Properties

Label 2-1690-13.12-c1-0-51
Degree $2$
Conductor $1690$
Sign $-0.832 - 0.554i$
Analytic cond. $13.4947$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s i·5-s − 3i·7-s + i·8-s − 3·9-s − 10-s − 3i·11-s − 3·14-s + 16-s + 4·17-s + 3i·18-s − 7i·19-s + i·20-s − 3·22-s + 4·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 0.447i·5-s − 1.13i·7-s + 0.353i·8-s − 9-s − 0.316·10-s − 0.904i·11-s − 0.801·14-s + 0.250·16-s + 0.970·17-s + 0.707i·18-s − 1.60i·19-s + 0.223i·20-s − 0.639·22-s + 0.834·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1690\)    =    \(2 \cdot 5 \cdot 13^{2}\)
Sign: $-0.832 - 0.554i$
Analytic conductor: \(13.4947\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1690} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1690,\ (\ :1/2),\ -0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8443532246\)
\(L(\frac12)\) \(\approx\) \(0.8443532246\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 + iT \)
13 \( 1 \)
good3 \( 1 + 3T^{2} \)
7 \( 1 + 3iT - 7T^{2} \)
11 \( 1 + 3iT - 11T^{2} \)
17 \( 1 - 4T + 17T^{2} \)
19 \( 1 + 7iT - 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 - 10iT - 31T^{2} \)
37 \( 1 - 3iT - 37T^{2} \)
41 \( 1 - 2iT - 41T^{2} \)
43 \( 1 + 6T + 43T^{2} \)
47 \( 1 + iT - 47T^{2} \)
53 \( 1 + 9T + 53T^{2} \)
59 \( 1 + 4iT - 59T^{2} \)
61 \( 1 + 14T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 + 6iT - 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 - iT - 89T^{2} \)
97 \( 1 + 16iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.974472149526073955237103187319, −8.270018430517927848878049753117, −7.41553694019543771217817237170, −6.43754165048149942360579306641, −5.32998179087867168051080862613, −4.75028145790022338725931182794, −3.47909647332721996099127149099, −3.00934627706136889811015877011, −1.38069434395769789553772910976, −0.32955312861302782821520521777, 1.89730072661833625261073369982, 3.00216269545351557044257099271, 3.98759213212126458419970751422, 5.32716010435631143558311552002, 5.72066477715818156427266840820, 6.47484245721882194502602386002, 7.66805989713918990186968298301, 7.961908680755844214870090117511, 9.094911053156208925787671110171, 9.510048673850909021617120697475

Graph of the $Z$-function along the critical line