.985873 + 0.167497i \(0.946431\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −24.0000 −1.68447
\(204\) 0 0
\(205\) 1.00000 + 1.73205i 0.0698430 + 0.120972i
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) 6.50000 + 11.2583i 0.447478 + 0.775055i 0.998221 0.0596196i \(-0.0189888\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.00000 5.19615i 0.204598 0.354375i
\(216\) 0 0
\(217\) −15.0000 + 25.9808i −1.01827 + 1.76369i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.0000 + 10.3923i −0.672673 + 0.699062i
\(222\) 0 0
\(223\) 9.50000 + 16.4545i 0.636167 + 1.10187i 0.986267 + 0.165161i \(0.0528144\pi\)
−0.350100 + 0.936713i \(0.613852\pi\)
\(224\) 0 0
\(225\) 1.50000 2.59808i 0.100000 0.173205i
\(226\) 0 0
\(227\) −2.00000 + 3.46410i −0.132745 + 0.229920i −0.924734 0.380615i \(-0.875712\pi\)
0.791989 + 0.610535i \(0.209046\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 1.00000 0.0652328
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 12.5000 21.6506i 0.805196 1.39464i −0.110963 0.993825i \(-0.535394\pi\)
0.916159 0.400815i \(-0.131273\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.00000 1.73205i −0.0638877 0.110657i
\(246\) 0 0
\(247\) −17.5000 + 18.1865i −1.11350 + 1.15718i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.5000 19.9186i 0.725874 1.25725i −0.232740 0.972539i \(-0.574769\pi\)
0.958613 0.284711i \(-0.0918976\pi\)
\(252\) 0 0
\(253\) −6.00000 + 10.3923i −0.377217 + 0.653359i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.00000 6.92820i −0.249513 0.432169i 0.713878 0.700270i \(-0.246937\pi\)
−0.963391 + 0.268101i \(0.913604\pi\)
\(258\) 0 0
\(259\) 9.00000 0.559233
\(260\) 0 0
\(261\) 24.0000 1.48556
\(262\) 0 0
\(263\) 5.50000 + 9.52628i 0.339145 + 0.587416i 0.984272 0.176659i \(-0.0565291\pi\)
−0.645128 + 0.764075i \(0.723196\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.0000 + 20.7846i −0.731653 + 1.26726i 0.224523 + 0.974469i \(0.427917\pi\)
−0.956176 + 0.292791i \(0.905416\pi\)
\(270\) 0 0
\(271\) 4.00000 + 6.92820i 0.242983 + 0.420858i 0.961563 0.274586i \(-0.0885408\pi\)
−0.718580 + 0.695444i \(0.755208\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.50000 2.59808i −0.0904534 0.156670i
\(276\) 0 0
\(277\) −9.50000 + 16.4545i −0.570800 + 0.988654i 0.425684 + 0.904872i \(0.360033\pi\)
−0.996484 + 0.0837823i \(0.973300\pi\)
\(278\) 0 0
\(279\) 15.0000 25.9808i 0.898027 1.55543i
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.50000 + 7.79423i −0.262893 + 0.455344i −0.967009 0.254741i \(-0.918010\pi\)
0.704117 + 0.710084i \(0.251343\pi\)
\(294\) 0 0
\(295\) −2.00000 + 3.46410i −0.116445 + 0.201688i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.00000 + 13.8564i 0.231326 + 0.801337i
\(300\) 0 0
\(301\) 9.00000 + 15.5885i 0.518751 + 0.898504i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.00000 12.1244i 0.400819 0.694239i
\(306\) 0 0
\(307\) 14.0000 0.799022 0.399511 0.916728i \(-0.369180\pi\)
0.399511 + 0.916728i \(0.369180\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 4.50000 + 7.79423i 0.253546 + 0.439155i
