Properties

Label 1690.2.d.c.1351.1
Level $1690$
Weight $2$
Character 1690.1351
Analytic conductor $13.495$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1351,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,-6,-2,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1351
Dual form 1690.2.d.c.1351.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -1.00000i q^{5} -3.00000i q^{7} +1.00000i q^{8} -3.00000 q^{9} -1.00000 q^{10} -3.00000i q^{11} -3.00000 q^{14} +1.00000 q^{16} +4.00000 q^{17} +3.00000i q^{18} -7.00000i q^{19} +1.00000i q^{20} -3.00000 q^{22} +4.00000 q^{23} -1.00000 q^{25} +3.00000i q^{28} -8.00000 q^{29} +10.0000i q^{31} -1.00000i q^{32} -4.00000i q^{34} -3.00000 q^{35} +3.00000 q^{36} +3.00000i q^{37} -7.00000 q^{38} +1.00000 q^{40} +2.00000i q^{41} -6.00000 q^{43} +3.00000i q^{44} +3.00000i q^{45} -4.00000i q^{46} -1.00000i q^{47} -2.00000 q^{49} +1.00000i q^{50} -9.00000 q^{53} -3.00000 q^{55} +3.00000 q^{56} +8.00000i q^{58} -4.00000i q^{59} -14.0000 q^{61} +10.0000 q^{62} +9.00000i q^{63} -1.00000 q^{64} -4.00000i q^{67} -4.00000 q^{68} +3.00000i q^{70} -6.00000i q^{71} -3.00000i q^{72} +4.00000i q^{73} +3.00000 q^{74} +7.00000i q^{76} -9.00000 q^{77} +10.0000 q^{79} -1.00000i q^{80} +9.00000 q^{81} +2.00000 q^{82} -4.00000i q^{85} +6.00000i q^{86} +3.00000 q^{88} +1.00000i q^{89} +3.00000 q^{90} -4.00000 q^{92} -1.00000 q^{94} -7.00000 q^{95} -16.0000i q^{97} +2.00000i q^{98} +9.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 6 q^{9} - 2 q^{10} - 6 q^{14} + 2 q^{16} + 8 q^{17} - 6 q^{22} + 8 q^{23} - 2 q^{25} - 16 q^{29} - 6 q^{35} + 6 q^{36} - 14 q^{38} + 2 q^{40} - 12 q^{43} - 4 q^{49} - 18 q^{53} - 6 q^{55}+ \cdots - 14 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −1.00000 −0.500000
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) − 3.00000i − 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −3.00000 −1.00000
\(10\) −1.00000 −0.316228
\(11\) − 3.00000i − 0.904534i −0.891883 0.452267i \(-0.850615\pi\)
0.891883 0.452267i \(-0.149385\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 3.00000i 0.707107i
\(19\) − 7.00000i − 1.60591i −0.596040 0.802955i \(-0.703260\pi\)
0.596040 0.802955i \(-0.296740\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 3.00000i 0.566947i
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i 0.439941 + 0.898027i \(0.354999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) − 4.00000i − 0.685994i
\(35\) −3.00000 −0.507093
\(36\) 3.00000 0.500000
\(37\) 3.00000i 0.493197i 0.969118 + 0.246598i \(0.0793129\pi\)
−0.969118 + 0.246598i \(0.920687\pi\)
\(38\) −7.00000 −1.13555
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 3.00000i 0.452267i
\(45\) 3.00000i 0.447214i
\(46\) − 4.00000i − 0.589768i
\(47\) − 1.00000i − 0.145865i −0.997337 0.0729325i \(-0.976764\pi\)
0.997337 0.0729325i \(-0.0232358\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 1.00000i 0.141421i
\(51\) 0 0
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) 8.00000i 1.05045i
\(59\) − 4.00000i − 0.520756i −0.965507 0.260378i \(-0.916153\pi\)
0.965507 0.260378i \(-0.0838471\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 10.0000 1.27000
\(63\) 9.00000i 1.13389i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 3.00000i 0.358569i
\(71\) − 6.00000i − 0.712069i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(72\) − 3.00000i − 0.353553i
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) 7.00000i 0.802955i
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) − 1.00000i − 0.111803i
\(81\) 9.00000 1.00000
\(82\) 2.00000 0.220863
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) − 4.00000i − 0.433861i
\(86\) 6.00000i 0.646997i
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) 1.00000i 0.106000i 0.998595 + 0.0529999i \(0.0168783\pi\)
−0.998595 + 0.0529999i \(0.983122\pi\)
\(90\) 3.00000 0.316228
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −1.00000 −0.103142
\(95\) −7.00000 −0.718185
\(96\) 0 0
\(97\) − 16.0000i − 1.62455i −0.583272 0.812277i \(-0.698228\pi\)
