Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 3 x - 28 x^{2} - 111 x^{3} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.0873537851106$, $\pm0.754020451777$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-139})\) |
Galois group: | $C_2^2$ |
Jacobians: | $21$ |
Isomorphism classes: | 39 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1228$ | $1787968$ | $2534921104$ | $3515266669824$ | $4807490096487868$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $35$ | $1305$ | $50042$ | $1875649$ | $69328175$ | $2565741750$ | $94932484115$ | $3512477916769$ | $129961775488754$ | $4808584482833025$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):
- $y^2=16 x^6+36 x^5+3 x^4+21 x^3+12 x^2+25 x+35$
- $y^2=5 x^5+12 x^4+3 x^3+3 x^2+31 x+19$
- $y^2=13 x^6+28 x^5+14 x^4+5 x^3+33 x^2+12 x+20$
- $y^2=4 x^6+11 x^5+21 x^4+23 x^3+2 x^2+4 x+14$
- $y^2=28 x^6+16 x^5+27 x^4+16 x^3+30 x+5$
- $y^2=15 x^6+18 x^5+33 x^4+5 x^3+36 x^2+27 x+19$
- $y^2=28 x^6+33 x^5+25 x^4+11 x^3+22 x^2+24 x+2$
- $y^2=32 x^6+4 x^5+15 x^4+26 x^3+20 x+13$
- $y^2=20 x^6+14 x^5+21 x^4+15 x^2+19 x+24$
- $y^2=11 x^6+29 x^5+32 x^4+24 x^3+12 x^2+11 x+36$
- $y^2=6 x^6+2 x^5+15 x^4+32 x^3+28 x^2+12 x+16$
- $y^2=22 x^6+17 x^5+9 x^4+33 x^3+12 x^2+25 x$
- $y^2=34 x^6+33 x^5+11 x^4+4 x^3+34 x^2+30 x+25$
- $y^2=11 x^5+17 x^4+8 x^3+31 x^2+17 x+6$
- $y^2=10 x^6+22 x^5+10 x^4+18 x^3+10 x^2+19 x+3$
- $y^2=16 x^6+25 x^5+16 x^4+20 x^3+2 x^2+6 x+9$
- $y^2=2 x^6+29 x^5+28 x^4+20 x^3+15 x^2+6$
- $y^2=12 x^6+18 x^4+24 x^3+28 x^2+11 x+21$
- $y^2=32 x^5+28 x^4+22 x^3+35 x^2+8 x+27$
- $y^2=17 x^6+5 x^5+17 x^4+3 x^3+34 x^2+32 x+35$
- $y^2=36 x^6+18 x^5+31 x^4+29 x^3+23 x^2+8 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{3}}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-139})\). |
The base change of $A$ to $\F_{37^{3}}$ is 1.50653.alu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-139}) \)$)$ |
Base change
This is a primitive isogeny class.