Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 82 x^{2} + 172 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.479879931808$, $\pm0.620013544907$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.407552.1 |
Galois group: | $D_{4}$ |
Jacobians: | $70$ |
Isomorphism classes: | 90 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2108$ | $3701648$ | $6289346588$ | $11675175471104$ | $21613764592576188$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $1998$ | $79104$ | $3414990$ | $147023968$ | $6321409374$ | $271818555504$ | $11688201079710$ | $502592576616336$ | $21611482312704238$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=38 x^6+10 x^5+12 x^4+16 x^3+26 x^2+9 x+2$
- $y^2=25 x^6+21 x^5+36 x^4+13 x^3+23 x^2+25 x+7$
- $y^2=14 x^6+2 x^5+x^4+40 x^3+36 x^2+17 x+15$
- $y^2=36 x^6+30 x^5+42 x^4+32 x^3+19 x^2+36 x+33$
- $y^2=8 x^6+17 x^5+25 x^4+10 x^3+29 x^2+x+35$
- $y^2=26 x^6+39 x^5+4 x^3+28 x^2+28 x+14$
- $y^2=21 x^6+14 x^5+4 x^4+32 x^3+x^2+5 x+37$
- $y^2=18 x^6+37 x^5+15 x^4+32 x^3+23 x^2+25 x+35$
- $y^2=6 x^6+18 x^5+41 x^4+16 x^3+28 x^2+6 x$
- $y^2=26 x^6+19 x^5+5 x^4+x^3+x^2+31 x+16$
- $y^2=15 x^6+40 x^5+34 x^4+10 x^3+19 x^2+30$
- $y^2=32 x^6+3 x^5+24 x^4+7 x^3+41 x^2+7 x+16$
- $y^2=2 x^6+4 x^5+13 x^4+39 x^3+20 x^2+17 x+4$
- $y^2=40 x^5+41 x^4+17 x^3+6 x^2+38 x+14$
- $y^2=35 x^6+16 x^5+6 x^4+28 x^3+42 x^2+24 x+18$
- $y^2=14 x^6+36 x^5+4 x^4+6 x^3+20 x^2+30 x+19$
- $y^2=19 x^6+19 x^5+25 x^4+29 x^3+28 x^2+32 x+41$
- $y^2=10 x^6+32 x^5+3 x^3+4 x^2+19 x+38$
- $y^2=12 x^6+19 x^5+14 x^4+9 x^3+23 x^2+33 x+31$
- $y^2=23 x^6+27 x^5+3 x^4+16 x^3+9 x^2+30 x+32$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.407552.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.ae_de | $2$ | (not in LMFDB) |