0.583272 0.812277i \(-0.301772\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 9.00000i 0.904534i
\(100\) 1.00000 0.100000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 9.00000i 0.874157i
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 3.00000i 0.286039i
\(111\) 0 0
\(112\) − 3.00000i − 0.283473i
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) − 4.00000i − 0.373002i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) − 12.0000i − 1.10004i
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) 14.0000i 1.26750i
\(123\) 0 0
\(124\) − 10.0000i − 0.898027i
\(125\) 1.00000i 0.0894427i
\(126\) 9.00000 0.801784
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.0000 1.13582 0.567908 0.823092i \(-0.307753\pi\)
0.567908 + 0.823092i \(0.307753\pi\)
\(132\) 0 0
\(133\) −21.0000 −1.82093
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 4.00000i 0.342997i
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 3.00000 0.253546
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) 8.00000i 0.664364i
\(146\) 4.00000 0.331042
\(147\) 0 0
\(148\) − 3.00000i − 0.246598i
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) − 2.00000i − 0.162758i −0.996683 0.0813788i \(-0.974068\pi\)
0.996683 0.0813788i \(-0.0259324\pi\)
\(152\) 7.00000 0.567775
\(153\) −12.0000 −0.970143
\(154\) 9.00000i 0.725241i
\(155\) 10.0000 0.803219
\(156\) 0 0
\(157\) −3.00000 −0.239426 −0.119713 0.992809i \(-0.538197\pi\)
−0.119713 + 0.992809i \(0.538197\pi\)
\(158\) − 10.0000i − 0.795557i
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) − 12.0000i − 0.945732i
\(162\) − 9.00000i − 0.707107i
\(163\) 8.00000i 0.626608i 0.949653 + 0.313304i \(0.101436\pi\)
−0.949653 + 0.313304i \(0.898564\pi\)
\(164\) − 2.00000i − 0.156174i
\(165\) 0 0
\(166\) 0 0
\(167\) 19.0000i 1.47026i 0.677924 + 0.735132i \(0.262880\pi\)
−0.677924 + 0.735132i \(0.737120\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −4.00000 −0.306786
\(171\) 21.0000i 1.60591i
\(172\) 6.00000 0.457496
\(173\) 21.0000 1.59660 0.798300 0.602260i \(-0.205733\pi\)
0.798300 + 0.602260i \(0.205733\pi\)
\(174\) 0 0
\(175\) 3.00000i 0.226779i
\(176\) − 3.00000i − 0.226134i
\(177\) 0 0
\(178\) 1.00000 0.0749532
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) − 3.00000i − 0.223607i
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000i 0.294884i
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) − 12.0000i − 0.877527i
\(188\) 1.00000i 0.0729325i
\(189\) 0 0
\(190\) 7.00000i 0.507833i
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 0 0
\(193\) − 24.0000i − 1.72756i −0.503871 0.863779i \(-0.668091\pi\)
0.503871 0.863779i \(-0.331909\pi\)
\(194\) −16.0000 −1.14873
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) − 13.0000i − 0.926212i −0.886303 0.463106i \(-0.846735\pi\)
0.886303 0.463106i \(-0.153265\pi\)
\(198\) 9.00000 0.639602
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) − 1.00000i − 0.0707107i
\(201\) 0 0
\(202\) 0 0
\(203\) 24.0000i 1.68447i
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) − 1.00000i − 0.0696733i
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) 9.00000 0.618123
\(213\) 0 0
\(214\) 18.0000i 1.23045i
\(215\) 6.00000i 0.409197i
\(216\) 0 0
\(217\) 30.0000 2.03653
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 0 0
\(222\) 0 0
\(223\) − 19.0000i − 1.27233i −0.771551 0.636167i \(-0.780519\pi\)
0.771551 0.636167i \(-0.219481\pi\)
\(224\) −3.00000 −0.200446
\(225\) 3.00000 0.200000
\(226\) 8.00000i 0.532152i
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) − 22.0000i − 1.45380i −0.686743 0.726900i \(-0.740960\pi\)
0.686743 0.726900i \(-0.259040\pi\)
\(230\) −4.00000 −0.263752
\(231\) 0 0
\(232\) − 8.00000i − 0.525226i
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) −1.00000 −0.0652328
\(236\) 4.00000i 0.260378i
\(237\) 0 0
\(238\) −12.0000 −0.777844
\(239\) − 2.00000i − 0.129369i −0.997906 0.0646846i \(-0.979396\pi\)
0.997906 0.0646846i \(-0.0206041\pi\)
\(240\) 0 0
\(241\) − 25.0000i − 1.61039i −0.593009 0.805196i \(-0.702060\pi\)
0.593009 0.805196i \(-0.297940\pi\)