\(316\) 0 0
\(317\) 31.0000 1.74113 0.870567 0.492050i \(-0.163752\pi\)
0.870567 + 0.492050i \(0.163752\pi\)
\(318\) 0 0
\(319\) 12.0000 20.7846i 0.671871 1.16371i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −14.0000 24.2487i −0.778981 1.34923i
\(324\) 0 0
\(325\) −3.50000 0.866025i −0.194145 0.0480384i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.50000 + 2.59808i −0.0826977 + 0.143237i
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 0 0
\(333\) −9.00000 −0.493197
\(334\) 0 0
\(335\) 2.00000 + 3.46410i 0.109272 + 0.189264i
\(336\) 0 0
\(337\) 30.0000 1.63420 0.817102 0.576493i \(-0.195579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.0000 25.9808i −0.812296 1.40694i
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 + 13.8564i −0.429463 + 0.743851i −0.996826 0.0796169i \(-0.974630\pi\)
0.567363 + 0.823468i \(0.307964\pi\)
\(348\) 0 0
\(349\) 8.00000 + 13.8564i 0.428230 + 0.741716i 0.996716 0.0809766i \(-0.0258039\pi\)
−0.568486 + 0.822693i \(0.692471\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 3.00000 5.19615i 0.159223 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 13.5000 23.3827i 0.700885 1.21397i
\(372\) 0 0
\(373\) 3.00000 5.19615i 0.155334 0.269047i −0.777847 0.628454i \(-0.783688\pi\)
0.933181 + 0.359408i \(0.117021\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.00000 27.7128i −0.412021 1.42728i
\(378\) 0 0
\(379\) 13.5000 + 23.3827i 0.693448 + 1.20109i 0.970701 + 0.240291i \(0.0772428\pi\)
−0.277253 + 0.960797i \(0.589424\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.0000 + 24.2487i −0.715367 + 1.23905i 0.247451 + 0.968900i \(0.420407\pi\)
−0.962818 + 0.270151i \(0.912926\pi\)
\(384\) 0 0
\(385\) 9.00000 0.458682
\(386\) 0 0
\(387\) −9.00000 15.5885i −0.457496 0.792406i
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.0000 −0.503155
\(396\) 0 0
\(397\) 10.5000 18.1865i 0.526980 0.912756i −0.472526 0.881317i \(-0.656658\pi\)
0.999506 0.0314391i \(-0.0100090\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.5000 + 33.7750i 0.973784 + 1.68664i 0.683892 + 0.729583i \(0.260286\pi\)
0.289891 + 0.957060i \(0.406381\pi\)
\(402\) 0 0
\(403\) −35.0000 8.66025i −1.74347 0.431398i
\(404\) 0 0
\(405\) −4.50000 7.79423i −0.223607 0.387298i
\(406\) 0 0
\(407\) −4.50000 + 7.79423i −0.223057 + 0.386346i
\(408\) 0 0
\(409\) −8.50000 + 14.7224i −0.420298 + 0.727977i −0.995968 0.0897044i \(-0.971408\pi\)
0.575670 + 0.817682i \(0.304741\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 10.3923i −0.295241 0.511372i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 0 0
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) 0 0
\(423\) 1.50000 2.59808i 0.0729325 0.126323i
\(424\) 0 0
\(425\) 2.00000 3.46410i 0.0970143 0.168034i
\(426\) 0 0
\(427\) 21.0000 + 36.3731i 1.01626 + 1.76022i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 20.7846i −0.578020 1.00116i −0.995706 0.0925683i \(-0.970492\pi\)
0.417687 0.908591i \(-0.362841\pi\)
\(432\) 0 0
\(433\) −8.00000 + 13.8564i −0.384455 + 0.665896i −0.991693 0.128624i \(-0.958944\pi\)
