Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x - 7 x^{2} - 258 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.0154131777858$, $\pm0.682079844452$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-34})\) |
Galois group: | $C_2^2$ |
Jacobians: | $0$ |
Isomorphism classes: | 12 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1579$ | $3326953$ | $6233102500$ | $11684102569209$ | $21609011824807579$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1800$ | $78392$ | $3417604$ | $146991638$ | $6321058350$ | $271818419666$ | $11688194875204$ | $502592530644056$ | $21611482301709000$ |
Jacobians and polarizations
This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{3}}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-34})\). |
The base change of $A$ to $\F_{43^{3}}$ is 1.79507.avm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-34}) \)$)$ |
Base change
This is a primitive isogeny class.