\(242\) − 2.00000i − 0.128565i
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) 2.00000i 0.127775i
\(246\) 0 0
\(247\) 0 0
\(248\) −10.0000 −0.635001
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −23.0000 −1.45175 −0.725874 0.687828i \(-0.758564\pi\)
−0.725874 + 0.687828i \(0.758564\pi\)
\(252\) − 9.00000i − 0.566947i
\(253\) − 12.0000i − 0.754434i
\(254\) 13.0000i 0.815693i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −8.00000 −0.499026 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(258\) 0 0
\(259\) 9.00000 0.559233
\(260\) 0 0
\(261\) 24.0000 1.48556
\(262\) − 13.0000i − 0.803143i
\(263\) 11.0000 0.678289 0.339145 0.940734i \(-0.389862\pi\)
0.339145 + 0.940734i \(0.389862\pi\)
\(264\) 0 0
\(265\) 9.00000i 0.552866i
\(266\) 21.0000i 1.28759i
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 8.00000i 0.485965i 0.970031 + 0.242983i \(0.0781258\pi\)
−0.970031 + 0.242983i \(0.921874\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 3.00000i 0.180907i
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) 5.00000i 0.299880i
\(279\) − 30.0000i − 1.79605i
\(280\) − 3.00000i − 0.179284i
\(281\) 2.00000i 0.119310i 0.998219 + 0.0596550i \(0.0190001\pi\)
−0.998219 + 0.0596550i \(0.981000\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 6.00000i 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 3.00000i 0.176777i
\(289\) −1.00000 −0.0588235
\(290\) 8.00000 0.469776
\(291\) 0 0
\(292\) − 4.00000i − 0.234082i
\(293\) 9.00000i 0.525786i 0.964825 + 0.262893i \(0.0846766\pi\)
−0.964825 + 0.262893i \(0.915323\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) −3.00000 −0.174371
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 18.0000i 1.03750i
\(302\) −2.00000 −0.115087
\(303\) 0 0
\(304\) − 7.00000i − 0.401478i
\(305\) 14.0000i 0.801638i
\(306\) 12.0000i 0.685994i
\(307\) − 14.0000i − 0.799022i −0.916728 0.399511i \(-0.869180\pi\)
0.916728 0.399511i \(-0.130820\pi\)
\(308\) 9.00000 0.512823
\(309\) 0 0
\(310\) − 10.0000i − 0.567962i
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 3.00000i 0.169300i
\(315\) 9.00000 0.507093
\(316\) −10.0000 −0.562544
\(317\) − 31.0000i − 1.74113i −0.492050 0.870567i \(-0.663752\pi\)
0.492050 0.870567i \(-0.336248\pi\)
\(318\) 0 0
\(319\) 24.0000i 1.34374i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) −12.0000 −0.668734
\(323\) − 28.0000i − 1.55796i
\(324\) −9.00000 −0.500000
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) −2.00000 −0.110432
\(329\) −3.00000 −0.165395
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 0 0
\(333\) − 9.00000i − 0.493197i
\(334\) 19.0000 1.03963
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 4.00000i 0.216930i
\(341\) 30.0000 1.62459
\(342\) 21.0000 1.13555
\(343\) − 15.0000i − 0.809924i
\(344\) − 6.00000i − 0.323498i
\(345\) 0 0
\(346\) − 21.0000i − 1.12897i
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) − 16.0000i − 0.856460i −0.903670 0.428230i \(-0.859137\pi\)
0.903670 0.428230i \(-0.140863\pi\)
\(350\) 3.00000 0.160357
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) − 1.00000i − 0.0529999i
\(357\) 0 0
\(358\) 4.00000i 0.211407i
\(359\) 10.0000i 0.527780i 0.964553 + 0.263890i \(0.0850056\pi\)
−0.964553 + 0.263890i \(0.914994\pi\)
\(360\) −3.00000 −0.158114
\(361\) −30.0000 −1.57895
\(362\) − 14.0000i − 0.735824i
\(363\) 0 0
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 4.00000 0.208514
\(369\) − 6.00000i − 0.312348i
\(370\) − 3.00000i − 0.155963i
\(371\) 27.0000i 1.40177i
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) −12.0000 −0.620505
\(375\) 0 0
\(376\) 1.00000 0.0515711
\(377\) 0 0
\(378\) 0 0
\(379\) − 27.0000i − 1.38690i −0.720506 0.693448i \(-0.756091\pi\)
0.720506 0.693448i \(-0.243909\pi\)
\(380\) 7.00000 0.359092
\(381\) 0 0
\(382\) 6.00000i 0.306987i
\(383\) 28.0000i 1.43073i 0.698749 + 0.715367i \(0.253740\pi\)
−0.698749 + 0.715367i \(0.746260\pi\)
\(384\) 0 0
\(385\) 9.00000i 0.458682i
\(386\) −24.0000 −1.22157
\(387\) 18.0000 0.914991
\(388\) 16.0000i 0.812277i
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) − 2.00000i − 0.101015i