0.607238 + 0.794520i \(0.292277\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −28.0000 −1.33942
\(438\) 0 0
\(439\) −3.00000 5.19615i −0.143182 0.247999i 0.785511 0.618848i \(-0.212400\pi\)
−0.928693 + 0.370849i \(0.879067\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 0 0
\(445\) −0.500000 0.866025i −0.0237023 0.0410535i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.50000 12.9904i 0.353947 0.613054i −0.632990 0.774160i \(-0.718173\pi\)
0.986937 + 0.161106i \(0.0515060\pi\)
\(450\) 0 0
\(451\) 3.00000 5.19615i 0.141264 0.244677i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.50000 7.79423i 0.351605 0.365399i
\(456\) 0 0
\(457\) −5.00000 8.66025i −0.233890 0.405110i 0.725059 0.688686i \(-0.241812\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.0000 34.6410i 0.931493 1.61339i 0.150721 0.988576i \(-0.451840\pi\)
0.780771 0.624817i \(-0.214826\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.0000 −0.827641
\(474\) 0 0
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) 0 0
\(477\) −13.5000 + 23.3827i −0.618123 + 1.07062i
\(478\) 0 0
\(479\) −14.0000 24.2487i −0.639676 1.10795i −0.985504 0.169654i \(-0.945735\pi\)
0.345827 0.938298i \(-0.387598\pi\)
\(480\) 0 0
\(481\) 3.00000 + 10.3923i 0.136788 + 0.473848i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.00000 + 13.8564i −0.363261 + 0.629187i
\(486\) 0 0
\(487\) 9.50000 16.4545i 0.430486 0.745624i −0.566429 0.824110i \(-0.691675\pi\)
0.996915 + 0.0784867i \(0.0250088\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −21.5000 37.2391i −0.970281 1.68058i −0.694701 0.719299i \(-0.744463\pi\)
−0.275581 0.961278i \(-0.588870\pi\)
\(492\) 0 0
\(493\) 32.0000 1.44121
\(494\) 0 0
\(495\) −9.00000 −0.404520
\(496\) 0 0
\(497\) 9.00000 + 15.5885i 0.403705 + 0.699238i
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11.5000 19.9186i 0.512760 0.888126i −0.487131 0.873329i \(-0.661957\pi\)
0.999891 0.0147968i \(-0.00471014\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.00000 + 5.19615i 0.132973 + 0.230315i 0.924821 0.380402i \(-0.124214\pi\)
−0.791849 + 0.610718i \(0.790881\pi\)
\(510\) 0 0
\(511\) −6.00000 + 10.3923i −0.265424 + 0.459728i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.00000 0.0440653
\(516\) 0 0
\(517\) −1.50000 2.59808i −0.0659699 0.114263i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.0000 −1.35813 −0.679067 0.734076i \(-0.737616\pi\)
−0.679067 + 0.734076i \(0.737616\pi\)
\(522\) 0 0
\(523\) 11.0000 + 19.0526i 0.480996 + 0.833110i 0.999762 0.0218062i \(-0.00694167\pi\)
−0.518766 + 0.854916i \(0.673608\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000 34.6410i 0.871214 1.50899i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) 6.00000 + 10.3923i 0.260378 + 0.450988i
\(532\) 0 0
\(533\) −2.00000 6.92820i −0.0866296 0.300094i
\(534\) 0 0
\(535\) −9.00000 15.5885i −0.389104 0.673948i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.00000 + 5.19615i −0.129219 + 0.223814i
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) 0 0
\(549\) −21.0000 36.3731i −0.896258 1.55236i
