Properties

Label 2.17.e_ab
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $1 + 4 x - x^{2} + 68 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.327873003470$, $\pm0.994539670137$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-13})\)
Galois group:  $C_2^2$
Jacobians:  $0$
Isomorphism classes:  4

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $361$ $78337$ $25542916$ $6954523849$ $2017931027401$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $22$ $272$ $5194$ $83268$ $1421222$ $24118022$ $410354582$ $6975654916$ $118589237578$ $2015992921232$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17^{3}}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-13})\).
Endomorphism algebra over $\overline{\F}_{17}$
The base change of $A$ to $\F_{17^{3}}$ is 1.4913.fk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ae_ab$2$(not in LMFDB)
2.17.ai_by$3$(not in LMFDB)
2.17.a_s$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ae_ab$2$(not in LMFDB)
2.17.ai_by$3$(not in LMFDB)
2.17.a_s$6$(not in LMFDB)
2.17.i_by$6$(not in LMFDB)
2.17.a_as$12$(not in LMFDB)