\(393\) 0 0
\(394\) −13.0000 −0.654931
\(395\) − 10.0000i − 0.503155i
\(396\) − 9.00000i − 0.452267i
\(397\) − 21.0000i − 1.05396i −0.849878 0.526980i \(-0.823324\pi\)
0.849878 0.526980i \(-0.176676\pi\)
\(398\) − 18.0000i − 0.902258i
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) − 39.0000i − 1.94757i −0.227477 0.973784i \(-0.573048\pi\)
0.227477 0.973784i \(-0.426952\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 9.00000i − 0.447214i
\(406\) 24.0000 1.19110
\(407\) 9.00000 0.446113
\(408\) 0 0
\(409\) − 17.0000i − 0.840596i −0.907386 0.420298i \(-0.861926\pi\)
0.907386 0.420298i \(-0.138074\pi\)
\(410\) − 2.00000i − 0.0987730i
\(411\) 0 0
\(412\) −1.00000 −0.0492665
\(413\) −12.0000 −0.590481
\(414\) 12.0000i 0.589768i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 21.0000i 1.02714i
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) − 16.0000i − 0.779792i −0.920859 0.389896i \(-0.872511\pi\)
0.920859 0.389896i \(-0.127489\pi\)
\(422\) − 13.0000i − 0.632830i
\(423\) 3.00000i 0.145865i
\(424\) − 9.00000i − 0.437079i
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 42.0000i 2.03252i
\(428\) 18.0000 0.870063
\(429\) 0 0
\(430\) 6.00000 0.289346
\(431\) 24.0000i 1.15604i 0.816023 + 0.578020i \(0.196174\pi\)
−0.816023 + 0.578020i \(0.803826\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) − 30.0000i − 1.44005i
\(435\) 0 0
\(436\) − 2.00000i − 0.0957826i
\(437\) − 28.0000i − 1.33942i
\(438\) 0 0
\(439\) 6.00000 0.286364 0.143182 0.989696i \(-0.454267\pi\)
0.143182 + 0.989696i \(0.454267\pi\)
\(440\) − 3.00000i − 0.143019i
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) 1.00000 0.0474045
\(446\) −19.0000 −0.899676
\(447\) 0 0
\(448\) 3.00000i 0.141737i
\(449\) − 15.0000i − 0.707894i −0.935266 0.353947i \(-0.884839\pi\)
0.935266 0.353947i \(-0.115161\pi\)
\(450\) − 3.00000i − 0.141421i
\(451\) 6.00000 0.282529
\(452\) 8.00000 0.376288
\(453\) 0 0
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) − 10.0000i − 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) −22.0000 −1.02799
\(459\) 0 0
\(460\) 4.00000i 0.186501i
\(461\) 40.0000i 1.86299i 0.363760 + 0.931493i \(0.381493\pi\)
−0.363760 + 0.931493i \(0.618507\pi\)
\(462\) 0 0
\(463\) − 40.0000i − 1.85896i −0.368875 0.929479i \(-0.620257\pi\)
0.368875 0.929479i \(-0.379743\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) − 18.0000i − 0.833834i
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 1.00000i 0.0461266i
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) 18.0000i 0.827641i
\(474\) 0 0
\(475\) 7.00000i 0.321182i
\(476\) 12.0000i 0.550019i
\(477\) 27.0000 1.23625
\(478\) −2.00000 −0.0914779
\(479\) − 28.0000i − 1.27935i −0.768644 0.639676i \(-0.779068\pi\)
0.768644 0.639676i \(-0.220932\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −25.0000 −1.13872
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) −16.0000 −0.726523
\(486\) 0 0
\(487\) − 19.0000i − 0.860972i −0.902597 0.430486i \(-0.858342\pi\)
0.902597 0.430486i \(-0.141658\pi\)
\(488\) − 14.0000i − 0.633750i
\(489\) 0 0
\(490\) 2.00000 0.0903508
\(491\) 43.0000 1.94056 0.970281 0.241979i \(-0.0777966\pi\)
0.970281 + 0.241979i \(0.0777966\pi\)
\(492\) 0 0
\(493\) −32.0000 −1.44121
\(494\) 0 0
\(495\) 9.00000 0.404520
\(496\) 10.0000i 0.449013i
\(497\) −18.0000 −0.807410
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) 0 0
\(502\) 23.0000i 1.02654i
\(503\) 23.0000 1.02552 0.512760 0.858532i \(-0.328623\pi\)
0.512760 + 0.858532i \(0.328623\pi\)
\(504\) −9.00000 −0.400892
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) 13.0000 0.576782
\(509\) 6.00000i 0.265945i 0.991120 + 0.132973i \(0.0424523\pi\)
−0.991120 + 0.132973i \(0.957548\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) 8.00000i 0.352865i
\(515\) − 1.00000i − 0.0440653i
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) − 9.00000i − 0.395437i
\(519\) 0 0
\(520\) 0 0
\(521\) −31.0000 −1.35813 −0.679067 0.734076i \(-0.737616\pi\)
−0.679067 + 0.734076i \(0.737616\pi\)
\(522\) − 24.0000i − 1.05045i
