Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 19 x^{2} )( 1 + 8 x + 19 x^{2} )$ |
$1 + 7 x + 30 x^{2} + 133 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.463406802480$, $\pm0.869926530853$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $26$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $532$ | $134064$ | $47831056$ | $16905470400$ | $6123291277852$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $27$ | $373$ | $6972$ | $129721$ | $2472957$ | $47067046$ | $893857383$ | $16983663601$ | $322685744388$ | $6131071184053$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=7 x^6+11 x^5+17 x^4+14 x^3+15 x^2+16 x+4$
- $y^2=5 x^6+5 x^5+17 x^4+4 x^3+13 x^2+10$
- $y^2=9 x^6+15 x^5+10 x^4+x^3+9 x^2+7 x$
- $y^2=17 x^6+9 x^5+x^4+12 x^3+9 x^2+14 x$
- $y^2=16 x^6+7 x^5+8 x^4+13 x^3+16 x^2+13 x+13$
- $y^2=8 x^6+12 x^5+6 x^4+2 x^3+14 x^2+3 x$
- $y^2=7 x^6+7 x^5+12 x^4+12 x^3+7 x^2+15 x+14$
- $y^2=8 x^6+18 x^5+9 x^3+9 x^2+x+8$
- $y^2=16 x^6+15 x^5+5 x^4+6 x^3+11 x^2+10 x+14$
- $y^2=18 x^6+9 x^5+9 x^4+13 x^3+3 x^2+6 x+5$
- $y^2=14 x^6+15 x^5+5 x^4+4 x^3+7 x^2+5 x+17$
- $y^2=5 x^6+14 x^5+9 x^4+11 x^3+12 x^2+15 x+14$
- $y^2=18 x^6+8 x^4+18 x^3+15 x+16$
- $y^2=3 x^6+2 x^5+13 x^4+2 x^3+7 x^2+18 x+9$
- $y^2=x^6+13 x^5+12 x^4+17 x^3+11 x^2+16 x+10$
- $y^2=16 x^6+x^5+4 x^4+11 x^3+14 x^2+14 x+16$
- $y^2=7 x^6+14 x^5+11 x^4+9 x^3+17 x^2+8 x+3$
- $y^2=17 x^6+16 x^5+15 x^4+12 x^3+x^2+5 x+14$
- $y^2=4 x^6+13 x^5+8 x^4+17 x^3+5 x^2+4 x+4$
- $y^2=12 x^6+10 x^5+6 x^4+10 x^3+6 x^2+7 x+5$
- $y^2=x^6+15 x^5+11 x^4+15 x^3+7 x^2+6 x$
- $y^2=2 x^6+4 x^3+18$
- $y^2=x^6+2 x^5+14 x^4+3 x^3+10 x^2+7 x+6$
- $y^2=8 x^6+16 x^5+11 x^4+11 x^3+5 x^2+8 x+3$
- $y^2=3 x^6+8 x^5+3 x^4+11 x^3+4 x^2+5 x+15$
- $y^2=15 x^6+11 x^5+x^3+4 x^2+2 x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{3}}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.ab $\times$ 1.19.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{19^{3}}$ is 1.6859.ce 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.