L(s) = 1 | + 2·7-s + 2·9-s − 10·11-s − 2·13-s + 2·17-s − 4·19-s − 12·23-s − 6·29-s + 6·31-s + 12·37-s − 4·43-s + 10·47-s − 9·49-s − 6·53-s − 18·59-s + 2·61-s + 4·63-s − 14·67-s − 4·71-s + 12·73-s − 20·77-s + 12·79-s − 5·81-s − 6·83-s − 4·91-s − 4·97-s − 20·99-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 2/3·9-s − 3.01·11-s − 0.554·13-s + 0.485·17-s − 0.917·19-s − 2.50·23-s − 1.11·29-s + 1.07·31-s + 1.97·37-s − 0.609·43-s + 1.45·47-s − 9/7·49-s − 0.824·53-s − 2.34·59-s + 0.256·61-s + 0.503·63-s − 1.71·67-s − 0.474·71-s + 1.40·73-s − 2.27·77-s + 1.35·79-s − 5/9·81-s − 0.658·83-s − 0.419·91-s − 0.406·97-s − 2.01·99-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.973024707113002633250041498116, −7.76487488690859993728907296826, −7.48586602779685670934103311151, −7.21432148116673124204116557767, −6.47957452984299973677379446285, −6.14665508285740862660902882036, −5.80075240942158368708670426241, −5.57439570463457864857147194808, −5.03527450821182605482583200771, −4.60547225597599437710922647273, −4.50277916125585323095520526599, −4.14661316805055466607982984603, −3.32759580232836193051167688042, −3.09863537135794772428400501996, −2.41111168646470400253053170534, −2.20701742635764125632291699499, −1.85361404647478438906837681904, −1.09121918988343824635096263529, 0, 0,
1.09121918988343824635096263529, 1.85361404647478438906837681904, 2.20701742635764125632291699499, 2.41111168646470400253053170534, 3.09863537135794772428400501996, 3.32759580232836193051167688042, 4.14661316805055466607982984603, 4.50277916125585323095520526599, 4.60547225597599437710922647273, 5.03527450821182605482583200771, 5.57439570463457864857147194808, 5.80075240942158368708670426241, 6.14665508285740862660902882036, 6.47957452984299973677379446285, 7.21432148116673124204116557767, 7.48586602779685670934103311151, 7.76487488690859993728907296826, 7.973024707113002633250041498116