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) −13.0000 −0.567908
\(525\) 0 0
\(526\) − 11.0000i − 0.479623i
\(527\) 40.0000i 1.74243i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 9.00000 0.390935
\(531\) 12.0000i 0.520756i
\(532\) 21.0000 0.910465
\(533\) 0 0
\(534\) 0 0
\(535\) 18.0000i 0.778208i
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) − 24.0000i − 1.03471i
\(539\) 6.00000i 0.258438i
\(540\) 0 0
\(541\) 10.0000i 0.429934i 0.976621 + 0.214967i \(0.0689643\pi\)
−0.976621 + 0.214967i \(0.931036\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) − 4.00000i − 0.171499i
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) − 12.0000i − 0.512615i
\(549\) 42.0000 1.79252
\(550\) 3.00000 0.127920
\(551\) 56.0000i 2.38568i
\(552\) 0 0
\(553\) − 30.0000i − 1.27573i
\(554\) 19.0000i 0.807233i
\(555\) 0 0
\(556\) 5.00000 0.212047
\(557\) − 31.0000i − 1.31351i −0.754103 0.656756i \(-0.771928\pi\)
0.754103 0.656756i \(-0.228072\pi\)
\(558\) −30.0000 −1.27000
\(559\) 0 0
\(560\) −3.00000 −0.126773
\(561\) 0 0
\(562\) 2.00000 0.0843649
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 8.00000i 0.336563i
\(566\) − 14.0000i − 0.588464i
\(567\) − 27.0000i − 1.13389i
\(568\) 6.00000 0.251754
\(569\) 11.0000 0.461144 0.230572 0.973055i \(-0.425940\pi\)
0.230572 + 0.973055i \(0.425940\pi\)
\(570\) 0 0
\(571\) 37.0000 1.54840 0.774201 0.632940i \(-0.218152\pi\)
0.774201 + 0.632940i \(0.218152\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) − 6.00000i − 0.250435i
\(575\) −4.00000 −0.166812
\(576\) 3.00000 0.125000
\(577\) 10.0000i 0.416305i 0.978096 + 0.208153i \(0.0667451\pi\)
−0.978096 + 0.208153i \(0.933255\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 0 0
\(580\) − 8.00000i − 0.332182i
\(581\) 0 0
\(582\) 0 0
\(583\) 27.0000i 1.11823i
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) 2.00000i 0.0825488i 0.999148 + 0.0412744i \(0.0131418\pi\)
−0.999148 + 0.0412744i \(0.986858\pi\)
\(588\) 0 0
\(589\) 70.0000 2.88430
\(590\) 4.00000i 0.164677i
\(591\) 0 0
\(592\) 3.00000i 0.123299i
\(593\) 20.0000i 0.821302i 0.911793 + 0.410651i \(0.134698\pi\)
−0.911793 + 0.410651i \(0.865302\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) − 6.00000i − 0.245770i
\(597\) 0 0
\(598\) 0 0
\(599\) 26.0000 1.06233 0.531166 0.847268i \(-0.321754\pi\)
0.531166 + 0.847268i \(0.321754\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 18.0000 0.733625
\(603\) 12.0000i 0.488678i
\(604\) 2.00000i 0.0813788i
\(605\) − 2.00000i − 0.0813116i
\(606\) 0 0
\(607\) 21.0000 0.852364 0.426182 0.904638i \(-0.359858\pi\)
0.426182 + 0.904638i \(0.359858\pi\)
\(608\) −7.00000 −0.283887
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) 0 0
\(612\) 12.0000 0.485071
\(613\) − 11.0000i − 0.444286i −0.975014 0.222143i \(-0.928695\pi\)
0.975014 0.222143i \(-0.0713052\pi\)
\(614\) −14.0000 −0.564994
\(615\) 0 0
\(616\) − 9.00000i − 0.362620i
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 0 0
\(619\) − 3.00000i − 0.120580i −0.998181 0.0602901i \(-0.980797\pi\)
0.998181 0.0602901i \(-0.0192026\pi\)
\(620\) −10.0000 −0.401610
\(621\) 0 0
\(622\) − 24.0000i − 0.962312i
\(623\) 3.00000 0.120192
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) − 6.00000i − 0.239808i
\(627\) 0 0
\(628\) 3.00000 0.119713
\(629\) 12.0000i 0.478471i
\(630\) − 9.00000i − 0.358569i
\(631\) − 36.0000i − 1.43314i −0.697517 0.716569i \(-0.745712\pi\)
0.697517 0.716569i \(-0.254288\pi\)
\(632\) 10.0000i 0.397779i
\(633\) 0 0
\(634\) −31.0000 −1.23117
\(635\) 13.0000i 0.515889i
\(636\) 0 0
\(637\) 0 0
\(638\) 24.0000 0.950169
\(639\) 18.0000i 0.712069i
\(640\) 1.00000 0.0395285
\(641\) 9.00000 0.355479 0.177739 0.984078i \(-0.443122\pi\)
0.177739 + 0.984078i \(0.443122\pi\)
\(642\) 0 0
\(643\) − 16.0000i − 0.630978i −0.948929 0.315489i \(-0.897831\pi\)
0.948929 0.315489i \(-0.102169\pi\)
\(644\) 12.0000i 0.472866i
\(645\) 0 0
\(646\) −28.0000 −1.10165
\(647\) 7.00000 0.275198 0.137599 0.990488i \(-0.456061\pi\)
0.137599 + 0.990488i \(0.456061\pi\)
\(648\) 9.00000i 0.353553i
