Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 18 x^{2} + 284 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.313610177993$, $\pm0.789931580694$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.21056.1 |
Galois group: | $D_{4}$ |
Jacobians: | $380$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5348$ | $25520656$ | $128350978532$ | $646156876768256$ | $3255059676291757348$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $76$ | $5062$ | $358612$ | $25427550$ | $1804127436$ | $128100106342$ | $9095114667988$ | $645753505357374$ | $45848501485021132$ | $3255243550864039302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 380 curves (of which all are hyperelliptic):
- $y^2=48 x^6+57 x^5+20 x^4+42 x^2+20 x+59$
- $y^2=30 x^6+40 x^5+29 x^4+68 x^3+5 x^2+38 x+50$
- $y^2=44 x^6+59 x^5+4 x^4+11 x^3+65 x^2+48 x+7$
- $y^2=35 x^6+47 x^5+58 x^4+50 x^3+41 x^2+51 x+51$
- $y^2=11 x^6+2 x^5+60 x^4+47 x^3+63 x^2+46 x+31$
- $y^2=70 x^6+17 x^5+59 x^4+15 x^3+39 x^2+38 x+33$
- $y^2=57 x^6+33 x^5+35 x^4+32 x^3+18 x^2+70 x+30$
- $y^2=63 x^6+58 x^5+22 x^4+13 x^3+69 x^2+3 x+33$
- $y^2=40 x^6+13 x^5+4 x^4+59 x^3+10 x^2+56 x+64$
- $y^2=22 x^6+11 x^5+63 x^4+31 x^3+10 x^2+33 x+62$
- $y^2=2 x^6+69 x^5+60 x^4+34 x^3+49 x^2+33 x+44$
- $y^2=43 x^6+51 x^5+12 x^4+48 x^3+20 x^2+32 x+65$
- $y^2=23 x^6+8 x^5+2 x^4+61 x^3+48 x^2+2 x+36$
- $y^2=60 x^6+34 x^5+68 x^4+3 x^3+47 x^2+65$
- $y^2=61 x^6+65 x^5+52 x^4+54 x^3+66 x^2+63 x+38$
- $y^2=5 x^6+25 x^5+9 x^4+16 x^3+36 x^2+48 x+39$
- $y^2=53 x^6+10 x^5+59 x^4+24 x^3+36 x^2+47 x+56$
- $y^2=35 x^6+50 x^5+21 x^4+7 x^3+19 x^2+58 x+41$
- $y^2=67 x^6+65 x^5+16 x^4+34 x^3+18 x^2+46 x+11$
- $y^2=33 x^6+2 x^5+56 x^4+14 x^3+43 x^2+39 x+35$
- and 360 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.21056.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.ae_s | $2$ | (not in LMFDB) |