Properties

Label 2.41.ac_abl
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 - 2 x - 37 x^{2} - 82 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.116750683713$, $\pm0.783417350380$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-10})\)
Galois group:  $C_2^2$
Jacobians:  $0$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1561$ $2698969$ $4717491856$ $7992621536809$ $13420898179414201$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $40$ $1604$ $68446$ $2828484$ $115841000$ $4750266638$ $194755059560$ $7984926986884$ $327382005850606$ $13422659309540804$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41^{3}}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-10})\).
Endomorphism algebra over $\overline{\F}_{41}$
The base change of $A$ to $\F_{41^{3}}$ is 1.68921.aje 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.c_abl$2$(not in LMFDB)
2.41.e_di$3$(not in LMFDB)
2.41.ae_di$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.c_abl$2$(not in LMFDB)
2.41.e_di$3$(not in LMFDB)
2.41.ae_di$6$(not in LMFDB)
2.41.a_da$6$(not in LMFDB)
2.41.a_ada$12$(not in LMFDB)