Properties

Label 2.71.e_s
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 18 x^{2} + 284 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.313610177993$, $\pm0.789931580694$
Angle rank:  $2$ (numerical)
Number field:  4.0.21056.1
Galois group:  $D_{4}$
Jacobians:  $380$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5348$ $25520656$ $128350978532$ $646156876768256$ $3255059676291757348$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $76$ $5062$ $358612$ $25427550$ $1804127436$ $128100106342$ $9095114667988$ $645753505357374$ $45848501485021132$ $3255243550864039302$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 380 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is 4.0.21056.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.ae_s$2$(not in LMFDB)