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) − 8.00000i − 0.313304i
\(653\) −11.0000 −0.430463 −0.215232 0.976563i \(-0.569051\pi\)
−0.215232 + 0.976563i \(0.569051\pi\)
\(654\) 0 0
\(655\) − 13.0000i − 0.507952i
\(656\) 2.00000i 0.0780869i
\(657\) − 12.0000i − 0.468165i
\(658\) 3.00000i 0.116952i
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) − 14.0000i − 0.544537i −0.962221 0.272268i \(-0.912226\pi\)
0.962221 0.272268i \(-0.0877739\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 0 0
\(665\) 21.0000i 0.814345i
\(666\) −9.00000 −0.348743
\(667\) −32.0000 −1.23904
\(668\) − 19.0000i − 0.735132i
\(669\) 0 0
\(670\) 4.00000i 0.154533i
\(671\) 42.0000i 1.62139i
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 30.0000i 1.15556i
\(675\) 0 0
\(676\) 0 0
\(677\) −50.0000 −1.92166 −0.960828 0.277145i \(-0.910612\pi\)
−0.960828 + 0.277145i \(0.910612\pi\)
\(678\) 0 0
\(679\) −48.0000 −1.84207
\(680\) 4.00000 0.153393
\(681\) 0 0
\(682\) − 30.0000i − 1.14876i
\(683\) − 2.00000i − 0.0765279i −0.999268 0.0382639i \(-0.987817\pi\)
0.999268 0.0382639i \(-0.0121828\pi\)
\(684\) − 21.0000i − 0.802955i
\(685\) 12.0000 0.458496
\(686\) −15.0000 −0.572703
\(687\) 0 0
\(688\) −6.00000 −0.228748
\(689\) 0 0
\(690\) 0 0
\(691\) − 29.0000i − 1.10321i −0.834105 0.551606i \(-0.814015\pi\)
0.834105 0.551606i \(-0.185985\pi\)
\(692\) −21.0000 −0.798300
\(693\) 27.0000 1.02565
\(694\) 16.0000i 0.607352i
\(695\) 5.00000i 0.189661i
\(696\) 0 0
\(697\) 8.00000i 0.303022i
\(698\) −16.0000 −0.605609
\(699\) 0 0
\(700\) − 3.00000i − 0.113389i
\(701\) 40.0000 1.51078 0.755390 0.655276i \(-0.227448\pi\)
0.755390 + 0.655276i \(0.227448\pi\)
\(702\) 0 0
\(703\) 21.0000 0.792030
\(704\) 3.00000i 0.113067i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.00000i 0.300446i 0.988652 + 0.150223i \(0.0479992\pi\)
−0.988652 + 0.150223i \(0.952001\pi\)
\(710\) 6.00000i 0.225176i
\(711\) −30.0000 −1.12509
\(712\) −1.00000 −0.0374766
\(713\) 40.0000i 1.49801i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) 10.0000 0.373197
\(719\) −28.0000 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(720\) 3.00000i 0.111803i
\(721\) − 3.00000i − 0.111726i
\(722\) 30.0000i 1.11648i
\(723\) 0 0
\(724\) −14.0000 −0.520306
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) −35.0000 −1.29808 −0.649039 0.760755i \(-0.724829\pi\)
−0.649039 + 0.760755i \(0.724829\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) − 4.00000i − 0.148047i
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 1.00000i 0.0369358i 0.999829 + 0.0184679i \(0.00587886\pi\)
−0.999829 + 0.0184679i \(0.994121\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) − 4.00000i − 0.147442i
\(737\) −12.0000 −0.442026
\(738\) −6.00000 −0.220863
\(739\) 39.0000i 1.43464i 0.696745 + 0.717319i \(0.254631\pi\)
−0.696745 + 0.717319i \(0.745369\pi\)
\(740\) −3.00000 −0.110282
\(741\) 0 0
\(742\) 27.0000 0.991201
\(743\) 8.00000i 0.293492i 0.989174 + 0.146746i \(0.0468799\pi\)
−0.989174 + 0.146746i \(0.953120\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 6.00000i 0.219676i
\(747\) 0 0
\(748\) 12.0000i 0.438763i
\(749\) 54.0000i 1.97312i
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) − 1.00000i − 0.0364662i
\(753\) 0 0
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) −29.0000 −1.05402 −0.527011 0.849858i \(-0.676688\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) −27.0000 −0.980684
\(759\) 0 0
\(760\) − 7.00000i − 0.253917i
\(761\) 21.0000i 0.761249i 0.924730 + 0.380625i \(0.124291\pi\)
−0.924730 + 0.380625i \(0.875709\pi\)
\(762\) 0 0
\(763\) 6.00000 0.217215
\(764\) 6.00000 0.217072
\(765\) 12.0000i 0.433861i
\(766\) 28.0000 1.01168
\(767\) 0 0
\(768\) 0 0
\(769\) 2.00000i 0.0721218i 0.999350 + 0.0360609i \(0.0114810\pi\)
−0.999350 + 0.0360609i \(0.988519\pi\)
\(770\) 9.00000 0.324337
\(771\) 0 0
\(772\) 24.0000i 0.863779i
\(773\) − 31.0000i − 1.11499i −0.830179 0.557496i \(-0.811762\pi\)
0.830179 0.557496i \(-0.188238\pi\)
\(774\) − 18.0000i − 0.646997i
\(775\) − 10.0000i − 0.359211i
\(776\) 16.0000 0.574367