\(550\) 0 0
\(551\) 56.0000 2.38568
\(552\) 0 0
\(553\) 15.0000 25.9808i 0.637865 1.10481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.5000 + 26.8468i 0.656756 + 1.13753i 0.981450 + 0.191716i \(0.0614052\pi\)
−0.324694 + 0.945819i \(0.605261\pi\)
\(558\) 0 0
\(559\) −15.0000 + 15.5885i −0.634432 + 0.659321i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000 20.7846i 0.505740 0.875967i −0.494238 0.869326i \(-0.664553\pi\)
0.999978 0.00664037i \(-0.00211371\pi\)
\(564\) 0 0
\(565\) 4.00000 6.92820i 0.168281 0.291472i
\(566\) 0 0
\(567\) 27.0000 1.13389
\(568\) 0 0
\(569\) 5.50000 + 9.52628i 0.230572 + 0.399362i 0.957977 0.286846i \(-0.0926069\pi\)
−0.727405 + 0.686209i \(0.759274\pi\)
\(570\) 0 0
\(571\) 37.0000 1.54840 0.774201 0.632940i \(-0.218152\pi\)
0.774201 + 0.632940i \(0.218152\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.00000 3.46410i −0.0834058 0.144463i
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 13.5000 + 23.3827i 0.559113 + 0.968412i
\(584\) 0 0
\(585\) −7.50000 + 7.79423i −0.310087 + 0.322252i
\(586\) 0 0
\(587\) −1.00000 1.73205i −0.0412744 0.0714894i 0.844650 0.535319i \(-0.179808\pi\)
−0.885925 + 0.463829i \(0.846475\pi\)
\(588\) 0 0
\(589\) 35.0000 60.6218i 1.44215 2.49788i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20.0000 0.821302 0.410651 0.911793i \(-0.365302\pi\)
0.410651 + 0.911793i \(0.365302\pi\)
\(594\) 0 0
\(595\) 6.00000 + 10.3923i 0.245976 + 0.426043i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.0000 −1.06233 −0.531166 0.847268i \(-0.678246\pi\)
−0.531166 + 0.847268i \(0.678246\pi\)
\(600\) 0 0
\(601\) −2.50000 4.33013i −0.101977 0.176630i 0.810522 0.585708i \(-0.199184\pi\)
−0.912499 + 0.409079i \(0.865850\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) 1.00000 1.73205i 0.0406558 0.0704179i
\(606\) 0 0
\(607\) 10.5000 18.1865i 0.426182 0.738169i −0.570348 0.821403i \(-0.693192\pi\)
0.996530 + 0.0832344i \(0.0265250\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.50000 0.866025i −0.141595 0.0350356i
\(612\) 0 0
\(613\) −5.50000 9.52628i −0.222143 0.384763i 0.733316 0.679888i \(-0.237972\pi\)
−0.955458 + 0.295126i \(0.904638\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.0000 19.0526i 0.442843 0.767027i −0.555056 0.831813i \(-0.687303\pi\)
0.997899 + 0.0647859i \(0.0206365\pi\)
\(618\) 0 0
\(619\) 3.00000 0.120580 0.0602901 0.998181i \(-0.480797\pi\)
0.0602901 + 0.998181i \(0.480797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.00000 0.120192
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −18.0000 + 31.1769i −0.716569 + 1.24113i 0.245783 + 0.969325i \(0.420955\pi\)
−0.962351 + 0.271808i \(0.912378\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.50000 + 11.2583i 0.257945 + 0.446773i
\(636\) 0 0
\(637\) 2.00000 + 6.92820i 0.0792429 + 0.274505i
\(638\) 0 0
\(639\) −9.00000 15.5885i −0.356034 0.616670i
\(640\) 0 0
\(641\) 4.50000 7.79423i 0.177739 0.307854i −0.763367 0.645966i \(-0.776455\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(642\) 0 0
