L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−1.5 − 2.59i)7-s − 0.999·8-s + (1.5 + 2.59i)9-s + (1.5 − 2.59i)11-s + (3.5 − 0.866i)13-s − 3·14-s + (−0.5 + 0.866i)16-s + (−2 − 3.46i)17-s + 3·18-s + (−3.5 − 6.06i)19-s + (−1.5 − 2.59i)22-s + (−2 + 3.46i)23-s + (1 − 3.46i)26-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.566 − 0.981i)7-s − 0.353·8-s + (0.5 + 0.866i)9-s + (0.452 − 0.783i)11-s + (0.970 − 0.240i)13-s − 0.801·14-s + (−0.125 + 0.216i)16-s + (−0.485 − 0.840i)17-s + 0.707·18-s + (−0.802 − 1.39i)19-s + (−0.319 − 0.553i)22-s + (−0.417 + 0.722i)23-s + (0.196 − 0.679i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.755677 - 1.34851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.755677 - 1.34851i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-3.5 + 0.866i)T \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2 + 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.5 + 6.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4 + 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 10T + 31T^{2} \) |
| 37 | \( 1 + (-1.5 + 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1 + 1.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3 - 5.19i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7 - 12.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-8 - 13.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56137925077447357653295631519, −9.518812864310649863309719700539, −8.721345803051156553388781856967, −7.52647273559935246481970762978, −6.65890804551353969216972077966, −5.62798750014615608750309659937, −4.39678740192933966420872304385, −3.69638476857268843424200575725, −2.39196469143154050840628260786, −0.77054046507760470462636308043,
1.88264824026137694226345291465, 3.55952613992839848789754558056, 4.23378446391115973481511762787, 5.68084442415512962177400840998, 6.36433241489654664088541713359, 6.99717128473903798836486865976, 8.401474518658479747614416471365, 8.913744528232178928071515871359, 9.812177129001117452654268639964, 10.79017168823907123621988358100