Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x + 35 x^{2} - 232 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.0998271456989$, $\pm0.566839520968$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-13})\) |
Galois group: | $C_2^2$ |
Jacobians: | $28$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $637$ | $711529$ | $585930436$ | $499084228825$ | $420867917456077$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $22$ | $848$ | $24022$ | $705636$ | $20518982$ | $594853166$ | $17249768558$ | $500247707716$ | $14507160442318$ | $420707253618128$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=14 x^6+10 x^5+16 x^4+x^3+2 x^2+10 x+11$
- $y^2=17 x^6+26 x^5+9 x^4+3 x^3+19 x^2+21 x+2$
- $y^2=23 x^6+13 x^5+10 x^4+8 x^3+19 x^2+11 x+6$
- $y^2=26 x^6+21 x^5+18 x^4+15 x^3+28 x^2+17 x+7$
- $y^2=19 x^6+3 x^5+18 x^4+26 x^3+22 x^2+4 x+21$
- $y^2=3 x^6+x^5+15 x^4+11 x^3+14 x^2+13 x+27$
- $y^2=12 x^6+17 x^5+x^4+26 x^3+4 x+28$
- $y^2=15 x^6+11 x^5+13 x^4+11 x^3+24 x^2+26 x+21$
- $y^2=27 x^6+x^5+20 x^4+11 x^3+17 x^2+28 x+15$
- $y^2=3 x^6+23 x^5+26 x^4+22 x^3+13 x^2+4 x+12$
- $y^2=27 x^6+18 x^5+28 x^4+14 x^3+10 x^2+18 x+10$
- $y^2=25 x^6+7 x^5+12 x^4+10 x^3+4 x^2+6 x+5$
- $y^2=19 x^6+3 x^5+22 x^4+7 x^3+13 x^2+8 x+8$
- $y^2=8 x^6+x^5+16 x^4+18 x^3+x^2+8 x+17$
- $y^2=5 x^6+22 x^5+21 x^4+10 x^3+27 x^2+20 x+17$
- $y^2=11 x^6+6 x^5+19 x^4+25 x^3+19 x+23$
- $y^2=21 x^6+25 x^5+9 x^4+8 x^3+26 x^2+20 x+21$
- $y^2=20 x^6+22 x^5+15 x^4+12 x^3+5 x+7$
- $y^2=10 x^6+6 x^5+17 x^4+10 x^3+22 x^2+21 x+19$
- $y^2=11 x^6+x^5+14 x^4+20 x^3+22 x^2+3 x+10$
- $y^2=14 x^6+26 x^5+7 x^4+16 x^3+15 x^2+14 x+5$
- $y^2=9 x^6+25 x^5+23 x^4+23 x^3+20 x^2+4 x+3$
- $y^2=6 x^6+4 x^5+15 x^4+6 x^3+15 x^2+23 x+14$
- $y^2=15 x^6+4 x^5+7 x^4+15 x^3+2 x^2+15 x+18$
- $y^2=12 x^6+14 x^5+27 x^4+10 x^2+15 x+14$
- $y^2=16 x^6+19 x^5+4 x^4+2 x^3+18 x^2+23 x+28$
- $y^2=20 x^6+27 x^5+24 x^4+12 x^3+12 x^2+12 x+16$
- $y^2=8 x^6+26 x^5+16 x^3+4 x^2+10 x+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{3}}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-13})\). |
The base change of $A$ to $\F_{29^{3}}$ is 1.24389.ahc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
Base change
This is a primitive isogeny class.