\(643\) 8.00000 13.8564i 0.315489 0.546443i −0.664052 0.747686i \(-0.731165\pi\)
0.979541 + 0.201243i \(0.0644981\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.50000 6.06218i −0.137599 0.238329i 0.788988 0.614408i \(-0.210605\pi\)
−0.926587 + 0.376080i \(0.877272\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.50000 + 9.52628i 0.215232 + 0.372792i 0.953344 0.301885i \(-0.0976160\pi\)
−0.738113 + 0.674678i \(0.764283\pi\)
\(654\) 0 0
\(655\) −13.0000 −0.507952
\(656\) 0 0
\(657\) 6.00000 10.3923i 0.234082 0.405442i
\(658\) 0 0
\(659\) −18.0000 + 31.1769i −0.701180 + 1.21448i 0.266872 + 0.963732i \(0.414010\pi\)
−0.968052 + 0.250748i \(0.919323\pi\)
\(660\) 0 0
\(661\) 7.00000 + 12.1244i 0.272268 + 0.471583i 0.969442 0.245319i \(-0.0788928\pi\)
−0.697174 + 0.716902i \(0.745559\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.5000 + 18.1865i 0.407173 + 0.705244i
\(666\) 0 0
\(667\) 16.0000 27.7128i 0.619522 1.07304i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −42.0000 −1.62139
\(672\) 0 0
\(673\) 4.00000 + 6.92820i 0.154189 + 0.267063i 0.932763 0.360489i \(-0.117390\pi\)
−0.778575 + 0.627552i \(0.784057\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −50.0000 −1.92166 −0.960828 0.277145i \(-0.910612\pi\)
−0.960828 + 0.277145i \(0.910612\pi\)
\(678\) 0 0
\(679\) −24.0000 41.5692i −0.921035 1.59528i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.00000 + 1.73205i −0.0382639 + 0.0662751i −0.884523 0.466496i \(-0.845516\pi\)
0.846259 + 0.532771i \(0.178849\pi\)
\(684\) 0 0
\(685\) −6.00000 + 10.3923i −0.229248 + 0.397070i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 31.5000 + 7.79423i 1.20005 + 0.296936i
\(690\) 0 0
\(691\) 14.5000 + 25.1147i 0.551606 + 0.955410i 0.998159 + 0.0606524i \(0.0193181\pi\)
−0.446553 + 0.894757i \(0.647349\pi\)
\(692\) 0 0
\(693\) 13.5000 23.3827i 0.512823 0.888235i
\(694\) 0 0
\(695\) −2.50000 + 4.33013i −0.0948304 + 0.164251i
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −40.0000 −1.51078 −0.755390 0.655276i \(-0.772552\pi\)
−0.755390 + 0.655276i \(0.772552\pi\)
\(702\) 0 0
\(703\) −21.0000 −0.792030
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.00000 + 6.92820i −0.150223 + 0.260194i −0.931309 0.364229i \(-0.881333\pi\)
0.781086 + 0.624423i \(0.214666\pi\)
\(710\) 0 0
\(711\) −15.0000 + 25.9808i −0.562544 + 0.974355i
\(712\) 0 0
\(713\) −20.0000 34.6410i −0.749006 1.29732i
\(714\) 0 0
\(715\) 3.00000 + 10.3923i 0.112194 + 0.388650i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.0000 24.2487i 0.522112 0.904324i −0.477557 0.878601i \(-0.658478\pi\)
0.999669 0.0257237i \(-0.00818900\pi\)
\(720\) 0 0
\(721\) −1.50000 + 2.59808i −0.0558629 + 0.0967574i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.00000 + 6.92820i 0.148556 + 0.257307i
\(726\) 0 0
\(727\) −35.0000 −1.29808 −0.649039 0.760755i \(-0.724829\pi\)
−0.649039 + 0.760755i \(0.724829\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.00000 10.3923i 0.221013 0.382805i
\(738\) 0 0
\(739\) 19.5000 + 33.7750i 0.717319 + 1.24243i 0.962058 + 0.272844i \(0.0879643\pi\)
