Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x - 37 x^{2} - 82 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.116750683713$, $\pm0.783417350380$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-10})\) |
Galois group: | $C_2^2$ |
Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1561$ | $2698969$ | $4717491856$ | $7992621536809$ | $13420898179414201$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $1604$ | $68446$ | $2828484$ | $115841000$ | $4750266638$ | $194755059560$ | $7984926986884$ | $327382005850606$ | $13422659309540804$ |
Jacobians and polarizations
This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{3}}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-10})\). |
The base change of $A$ to $\F_{41^{3}}$ is 1.68921.aje 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.