Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 9 x + 53 x^{2} )^{2}$ |
| $1 - 18 x + 187 x^{2} - 954 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.287893547303$, $\pm0.287893547303$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $40$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2025$ | $8037225$ | $22374176400$ | $62338525475625$ | $174893937400400625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $2860$ | $150282$ | $7900468$ | $418210956$ | $22163971030$ | $1174706809452$ | $62259672113188$ | $3299763656629026$ | $174887471918758300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=19 x^6+29 x^5+25 x^4+41 x^3+42 x^2+52 x+22$
- $y^2=39 x^6+10 x^5+25 x^4+7 x^3+44 x^2+42 x+50$
- $y^2=19 x^6+28 x^5+48 x^4+6 x^3+19 x^2+10 x+31$
- $y^2=33 x^6+52 x^5+14 x^4+18 x^3+18 x^2+7 x+21$
- $y^2=21 x^6+27 x^5+36 x^4+4 x^3+10 x^2+33 x+14$
- $y^2=29 x^6+18 x^5+51 x^4+40 x^3+30 x^2+22 x+16$
- $y^2=7 x^6+6 x^5+36 x^4+46 x^3+52 x^2+2 x+24$
- $y^2=22 x^6+19 x^5+13 x^4+9 x^3+28 x^2+48 x+18$
- $y^2=26 x^6+50 x^5+34 x^4+47 x^3+19 x^2+50 x+27$
- $y^2=51 x^6+23 x^5+15 x^4+46 x^3+7 x^2+50 x+31$
- $y^2=45 x^6+17 x^5+21 x^4+37 x^3+50 x^2+9 x+30$
- $y^2=22 x^6+12 x^5+49 x^4+42 x^3+18 x^2+4 x+3$
- $y^2=7 x^6+23 x^5+23 x^4+26 x^3+34 x^2+18 x+9$
- $y^2=7 x^6+10 x^5+35 x^4+44 x^3+5 x^2+24 x+13$
- $y^2=8 x^6+27 x^5+23 x^4+43 x^3+39 x^2+8 x+35$
- $y^2=5 x^6+31 x^5+32 x^4+27 x^3+21 x^2+31 x+48$
- $y^2=30 x^6+38 x^5+37 x^4+50 x^3+44 x^2+29 x+27$
- $y^2=51 x^6+46 x^4+18 x^3+44 x^2+18$
- $y^2=26 x^6+11 x^5+35 x^4+44 x^3+12 x^2+52 x+8$
- $y^2=8 x^6+43 x^5+38 x^4+39 x^3+38 x^2+43 x+8$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.aj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-131}) \)$)$ |
Base change
This is a primitive isogeny class.