Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x - x^{2} + 68 x^{3} + 289 x^{4}$ |
Frobenius angles: | $\pm0.327873003470$, $\pm0.994539670137$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-13})\) |
Galois group: | $C_2^2$ |
Jacobians: | $0$ |
Isomorphism classes: | 4 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $361$ | $78337$ | $25542916$ | $6954523849$ | $2017931027401$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $22$ | $272$ | $5194$ | $83268$ | $1421222$ | $24118022$ | $410354582$ | $6975654916$ | $118589237578$ | $2015992921232$ |
Jacobians and polarizations
This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{3}}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-13})\). |
The base change of $A$ to $\F_{17^{3}}$ is 1.4913.fk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
Base change
This is a primitive isogeny class.