\(777\) 0 0
\(778\) 12.0000i 0.430221i
\(779\) 14.0000 0.501602
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) − 16.0000i − 0.572159i
\(783\) 0 0
\(784\) −2.00000 −0.0714286
\(785\) 3.00000i 0.107075i
\(786\) 0 0
\(787\) − 4.00000i − 0.142585i −0.997455 0.0712923i \(-0.977288\pi\)
0.997455 0.0712923i \(-0.0227123\pi\)
\(788\) 13.0000i 0.463106i
\(789\) 0 0
\(790\) −10.0000 −0.355784
\(791\) 24.0000i 0.853342i
\(792\) −9.00000 −0.319801
\(793\) 0 0
\(794\) −21.0000 −0.745262
\(795\) 0 0
\(796\) −18.0000 −0.637993
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) − 4.00000i − 0.141510i
\(800\) 1.00000i 0.0353553i
\(801\) − 3.00000i − 0.106000i
\(802\) −39.0000 −1.37714
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) −9.00000 −0.316228
\(811\) − 21.0000i − 0.737410i −0.929547 0.368705i \(-0.879801\pi\)
0.929547 0.368705i \(-0.120199\pi\)
\(812\) − 24.0000i − 0.842235i
\(813\) 0 0
\(814\) − 9.00000i − 0.315450i
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 42.0000i 1.46939i
\(818\) −17.0000 −0.594391
\(819\) 0 0
\(820\) −2.00000 −0.0698430
\(821\) 18.0000i 0.628204i 0.949389 + 0.314102i \(0.101703\pi\)
−0.949389 + 0.314102i \(0.898297\pi\)
\(822\) 0 0
\(823\) 37.0000 1.28974 0.644869 0.764293i \(-0.276912\pi\)
0.644869 + 0.764293i \(0.276912\pi\)
\(824\) 1.00000i 0.0348367i
\(825\) 0 0
\(826\) 12.0000i 0.417533i
\(827\) 30.0000i 1.04320i 0.853189 + 0.521601i \(0.174665\pi\)
−0.853189 + 0.521601i \(0.825335\pi\)
\(828\) 12.0000 0.417029
\(829\) 28.0000 0.972480 0.486240 0.873825i \(-0.338368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.00000 −0.277184
\(834\) 0 0
\(835\) 19.0000 0.657522
\(836\) 21.0000 0.726300
\(837\) 0 0
\(838\) − 12.0000i − 0.414533i
\(839\) − 26.0000i − 0.897620i −0.893627 0.448810i \(-0.851848\pi\)
0.893627 0.448810i \(-0.148152\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) −16.0000 −0.551396
\(843\) 0 0
\(844\) −13.0000 −0.447478
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) − 6.00000i − 0.206162i
\(848\) −9.00000 −0.309061
\(849\) 0 0
\(850\) 4.00000i 0.137199i
\(851\) 12.0000i 0.411355i
\(852\) 0 0
\(853\) − 14.0000i − 0.479351i −0.970853 0.239675i \(-0.922959\pi\)
0.970853 0.239675i \(-0.0770410\pi\)
\(854\) 42.0000 1.43721
\(855\) 21.0000 0.718185
\(856\) − 18.0000i − 0.615227i
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) − 6.00000i − 0.204598i
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) 32.0000i 1.08929i 0.838666 + 0.544646i \(0.183336\pi\)
−0.838666 + 0.544646i \(0.816664\pi\)
\(864\) 0 0
\(865\) − 21.0000i − 0.714021i
\(866\) 16.0000i 0.543702i
\(867\) 0 0
\(868\) −30.0000 −1.01827
\(869\) − 30.0000i − 1.01768i
\(870\) 0 0
\(871\) 0 0
\(872\) −2.00000 −0.0677285
\(873\) 48.0000i 1.62455i
\(874\) −28.0000 −0.947114
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) 34.0000i 1.14810i 0.818821 + 0.574049i \(0.194628\pi\)
−0.818821 + 0.574049i \(0.805372\pi\)
\(878\) − 6.00000i − 0.202490i
\(879\) 0 0
\(880\) −3.00000 −0.101130
\(881\) −5.00000 −0.168454 −0.0842271 0.996447i \(-0.526842\pi\)
−0.0842271 + 0.996447i \(0.526842\pi\)
\(882\) − 6.00000i − 0.202031i
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 18.0000i 0.604722i
\(887\) −13.0000 −0.436497 −0.218249 0.975893i \(-0.570034\pi\)
−0.218249 + 0.975893i \(0.570034\pi\)
\(888\) 0 0
\(889\) 39.0000i 1.30802i
\(890\) − 1.00000i − 0.0335201i
\(891\) − 27.0000i − 0.904534i
\(892\) 19.0000i 0.636167i
\(893\) −7.00000 −0.234246
\(894\) 0 0
\(895\) 4.00000i 0.133705i
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) −15.0000 −0.500556
\(899\) − 80.0000i − 2.66815i
\(900\) −3.00000 −0.100000
\(901\) −36.0000 −1.19933
\(902\) − 6.00000i − 0.199778i
\(903\) 0 0
\(904\) − 8.00000i − 0.266076i
\(905\) − 14.0000i − 0.465376i
\(906\) 0 0
\(907\) 10.0000 0.332045 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(908\) − 4.00000i − 0.132745i
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 22.0000i 0.726900i
\(917\) − 39.0000i − 1.28789i
\(918\) 0 0
\(919\) 50.0000 1.64935 0.824674 0.565608i \(-0.191359\pi\)
