Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 27 x^{2} - 34 x^{3} + 289 x^{4}$ |
Frobenius angles: | $\pm0.346318536853$, $\pm0.571170149028$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.220736.1 |
Galois group: | $D_{4}$ |
Jacobians: | $21$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $281$ | $99193$ | $24390800$ | $6962654249$ | $2016785624521$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $16$ | $340$ | $4966$ | $83364$ | $1420416$ | $24130270$ | $410288608$ | $6975919044$ | $118589142022$ | $2015992475700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):
- $y^2=12 x^6+9 x^5+14 x^4+3 x^3+6 x+5$
- $y^2=x^6+11 x^5+8 x^4+3 x^3+10 x^2+14 x+12$
- $y^2=15 x^6+7 x^5+8 x^4+3 x^3+4 x^2+14 x+2$
- $y^2=5 x^6+2 x^5+6 x^4+10 x^3+14 x^2+5$
- $y^2=14 x^6+4 x^5+9 x^4+13 x^3+3 x^2+16 x+4$
- $y^2=15 x^6+7 x^5+8 x^4+9 x^3+9 x^2+7 x+7$
- $y^2=13 x^6+6 x^5+5 x^4+12 x^3+11 x^2+10 x+12$
- $y^2=7 x^6+2 x^5+13 x^4+4 x^3+4 x^2+7 x+9$
- $y^2=x^6+3 x^5+9 x^4+2 x^3+10 x^2+7 x+3$
- $y^2=15 x^6+16 x^5+14 x^4+3 x^3+12 x^2+4 x+3$
- $y^2=9 x^6+6 x^5+3 x^4+8 x^3+11 x^2+10 x+9$
- $y^2=6 x^6+16 x^5+12 x^4+12 x^3+14 x^2+14 x+9$
- $y^2=6 x^6+13 x^5+10 x^4+10 x^3+x^2+12$
- $y^2=6 x^6+3 x^5+15 x^4+5 x^3+4 x^2+5 x+2$
- $y^2=13 x^6+14 x^5+11 x^3+13 x^2+4 x+12$
- $y^2=7 x^6+9 x^5+8 x^4+7 x^3+12 x^2+14 x+13$
- $y^2=13 x^6+10 x^5+x^4+4 x^3+16 x^2+10 x+16$
- $y^2=x^6+12 x^5+5 x^4+5 x^3+13 x^2+7 x+16$
- $y^2=12 x^6+2 x^5+5 x^4+10 x^3+15 x^2+x+9$
- $y^2=2 x^6+2 x^4+13 x^3+12 x^2+10 x+11$
- $y^2=3 x^6+4 x^5+9 x^4+10 x^3+10 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is 4.0.220736.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.c_bb | $2$ | (not in LMFDB) |