Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 190 x^{2} + 388 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.486608886611$, $\pm0.578829415150$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2259968.5 |
Galois group: | $D_{4}$ |
Jacobians: | $140$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9992$ | $92006336$ | $832013386376$ | $7834878299503616$ | $73743584734436086152$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $102$ | $9774$ | $911622$ | $88500414$ | $8587476742$ | $832973927214$ | $80798271956070$ | $7837433497894398$ | $760231059389659686$ | $73742412691655918254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=85 x^6+39 x^5+26 x^4+82 x^3+35 x^2+29 x+33$
- $y^2=87 x^6+10 x^5+40 x^4+55 x^3+36 x^2+60 x+7$
- $y^2=11 x^6+39 x^5+34 x^4+52 x^3+4 x^2+23 x+82$
- $y^2=10 x^6+18 x^5+83 x^4+91 x^3+64 x^2+15 x+79$
- $y^2=46 x^6+x^5+3 x^4+39 x^3+20 x^2+72 x+82$
- $y^2=72 x^6+90 x^5+29 x^4+72 x^3+66 x^2+31 x+91$
- $y^2=96 x^6+46 x^5+83 x^4+91 x^3+81 x^2+30 x+30$
- $y^2=29 x^6+78 x^5+91 x^4+83 x^3+82 x^2+48 x+36$
- $y^2=15 x^6+86 x^5+45 x^4+91 x^3+55 x^2+70 x+72$
- $y^2=76 x^6+69 x^5+86 x^4+54 x^3+52 x^2+13 x+12$
- $y^2=81 x^6+65 x^5+61 x^4+3 x^3+10 x^2+53 x+15$
- $y^2=17 x^6+31 x^5+63 x^4+34 x^3+25 x^2+76 x+8$
- $y^2=73 x^6+37 x^5+9 x^4+37 x^3+55 x^2+5 x+37$
- $y^2=92 x^6+18 x^5+73 x^4+95 x^3+69 x^2+16 x+21$
- $y^2=89 x^6+14 x^5+37 x^4+22 x^3+83 x^2+77 x+85$
- $y^2=16 x^6+93 x^5+47 x^4+70 x^3+26 x^2+35 x+29$
- $y^2=10 x^6+50 x^4+59 x^3+41 x^2+85 x+41$
- $y^2=49 x^6+66 x^5+49 x^4+70 x^3+89 x^2+10 x+28$
- $y^2=23 x^6+10 x^5+12 x^4+65 x^3+7 x^2+36 x+32$
- $y^2=81 x^6+35 x^5+71 x^4+71 x^3+13 x^2+75 x+52$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is 4.0.2259968.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.ae_hi | $2$ | (not in LMFDB) |