−0.244739 + 0.969589i \(0.578702\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.00000 6.92820i −0.146746 0.254171i 0.783277 0.621673i \(-0.213547\pi\)
−0.930023 + 0.367502i \(0.880213\pi\)
\(744\) 0 0
\(745\) 3.00000 5.19615i 0.109911 0.190372i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 54.0000 1.97312
\(750\) 0 0
\(751\) −2.00000 3.46410i −0.0729810 0.126407i 0.827225 0.561870i \(-0.189918\pi\)
−0.900207 + 0.435463i \(0.856585\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.00000 0.0727875
\(756\) 0 0
\(757\) 14.5000 + 25.1147i 0.527011 + 0.912811i 0.999505 + 0.0314762i \(0.0100208\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5000 + 18.1865i −0.380625 + 0.659261i −0.991152 0.132734i \(-0.957624\pi\)
0.610527 + 0.791995i \(0.290958\pi\)
\(762\) 0 0
\(763\) 3.00000 5.19615i 0.108607 0.188113i
\(764\) 0 0
\(765\) −6.00000 10.3923i −0.216930 0.375735i
\(766\) 0 0
\(767\) 10.0000 10.3923i 0.361079 0.375244i
\(768\) 0 0
\(769\) 1.00000 + 1.73205i 0.0360609 + 0.0624593i 0.883493 0.468445i \(-0.155186\pi\)
−0.847432 + 0.530904i \(0.821852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15.5000 + 26.8468i −0.557496 + 0.965612i 0.440208 + 0.897896i \(0.354905\pi\)
−0.997705 + 0.0677162i \(0.978429\pi\)
\(774\) 0 0
\(775\) 10.0000 0.359211
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.0000 0.501602
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.00000 −0.107075
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 + 20.7846i 0.426671 + 0.739016i
\(792\) 0 0
\(793\) −35.0000 + 36.3731i −1.24289 + 1.29165i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.00000 + 1.73205i −0.0354218 + 0.0613524i −0.883193 0.469010i \(-0.844611\pi\)
0.847771 + 0.530362i \(0.177944\pi\)
\(798\) 0 0
\(799\) 2.00000 3.46410i 0.0707549 0.122551i
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) 0 0
\(803\) −6.00000 10.3923i −0.211735 0.366736i
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.00000 + 8.66025i 0.175791 + 0.304478i 0.940435 0.339975i \(-0.110418\pi\)
−0.764644 + 0.644453i \(0.777085\pi\)
\(810\) 0 0
\(811\) −21.0000 −0.737410 −0.368705 0.929547i \(-0.620199\pi\)
−0.368705 + 0.929547i \(0.620199\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 6.92820i 0.140114 0.242684i
\(816\) 0 0
\(817\) −21.0000 36.3731i −0.734697 1.27253i
\(818\) 0 0
\(819\) −9.00000 31.1769i −0.314485 1.08941i
\(820\) 0 0
\(821\) 9.00000 + 15.5885i 0.314102 + 0.544041i 0.979246 0.202674i \(-0.0649632\pi\)
−0.665144 + 0.746715i \(0.731630\pi\)
\(822\) 0 0
\(823\) −18.5000 + 32.0429i −0.644869 + 1.11695i 0.339462 + 0.940620i \(0.389755\pi\)
−0.984332 + 0.176327i \(0.943578\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) 14.0000 + 24.2487i 0.486240 + 0.842193i 0.999875 0.0158163i \(-0.00503471\pi\)
−0.513635 + 0.858009i \(0.671701\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.00000 −0.277184
\(834\) 0 0
\(835\) 9.50000 + 16.4545i 0.328761 + 0.569431i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13.0000 + 22.5167i −0.448810 + 0.777361i −0.998309 0.0581329i \(-0.981485\pi\)
