Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 77 x^{2} + 498 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.376385325666$, $\pm0.750380600828$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3014208.5 |
Galois group: | $D_{4}$ |
Jacobians: | $144$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7471$ | $48285073$ | $327125295652$ | $2252934814514409$ | $15515228683859569351$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $7008$ | $572112$ | $47471860$ | $3938834370$ | $326939594334$ | $27136062572982$ | $2252292232085860$ | $186940256184922752$ | $15516041181303923088$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=51 x^6+64 x^4+73 x^3+77 x^2+80 x+58$
- $y^2=27 x^6+21 x^5+47 x^4+45 x^3+60 x^2+72 x+20$
- $y^2=25 x^6+x^5+74 x^4+40 x^3+15 x^2+70 x+66$
- $y^2=44 x^6+13 x^5+21 x^4+14 x^3+56 x^2+26 x+57$
- $y^2=10 x^6+2 x^5+24 x^4+46 x^3+51 x^2+16 x+6$
- $y^2=78 x^6+5 x^5+34 x^4+9 x^3+54 x^2+81 x+10$
- $y^2=12 x^6+17 x^5+58 x^4+12 x^3+12 x^2+74 x+55$
- $y^2=3 x^6+3 x^5+76 x^4+68 x^3+26 x^2+53 x+77$
- $y^2=37 x^6+23 x^5+40 x^4+46 x^3+77 x^2+49 x+24$
- $y^2=65 x^6+27 x^5+68 x^4+52 x^3+77 x^2+8 x+44$
- $y^2=16 x^6+65 x^5+50 x^4+50 x^3+16 x^2+44 x+58$
- $y^2=46 x^6+39 x^5+17 x^4+74 x^3+29 x^2+30 x+61$
- $y^2=47 x^6+33 x^5+x^4+50 x^3+9 x^2+10 x+25$
- $y^2=63 x^6+77 x^5+7 x^4+7 x^3+64 x^2+61 x+7$
- $y^2=50 x^6+76 x^5+36 x^4+57 x^3+55 x^2+17 x+30$
- $y^2=75 x^6+34 x^5+4 x^4+53 x^3+35 x^2+76 x+13$
- $y^2=19 x^6+16 x^5+52 x^4+16 x^3+11 x^2+35 x+14$
- $y^2=54 x^6+71 x^5+14 x^4+57 x^3+24 x^2+9 x+72$
- $y^2=64 x^6+71 x^5+54 x^4+35 x^3+56 x^2+64 x+15$
- $y^2=24 x^6+17 x^5+74 x^4+21 x^3+12 x^2+8 x+1$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.3014208.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.ag_cz | $2$ | (not in LMFDB) |