Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 79 x^{2} )^{2}$ |
$1 - 12 x + 194 x^{2} - 948 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.390409785279$, $\pm0.390409785279$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $50$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5476$ | $40500496$ | $244279108516$ | $1516921777382400$ | $9467601080795397796$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $6486$ | $495452$ | $38945278$ | $3076837028$ | $243086518806$ | $19203920696252$ | $1517108954167678$ | $119851595923087748$ | $9468276070873035606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=4 x^5+x^4+28 x^3+25 x^2+60 x+47$
- $y^2=34 x^6+74 x^5+62 x^4+19 x^3+62 x^2+74 x+34$
- $y^2=68 x^6+51 x^5+25 x^4+15 x^3+2 x^2+16 x+47$
- $y^2=46 x^6+51 x^5+17 x^4+77 x^3+77 x^2+9 x+35$
- $y^2=43 x^6+5 x^5+72 x^4+49 x^3+70 x^2+10 x+51$
- $y^2=7 x^6+48 x^5+28 x^4+31 x^3+44 x^2+17 x+29$
- $y^2=44 x^6+41 x^5+66 x^4+60 x^3+66 x^2+41 x+44$
- $y^2=36 x^6+5 x^5+43 x^4+34 x^3+17 x+59$
- $y^2=17 x^6+2 x^4+2 x^2+17$
- $y^2=36 x^6+7 x^5+72 x^4+6 x^3+72 x^2+62 x+48$
- $y^2=10 x^6+59 x^5+49 x^4+25 x^3+36 x^2+58 x+43$
- $y^2=2 x^5+70 x^4+44 x^3+70 x^2+2 x$
- $y^2=47 x^6+67 x^5+20 x^4+6 x^3+2 x^2+22 x+48$
- $y^2=61 x^6+69 x^5+10 x^4+75 x^3+51 x^2+64 x+2$
- $y^2=18 x^6+57 x^5+34 x^4+49 x^3+53 x^2+78 x+24$
- $y^2=73 x^6+61 x^5+28 x^4+77 x^3+31 x^2+77 x+53$
- $y^2=63 x^6+41 x^5+32 x^4+3 x^3+14 x^2+30 x+14$
- $y^2=3 x^6+7 x^5+55 x^4+25 x^3+76 x^2+76 x+53$
- $y^2=64 x^6+69 x^5+73 x^4+45 x^3+73 x^2+69 x+64$
- $y^2=11 x^6+73 x^5+7 x^4+40 x^3+57 x^2+62$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-70}) \)$)$ |
Base change
This is a primitive isogeny class.