0.549499 + 0.835494i \(0.314819\pi\)
\(840\) 0 0
\(841\) −17.5000 + 30.3109i −0.603448 + 1.04520i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.5000 + 6.06218i 0.395612 + 0.208545i
\(846\) 0 0
\(847\) 3.00000 + 5.19615i 0.103081 + 0.178542i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.00000 + 10.3923i −0.205677 + 0.356244i
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 0 0
\(855\) −10.5000 18.1865i −0.359092 0.621966i
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) 1.00000 0.0341196 0.0170598 0.999854i \(-0.494569\pi\)
0.0170598 + 0.999854i \(0.494569\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 10.5000 18.1865i 0.357011 0.618361i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 15.0000 + 25.9808i 0.508840 + 0.881337i
\(870\) 0 0
\(871\) −4.00000 13.8564i −0.135535 0.469506i
\(872\) 0 0
\(873\) 24.0000 + 41.5692i 0.812277 + 1.40690i
\(874\) 0 0
\(875\) −1.50000 + 2.59808i −0.0507093 + 0.0878310i
\(876\) 0 0
\(877\) 17.0000 29.4449i 0.574049 0.994282i −0.422095 0.906552i \(-0.638705\pi\)
0.996144 0.0877308i \(-0.0279615\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.50000 4.33013i −0.0842271 0.145886i 0.820834 0.571166i \(-0.193509\pi\)
−0.905062 + 0.425280i \(0.860175\pi\)
\(882\) 0 0
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.50000 11.2583i −0.218249 0.378018i 0.736024 0.676955i \(-0.236701\pi\)
−0.954273 + 0.298938i \(0.903368\pi\)
\(888\) 0 0
\(889\) −39.0000 −1.30802
\(890\) 0 0
\(891\) −13.5000 + 23.3827i −0.452267 + 0.783349i
\(892\) 0 0
\(893\) 3.50000 6.06218i 0.117123 0.202863i
\(894\) 0 0
\(895\) 2.00000 + 3.46410i 0.0668526 + 0.115792i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 40.0000 + 69.2820i 1.33407 + 2.31069i
\(900\) 0 0
\(901\) −18.0000 + 31.1769i −0.599667 + 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.0000 −0.465376
\(906\) 0 0
\(907\) −5.00000 8.66025i −0.166022 0.287559i 0.770996 0.636841i \(-0.219759\pi\)
−0.937018 + 0.349281i \(0.886426\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19.5000 33.7750i 0.643947 1.11535i
\(918\) 0 0
\(919\) 25.0000 43.3013i 0.824674 1.42838i −0.0774944 0.996993i \(-0.524692\pi\)
0.902168 0.431384i \(-0.141975\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −15.0000 + 15.5885i −0.493731 + 0.513100i
\(924\) 0 0
\(925\) −1.50000 2.59808i −0.0493197 0.0854242i
\(926\) 0 0
\(927\) 1.50000 2.59808i 0.0492665 0.0853320i
\(928\) 0 0
\(929\) 7.00000 12.1244i 0.229663 0.397787i −0.728046 0.685529i \(-0.759571\pi\)
0.957708 + 0.287742i \(0.0929044\pi\)
\(930\) 0 0
\(931\) −14.0000 −0.458831
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 0 0
\(943\) 4.00000 6.92820i 0.130258 0.225613i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.0000 + 32.9090i 0.617417 + 1.06940i 0.989955 + 0.141381i \(0.0451542\pi\)
−0.372538 + 0.928017i \(0.621512\pi\)
\(948\) 0 0
\(949\) −14.0000 3.46410i −0.454459 0.112449i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.0000 19.0526i 0.356325 0.617173i −0.631019 0.775768i \(-0.717363\pi\)
0.987344 + 0.158595i \(0.0506963\pi\)
