Properties

Label 2.43.e_de
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 82 x^{2} + 172 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.479879931808$, $\pm0.620013544907$
Angle rank:  $2$ (numerical)
Number field:  4.0.407552.1
Galois group:  $D_{4}$
Jacobians:  $70$
Isomorphism classes:  90

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2108$ $3701648$ $6289346588$ $11675175471104$ $21613764592576188$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $1998$ $79104$ $3414990$ $147023968$ $6321409374$ $271818555504$ $11688201079710$ $502592576616336$ $21611482312704238$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is 4.0.407552.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.ae_de$2$(not in LMFDB)