0.824674 + 0.565608i \(0.191359\pi\)
\(920\) 4.00000 0.131876
\(921\) 0 0
\(922\) 40.0000 1.31733
\(923\) 0 0
\(924\) 0 0
\(925\) − 3.00000i − 0.0986394i
\(926\) −40.0000 −1.31448
\(927\) −3.00000 −0.0985329
\(928\) 8.00000i 0.262613i
\(929\) 14.0000i 0.459325i 0.973270 + 0.229663i \(0.0737623\pi\)
−0.973270 + 0.229663i \(0.926238\pi\)
\(930\) 0 0
\(931\) 14.0000i 0.458831i
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 20.0000i 0.654420i
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) 12.0000i 0.391814i
\(939\) 0 0
\(940\) 1.00000 0.0326164
\(941\) 24.0000i 0.782378i 0.920310 + 0.391189i \(0.127936\pi\)
−0.920310 + 0.391189i \(0.872064\pi\)
\(942\) 0 0
\(943\) 8.00000i 0.260516i
\(944\) − 4.00000i − 0.130189i
\(945\) 0 0
\(946\) 18.0000 0.585230
\(947\) 38.0000i 1.23483i 0.786636 + 0.617417i \(0.211821\pi\)
−0.786636 + 0.617417i \(0.788179\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 7.00000 0.227110
\(951\) 0 0
\(952\) 12.0000 0.388922
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) − 27.0000i − 0.874157i
\(955\) 6.00000i 0.194155i
\(956\) 2.00000i 0.0646846i
\(957\) 0 0
\(958\) −28.0000 −0.904639
\(959\) 36.0000 1.16250
\(960\) 0 0
\(961\) −69.0000 −2.22581
\(962\) 0 0
\(963\) 54.0000 1.74013
\(964\) 25.0000i 0.805196i
\(965\) −24.0000 −0.772587
\(966\) 0 0
\(967\) 33.0000i 1.06121i 0.847620 + 0.530604i \(0.178035\pi\)
−0.847620 + 0.530604i \(0.821965\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) 0 0
\(970\) 16.0000i 0.513729i
\(971\) −49.0000 −1.57248 −0.786242 0.617918i \(-0.787976\pi\)
−0.786242 + 0.617918i \(0.787976\pi\)
\(972\) 0 0
\(973\) 15.0000i 0.480878i
\(974\) −19.0000 −0.608799
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) 24.0000i 0.767828i 0.923369 + 0.383914i \(0.125424\pi\)
−0.923369 + 0.383914i \(0.874576\pi\)
\(978\) 0 0
\(979\) 3.00000 0.0958804
\(980\) − 2.00000i − 0.0638877i
\(981\) − 6.00000i − 0.191565i
\(982\) − 43.0000i − 1.37219i
\(983\) − 3.00000i − 0.0956851i −0.998855 0.0478426i \(-0.984765\pi\)
0.998855 0.0478426i \(-0.0152346\pi\)
\(984\) 0 0
\(985\) −13.0000 −0.414214
\(986\) 32.0000i 1.01909i
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) − 9.00000i − 0.286039i
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) 10.0000 0.317500
\(993\) 0 0
\(994\) 18.0000i 0.570925i
\(995\) − 18.0000i − 0.570638i
\(996\) 0 0
\(997\) −11.0000 −0.348373 −0.174187 0.984713i \(-0.555730\pi\)
−0.174187 + 0.984713i \(0.555730\pi\)
\(998\) 4.00000 0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.d.c.1351.1 2
13.2 odd 12 1690.2.e.h.191.1 2
13.3 even 3 1690.2.l.e.1161.2 4
13.4 even 6 1690.2.l.e.361.2 4
13.5 odd 4 1690.2.a.c.1.1 1
13.6 odd 12 1690.2.e.h.991.1 2
13.7 odd 12 130.2.e.a.81.1 yes 2
13.8 odd 4 1690.2.a.h.1.1 1
13.9 even 3 1690.2.l.e.361.1 4
13.10 even 6 1690.2.l.e.1161.1 4
13.11 odd 12 130.2.e.a.61.1 2
13.12 even 2 inner 1690.2.d.c.1351.2 2
39.11 even 12 1170.2.i.i.451.1 2
39.20 even 12 1170.2.i.i.991.1 2
52.7 even 12 1040.2.q.h.81.1 2
52.11 even 12 1040.2.q.h.321.1 2
65.7 even 12 650.2.o.d.549.2 4
65.24 odd 12 650.2.e.b.451.1 2
65.33 even 12 650.2.o.d.549.1 4
65.34 odd 4 8450.2.a.g.1.1 1
65.37 even 12 650.2.o.d.399.1 4
65.44 odd 4 8450.2.a.q.1.1 1
65.59 odd 12 650.2.e.b.601.1 2
65.63 even 12 650.2.o.d.399.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.a.61.1 2 13.11 odd 12
130.2.e.a.81.1 yes 2 13.7 odd 12
650.2.e.b.451.1 2 65.24 odd 12
650.2.e.b.601.1 2 65.59 odd 12
650.2.o.d.399.1 4 65.37 even 12
650.2.o.d.399.2 4 65.63 even 12
650.2.o.d.549.1 4 65.33 even 12
650.2.o.d.549.2 4 65.7 even 12
1040.2.q.h.81.1 2 52.7 even 12
1040.2.q.h.321.1 2 52.11 even 12
1170.2.i.i.451.1 2 39.11 even 12
1170.2.i.i.991.1 2 39.20 even 12
1690.2.a.c.1.1 1 13.5 odd 4
1690.2.a.h.1.1 1 13.8 odd 4
1690.2.d.c.1351.1 2 1.1 even 1 trivial
1690.2.d.c.1351.2 2 13.12 even 2 inner
1690.2.e.h.191.1 2 13.2 odd 12
1690.2.e.h.991.1 2 13.6 odd 12
1690.2.l.e.361.1 4 13.9 even 3
1690.2.l.e.361.2 4 13.4 even 6
1690.2.l.e.1161.1 4 13.10 even 6
1690.2.l.e.1161.2 4 13.3 even 3
8450.2.a.g.1.1 1 65.34 odd 4
8450.2.a.q.1.1 1 65.44 odd 4