\(954\) 0 0
\(955\) −3.00000 + 5.19615i −0.0970777 + 0.168144i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18.0000 31.1769i −0.581250 1.00676i
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) −54.0000 −1.74013
\(964\) 0 0
\(965\) 12.0000 + 20.7846i 0.386294 + 0.669080i
\(966\) 0 0
\(967\) 33.0000 1.06121 0.530604 0.847620i \(-0.321965\pi\)
0.530604 + 0.847620i \(0.321965\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.5000 + 42.4352i −0.786242 + 1.36181i 0.142012 + 0.989865i \(0.454643\pi\)
−0.928254 + 0.371947i \(0.878690\pi\)
\(972\) 0 0
\(973\) −7.50000 12.9904i −0.240439 0.416452i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.0000 + 20.7846i 0.383914 + 0.664959i 0.991618 0.129205i \(-0.0412426\pi\)
−0.607704 + 0.794164i \(0.707909\pi\)
\(978\) 0 0
\(979\) −1.50000 + 2.59808i −0.0479402 + 0.0830349i
\(980\) 0 0
\(981\) −3.00000 + 5.19615i −0.0957826 + 0.165900i
\(982\) 0 0
\(983\) 3.00000 0.0956851 0.0478426 0.998855i \(-0.484765\pi\)
0.0478426 + 0.998855i \(0.484765\pi\)
\(984\) 0 0
\(985\) −6.50000 11.2583i −0.207107 0.358720i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −5.00000 8.66025i −0.158830 0.275102i 0.775617 0.631204i \(-0.217439\pi\)
−0.934447 + 0.356102i \(0.884106\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.00000 + 15.5885i −0.285319 + 0.494187i
\(996\) 0 0
\(997\) 5.50000 9.52628i 0.174187 0.301700i −0.765693 0.643206i \(-0.777604\pi\)
0.939880 + 0.341506i \(0.110937\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.q.h.81.1 2
4.3 odd 2 130.2.e.a.81.1 yes 2
12.11 even 2 1170.2.i.i.991.1 2
13.9 even 3 inner 1040.2.q.h.321.1 2
20.3 even 4 650.2.o.d.549.1 4
20.7 even 4 650.2.o.d.549.2 4
20.19 odd 2 650.2.e.b.601.1 2
52.3 odd 6 1690.2.a.h.1.1 1
52.7 even 12 1690.2.l.e.1161.1 4
52.11 even 12 1690.2.d.c.1351.2 2
52.15 even 12 1690.2.d.c.1351.1 2
52.19 even 12 1690.2.l.e.1161.2 4
52.23 odd 6 1690.2.a.c.1.1 1
52.31 even 4 1690.2.l.e.361.1 4
52.35 odd 6 130.2.e.a.61.1 2
52.43 odd 6 1690.2.e.h.191.1 2
52.47 even 4 1690.2.l.e.361.2 4
52.51 odd 2 1690.2.e.h.991.1 2
156.35 even 6 1170.2.i.i.451.1 2
260.87 even 12 650.2.o.d.399.1 4
260.139 odd 6 650.2.e.b.451.1 2
260.159 odd 6 8450.2.a.g.1.1 1
260.179 odd 6 8450.2.a.q.1.1 1
260.243 even 12 650.2.o.d.399.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.a.61.1 2 52.35 odd 6
130.2.e.a.81.1 yes 2 4.3 odd 2
650.2.e.b.451.1 2 260.139 odd 6
650.2.e.b.601.1 2 20.19 odd 2
650.2.o.d.399.1 4 260.87 even 12
650.2.o.d.399.2 4 260.243 even 12
650.2.o.d.549.1 4 20.3 even 4
650.2.o.d.549.2 4 20.7 even 4
1040.2.q.h.81.1 2 1.1 even 1 trivial
1040.2.q.h.321.1 2 13.9 even 3 inner
1170.2.i.i.451.1 2 156.35 even 6
1170.2.i.i.991.1 2 12.11 even 2
1690.2.a.c.1.1 1 52.23 odd 6
1690.2.a.h.1.1 1 52.3 odd 6
1690.2.d.c.1351.1 2 52.15 even 12
1690.2.d.c.1351.2 2 52.11 even 12
1690.2.e.h.191.1 2 52.43 odd 6
1690.2.e.h.991.1 2 52.51 odd 2
1690.2.l.e.361.1 4 52.31 even 4
1690.2.l.e.361.2 4 52.47 even 4
1690.2.l.e.1161.1 4 52.7 even 12
1690.2.l.e.1161.2 4 52.19 even 12
8450.2.a.g.1.1 1 260.159 odd 6
8450.2.a.q.1.1 1 260.179 odd 6